Advantages and Application Challenges of Composite Material Repair Methods Used in Aircraft
Year 2026,
Volume: 14 Issue: 1, 299 - 311, 21.01.2026
Emre Lekesizcan
,
Bekir Güney
Abstract
With the development of fiber-reinforced composite materials, composites have become indispensable in modern aircraft structures. Aircraft receive damages from impacts or environmental conditions throughout their service life. Since replacing a damaged composite with a new one is an economically costly task, appropriate repair techniques are keeping its importance. It is possible to restore structural integrity by repairing the damaged part. In addition, since composites are difficult to recycle, their repair contributes to sustainability by reducing the amount of waste material. Although systematic repair methodologies have been well established for thermoset matrix composites, a clear and standardized roadmap for thermoplastic composites has yet to be developed. In this article, damages in composite materials used in today's aircraft, their detection, evaluation and repair methods have been examined. In addition, studies from the literature on ultrasonic, resistance and induction welding methods, which are among the welded repair methods of thermoplastic matrix composites, which have been used increasingly in recent years, have been presented. The advantages of repair methods and the difficulties encountered in application have been evaluated.
Ethical Statement
This is not a study that requires ethical committee approval.
Supporting Institution
No financial support was used.
Thanks
The authors would like to thank Karamanoğlu Mehmetbey University.
References
-
Ageorges, C., & Ye, L. (2001). Resistance welding of metal/thermoplastic composite joints. Journal of Thermoplastic Composite Materials, 14(6), 449–475. https://doi.org/10.1106/PN74-QXKH-7XBE-XKF5
-
Ageorges, C., Ye, L., & Hou, M. (2001). Advances in fusion bonding techniques for joining thermoplastic matrix composites: a review. Composites Part A: Applied Science and Manufacturing, 32(6), 839–857. https://doi.org/10.1016/S1359-835X(00)00166-4
-
Ahmed, T. J., Stavrov, D., Bersee, H. E. N., & Beukers, A. (2006). Induction welding of thermoplastic composites—an overview. Composites Part A: Applied Science and Manufacturing, 37(10), 1638–1651. https://doi.org/10.1016/j.compositesa.2005.10.009
-
Ashforth, C., Momm, G. G., Seneviratne, W., Trace, A., & Ilcewicz, L. (2023). Aerospace structural bonding: Qualification, quality control, substantiation, and risk mitigation. In D. A. Dillard (Ed.), Advances in Structural Adhesive Bonding (Second Edition) (pp. 779–806). Woodhead Publishing. https://doi.org/10.1016/B978-0-323-91214-3.00029-6
-
Barroeta Robles, J., Dubé, M., Hubert, P., & Yousefpour, A. (2022). Repair of thermoplastic composites: an overview. Advanced Manufacturing: Polymer & Composites Science, 8(2), 68–96. https://doi.org/10.1080/20550340.2022.2057137
-
Becker, S., & Mitschang, P. (2022). Process improvement of continuous induction welding of carbon fiber-reinforced polymer composites. Journal of Materials Engineering and Performance, 31(9), 7049–7060. https://doi.org/10.1007/s11665-022-06842-0
-
Benatar, A., Eswaran, R. V., & Nayar, S. K. (1989). Ultrasonic welding of thermoplastics in the near‐field. Polymer Engineering & Science, 29(23), 1689–1698. https://doi.org/10.1002/pen.760292311
-
Brassard, D., Dubé, M., & Tavares, J. R. (2019). Resistance welding of thermoplastic composites with a nanocomposite heating element. Composites Part B: Engineering, 165, 779–784. https://doi.org/10.1016/j.compositesb.2019.02.038
-
Budhe, S., Banea, M. D., & de Barros, S. (2018). Bonded repair of composite structures in aerospace application: a review on environmental issues. Applied Adhesion Science, 6(1), Article 3. https://doi.org/10.1186/s40563-018-0104-5
-
Çalışkan, U., Ekici, R., & Apalak, M. K. (2021). Kompozit yamalar ile tamir edilmiş çatlaklı sandviç kirişlerin eğilme darbe davranışları. International Journal of Engineering Research and Development, 13(2), 438–447. https://doi.org/10.29137/umagd.846692
-
Cambaz, A. (2024). Kompozit kanat yapıları üzerinde tamir modellemesi ve sonlu elemanlar analizi [Master's thesis, TOBB University of Economics and Technology].
-
Çetinkaya, Ş. (2017). Investigation of circular damage repairing by using adhesive in laminate composite materials experimentaly [Doctoral thesis, Firat University].
-
Chen, C., Fan, C., Cai, X., Lin, S., Yang, C., & Zhuo, Y. (2020). Microstructure and mechanical properties of Q235 steel welded joint in pulsed and un-pulsed ultrasonic assisted gas tungsten arc welding. Journal of Materials Processing Technology, 275, Article 116335. https://doi.org/10.1016/j.jmatprotec.2019.116335
-
Choi, B.-K., Kang, C.-S., Yoo, M.-H., & Seo, M.-K. (2023). Effect of processing parameters on bonding performance of a carbon fiber/polyetheretherketone thermoplastic composite prepared by induction welding. Materials, 16(11), Article 3954. https://doi.org/10.3390/ma16113954
-
Collombet, F., Grunevald, Y.-H., Crouzeix, L., Douchin, B., Zitoune, R., Davila, Y., Cerisier, A., & Thévenin, R. (2015). Repairing composites. In P. Boisse (Ed.), Advances in Composites Manufacturing and Process Design (pp. 197–227). Woodhead Publishing. https://doi.org/10.1016/B978-1-78242-307-2.00010-5
-
Darwish, F. H., & Shivakumar, K. N. (2014). Experimental and analytical modeling of scarf repaired composite panels. Mechanics of Advanced Materials and Structures, 21(3), 207–212. https://doi.org/10.1080/15376494.2013.834096
-
Dindar, B., & Ağır, İ. (2021). Charpy impact response of notched aluminum 5754-H111 of repaired with carbon/epoxy and e-glass/epoxy. European Journal of Science and Technology, (22), 352–356. https://doi.org/10.31590/ejosat.844824
-
Du, B., Chen, L., Liu, H., He, Q., Qin, W., & Li, W. (2020). Resistance welding of glass fiber reinforced thermoplastic composite: Experimental investigation and process parameter optimization. Chinese Journal of Aeronautics, 33(12), 3469–3478. https://doi.org/10.1016/j.cja.2020.02.018
-
Dubinskii, S., Feygenbaum, Y., Senik, V., & Metelkin, E. (2019). A study of accidental impact scenarios for composite wing damage tolerance evaluation. The Aeronautical Journal, 123(1268), 1724–1739. https://doi.org/10.1017/aer.2018.152
-
Erdem, A. T. (2024). İçerisinde çatlak bulunan pim bağlantılı kompozitlerin yama ile tamiri ve tamir sonrası mukavemetinin incelenmesi [Master's thesis, Firat University].
-
Eveno, E. C., & Gillespie, J. W. (1988). Resistance welding of graphite polyetheretherketone composites: an experimental investigation. Journal of Thermoplastic Composite Materials, 1(4), 322–338. https://doi.org/10.1177/089270578800100402
-
Evren, M. (2024). Hava araçlarında kullanılan kompozit yapısalların onarım yöntemlerinde uygulanan yapıştırma bağlantılarının optimizasyonu [Master's thesis, Yildiz Technical University].
-
Gong, X.-J., Cheng, P., Aivazzadeh, S., & Xiao, X. (2015). Design and optimization of bonded patch repairs of laminated composite structures. Composite Structures, 123, 292–300. https://doi.org/10.1016/j.compstruct.2014.12.048
-
Gouin O’Shaughnessey, P., Dubé, M., & Fernandez Villegas, I. (2016). Modeling and experimental investigation of induction welding of thermoplastic composites and comparison with other welding processes. Journal of Composite Materials, 50(21), 2895–2910. https://doi.org/10.1177/0021998315614991
-
Hale, J. (2014, December). Boeing 787 from the ground up. Boeing Aero Magazine, 56. https://skybrary.aero/sites/default/files/bookshelf/3815.pdf
-
Kaman, M. O., & Cetişli, F. (2011). Yama ile tamir edilmiş kenar çatlak içeren kompozit levha probleminin sayısal analizi. Prooceedings of 9th International Fracture Conference, (pp. 232–243). http://www.endil.yildiz.edu.tr/proceedings9/24.pdf
-
Katnam, K. B., Da Silva, L. F. M., & Young, T. M. (2013). Bonded repair of composite aircraft structures: A review of scientific challenges and opportunities. Progress in Aerospace Sciences, 61, 26–42. https://doi.org/10.1016/j.paerosci.2013.03.003
-
Kepir, Y., Günöz, A., & Kara, M. (2022). Repairing of damaged composite materials and self-healing composites. Turkish Journal of Engineering, 6(2), 149–155. https://doi.org/10.31127/tuje.866955
-
Köhler, F., Villegas, I., Dransfeld, C., & Herrmann, A. (2021). Static ultrasonic welding of carbon fibre unidirectional thermoplastic materials and the influence of heat generation and heat transfer. Journal of Composite Materials, 55(15), 2087–2102. https://doi.org/10.1177/0021998320976818
-
Korycki, A., Garnier, C., Bonmatin, M., Laurent, E., & Chabert, F. (2022). Assembling of carbon fibre/PEEK composites: Comparison of ultrasonic, induction, and transmission laser welding. Materials, 15(18), Article 6365. https://doi.org/10.3390/ma15186365
-
Koutras, N., Villegas, I. F., & Benedictus, R. (2018). Influence of temperature on the strength of resistance welded glass fibre reinforced PPS joints. Composites Part A: Applied Science and Manufacturing, 105, 57–67. https://doi.org/10.1016/j.compositesa.2017.11.003
-
Liu, B., Xu, F., Feng, W., Yan, R., & Xie, W. (2016). Experiment and design methods of composite scarf repair for primary-load bearing structures. Composites Part A: Applied Science and Manufacturing, 88, 27–38. https://doi.org/10.1016/j.compositesa.2016.05.011
-
Modi, V., Bandaru, A. K., Ramaswamy, K., Kelly, C., McCarthy, C., Flanagan, T., & O’Higgins, R. (2023). Repair of impacted thermoplastic composite laminates using induction welding. Polymers, 15(15), Article 3238. https://doi.org/10.3390/polym15153238
-
Nagatsuka, K., Xiao, B., Wu, L., Nakata, K., Saeki, S., Kitamoto, Y., & Iwamoto, Y. (2018). Resistance spot welding of metal/carbon-fibre-reinforced plastics and applying silane coupling treatment. Science and Technology of Welding and Joining, 23(3), 181–186. https://doi.org/10.1080/13621718.2017.1362159
-
Olajide, S. O., Kandare, E., & Khatibi, A. A. (2017). Fatigue life uncertainty of adhesively bonded composite scarf joints – an airworthiness perspective. The Journal of Adhesion, 93(7), 515–530. https://doi.org/10.1080/00218464.2015.1112796
-
Raju, I. S., & O’Brien, T. K. (2008). Fracture mechanics concepts, stress fields, strain energy release rates, delamination initiation and growth criteria. In S. Sridharan (Ed.), Delamination Behaviour of Composites (pp. 3–27). Woodhead Publishing. https://doi.org/10.1533/9781845694821.1.3
-
Reis, J. P., de Moura, M., & Samborski, S. (2020). Thermoplastic composites and their promising applications in joining and repair composites structures: A review. Materials, 13(24), Article 5832. https://doi.org/10.3390/ma13245832
-
Rodríguez-Vidal, E., Sanz, C., Soriano, C., Leunda, J., & Verhaeghe, G. (2016). Effect of metal micro-structuring on the mechanical behavior of polymer–metal laser T-joints. Journal of Materials Processing Technology, 229, 668–677. https://doi.org/10.1016/j.jmatprotec.2015.10.026
-
Rohart, V., Lebel, L. L., & Dubé, M. (2020). Effects of environmental conditions on the lap shear strength of resistance-welded carbon fibre/thermoplastic composite joints. Composites Part B: Engineering, 198, Article 108239. https://doi.org/10.1016/j.compositesb.2020.108239
-
Sacchetti, F., Grouve, W. J. B., Warnet, L. L., & Villegas, I. F. (2015). Influence of surface preparation on fusion bonding of thermoplastic composites. In Proceedings of the 20th International Conference on Composite Materials (ICCM-20). https://repository.tudelft.nl/record/uuid:202a5e4e-aabb-4e60-b22f-4b46aea2a41b
-
Sacchetti, F., Grouve, W. J. B., Warnet, L. L., & Villegas, I. F. (2018). Effect of resin-rich bond line thickness and fibre migration on the toughness of unidirectional carbon/PEEK joints. Composites Part A: Applied Science and Manufacturing, 109, 197–206. https://doi.org/10.1016/j.compositesa.2018.02.035
-
Samancı, A., & Avcı, A. (2007). Al-Mg alaşımı üzerine yapılan farklı kompozit yamaların çentikli çekme dayanımına etkisi. In Prooceedings of 8th International Fracture Conference, (pp. 346–350). http://www.endil.yildiz.edu.tr/proceedings/37.pdf
-
Sarasini, F., Tirillò, J., Puglia, D., Dominici, F., Santulli, C., Boimau, K., Valente, T., & Torre, L. (2017). Biodegradable polycaprolactone-based composites reinforced with ramie and borassus fibres. Composite Structures, 167, 20–29. https://doi.org/10.1016/j.compstruct.2017.01.071
-
Shi, H., Villegas, I. F., & Bersee, H. E. N. (2015a). A displacement-detection based approach for process monitoring and processing window definition of resistance welding of thermoplastic composites. Composites Part A: Applied Science and Manufacturing, 74, 1–9. https://doi.org/10.1016/j.compositesa.2015.03.002
-
Shi, H., Villegas, I. F., Octeau, M.-A., Bersee, H. E. N., & Yousefpour, A. (2015b). Continuous resistance welding of thermoplastic composites: Modelling of heat generation and heat transfer. Composites Part A: Applied Science and Manufacturing, 70, 16–26. https://doi.org/10.1016/j.compositesa.2014.12.007
-
Soykök, İ. F. (2023). Patch repair analysis of impact damaged glass fiber/epoxy composite tubes operating under internal pressure. Dokuz Eylul University Engineering Faculty Science and Engineering Journal, 25(73), 107–120. https://doi.org/10.21205/deufmd.2023257309
-
Stankiewicz, K., Lipkowski, A., Kowalczyk, P., Giżyński, M., & Waśniewski, B. (2024). Resistance welding of thermoplastic composites, including welding to thermosets and metals: A review. Materials, 17(19), Article 4797. https://doi.org/10.3390/ma17194797
-
Suresh, K. S., Rani, M. R., Prakasan, K., & Rudramoorthy, R. (2007). Modeling of temperature distribution in ultrasonic welding of thermoplastics for various joint designs. Journal of Materials Processing Technology, 186(1–3), 138–146. https://doi.org/10.1016/j.jmatprotec.2006.12.028
-
Talbot, É., Hubert, P., Dubé, M., & Yousefpour, A. (2013). Optimization of thermoplastic composites resistance welding parameters based on transient heat transfer finite element modeling. Journal of Thermoplastic Composite Materials, 26(5), 699–717. https://doi.org/10.1177/0892705711428657
-
Tao, W., Su, X., Wang, H., Zhang, Z., Li, H., & Chen, J. (2019). Influence mechanism of welding time and energy director to the thermoplastic composite joints by ultrasonic welding. Journal of Manufacturing Processes, 37, 196–202. https://doi.org/10.1016/j.jmapro.2018.11.002
-
Tsokanas, P., Santandrea, F., Momm, G. G., Rajčić, V., Skejić, D., Rajnovic, D., da Silva, L. F. M., & Kostopoulos, V. (2025). Certification of adhesively bonded structures: Review and outlook. International Journal of Adhesion and Adhesives, 141, Article 104041. https://doi.org/10.1016/j.ijadhadh.2025.104041
-
Uslu, M. (2020). Yama ile tamir edilmiş çentikli kompozit levhalarda hasar analizi [Master's thesis, Firat University].
-
Villegas, I. F., Moser, L., Yousefpour, A., Mitschang, P., & Bersee, H. E. (2013). Process and performance evaluation of ultrasonic, induction and resistance welding of advanced thermoplastic composites. Journal of Thermoplastic Composite Materials, 26(8), 1007–1024. https://doi.org/10.1177/0892705712456031
-
Voleppe, Q., Ballout, W., Van Velthem, P., Bailly, C., & Pardoen, T. (2021). Enhanced fracture resistance of thermoset/thermoplastic interfaces through crack trapping in a morphology gradient. Polymer, 218, Article 123497. https://doi.org/10.1016/j.polymer.2021.123497
-
Wang, C. H., & Gunnion, A. J. (2008). Optimum shapes for minimising bond stress in scarf repairs. Australian Journal of Mechanical Engineering, 6(2), 153–158. https://doi.org/10.1080/14484846.2008.11464570
-
Wang, J., Zhou, Z., Vodicka, R., & Chiu, W. K. (2009). Selection of patch and adhesive materials for helicopter battle damage repair applications. Composite Structures, 91(3), 278–285. https://doi.org/10.1016/j.compstruct.2009.04.042
-
Xie, L., Liu, H., Wu, W., Abliz, D., Duan, Y., & Li, D. (2016). Fusion bonding of thermosets composite structures with thermoplastic binder co-cure and prepreg interlayer in electrical resistance welding. Materials & Design, 98, 143–149. https://doi.org/10.1016/j.matdes.2016.03.020
-
Yousefpour, A., Hojjati, M., & Immarigeon, J.-P. (2004). Fusion Bonding/Welding of Thermoplastic Composites. Journal of Thermoplastic Composite Materials, 17(4), 303–341. https://doi.org/10.1177/0892705704045187
-
Yücel, S. B., Zor, M., Doğan, H., & Karamolla, M. (2019). The impact degrees of basic parameters on repair performance in composite patch applications. Celal Bayar University Journal of Science, 15(2), 187–191. https://doi.org/10.18466/cbayarfbe.498884
-
Zhao, Q., Wu, H., Chen, X., Ni, Y., An, X., Wu, W., & Zhao, T. (2022). Insights into the structural design strategies of multi-spot ultrasonic welded joints in thermoplastic composites: A finite element analysis. Composite Structures, 299, Article 115996. https://doi.org/10.1016/j.compstruct.2022.115996
Hava Araçlarında Kullanılan Kompozit Malzemelerin Onarımı
Year 2026,
Volume: 14 Issue: 1, 299 - 311, 21.01.2026
Emre Lekesizcan
,
Bekir Güney
Abstract
Fiber takviyeli kompozit malzemelerin gelişmesiyle kompozitler hava araçlarının vazgeçilmez malzemesi haline gelmiştir. Hava araçları hizmet ömürleri boyunca darbelerden veya çevresel koşullardan kaynaklanan hasarlar alır. Hasarlı kompozitin yenisi ile değişimi ekonomik olarak külfetli bir iş olması nedeniyle uygun onarım teknikleri önem arz etmektedir. Hasarlı parçanın onarılmasıyla yapı bütünlüğünün geri kazanılması mümkündür. Ayrıca kompozitler geri dönüşümleri zor malzemeler olduğu için onarılmaları, atık malzeme miktarını azaltarak sürdürülebilirliğe katkı sağlamaktadır. Bu makalede günümüz hava araçlarında kullanılan kompozit malzemelerde oluşan hasarlar, hasarların tespiti, değerlendirilmesi ve tamir yöntemleri incelenmiştir. Özellikle son yıllarda kullanımı artan termoplastik matrisli kompozitlerin kaynaklı onarım yöntemlerinden ultrasonik, direnç ve indüksiyon kaynağı yöntemleri ile ilgili literatürdeki çalışmalar sunulmuştur. Onarım yöntemlerinin avantajları ve uygulamadaki karşılaşılan güçlükler değerlendirilmiştir.
References
-
Ageorges, C., & Ye, L. (2001). Resistance welding of metal/thermoplastic composite joints. Journal of Thermoplastic Composite Materials, 14(6), 449–475. https://doi.org/10.1106/PN74-QXKH-7XBE-XKF5
-
Ageorges, C., Ye, L., & Hou, M. (2001). Advances in fusion bonding techniques for joining thermoplastic matrix composites: a review. Composites Part A: Applied Science and Manufacturing, 32(6), 839–857. https://doi.org/10.1016/S1359-835X(00)00166-4
-
Ahmed, T. J., Stavrov, D., Bersee, H. E. N., & Beukers, A. (2006). Induction welding of thermoplastic composites—an overview. Composites Part A: Applied Science and Manufacturing, 37(10), 1638–1651. https://doi.org/10.1016/j.compositesa.2005.10.009
-
Ashforth, C., Momm, G. G., Seneviratne, W., Trace, A., & Ilcewicz, L. (2023). Aerospace structural bonding: Qualification, quality control, substantiation, and risk mitigation. In D. A. Dillard (Ed.), Advances in Structural Adhesive Bonding (Second Edition) (pp. 779–806). Woodhead Publishing. https://doi.org/10.1016/B978-0-323-91214-3.00029-6
-
Barroeta Robles, J., Dubé, M., Hubert, P., & Yousefpour, A. (2022). Repair of thermoplastic composites: an overview. Advanced Manufacturing: Polymer & Composites Science, 8(2), 68–96. https://doi.org/10.1080/20550340.2022.2057137
-
Becker, S., & Mitschang, P. (2022). Process improvement of continuous induction welding of carbon fiber-reinforced polymer composites. Journal of Materials Engineering and Performance, 31(9), 7049–7060. https://doi.org/10.1007/s11665-022-06842-0
-
Benatar, A., Eswaran, R. V., & Nayar, S. K. (1989). Ultrasonic welding of thermoplastics in the near‐field. Polymer Engineering & Science, 29(23), 1689–1698. https://doi.org/10.1002/pen.760292311
-
Brassard, D., Dubé, M., & Tavares, J. R. (2019). Resistance welding of thermoplastic composites with a nanocomposite heating element. Composites Part B: Engineering, 165, 779–784. https://doi.org/10.1016/j.compositesb.2019.02.038
-
Budhe, S., Banea, M. D., & de Barros, S. (2018). Bonded repair of composite structures in aerospace application: a review on environmental issues. Applied Adhesion Science, 6(1), Article 3. https://doi.org/10.1186/s40563-018-0104-5
-
Çalışkan, U., Ekici, R., & Apalak, M. K. (2021). Kompozit yamalar ile tamir edilmiş çatlaklı sandviç kirişlerin eğilme darbe davranışları. International Journal of Engineering Research and Development, 13(2), 438–447. https://doi.org/10.29137/umagd.846692
-
Cambaz, A. (2024). Kompozit kanat yapıları üzerinde tamir modellemesi ve sonlu elemanlar analizi [Master's thesis, TOBB University of Economics and Technology].
-
Çetinkaya, Ş. (2017). Investigation of circular damage repairing by using adhesive in laminate composite materials experimentaly [Doctoral thesis, Firat University].
-
Chen, C., Fan, C., Cai, X., Lin, S., Yang, C., & Zhuo, Y. (2020). Microstructure and mechanical properties of Q235 steel welded joint in pulsed and un-pulsed ultrasonic assisted gas tungsten arc welding. Journal of Materials Processing Technology, 275, Article 116335. https://doi.org/10.1016/j.jmatprotec.2019.116335
-
Choi, B.-K., Kang, C.-S., Yoo, M.-H., & Seo, M.-K. (2023). Effect of processing parameters on bonding performance of a carbon fiber/polyetheretherketone thermoplastic composite prepared by induction welding. Materials, 16(11), Article 3954. https://doi.org/10.3390/ma16113954
-
Collombet, F., Grunevald, Y.-H., Crouzeix, L., Douchin, B., Zitoune, R., Davila, Y., Cerisier, A., & Thévenin, R. (2015). Repairing composites. In P. Boisse (Ed.), Advances in Composites Manufacturing and Process Design (pp. 197–227). Woodhead Publishing. https://doi.org/10.1016/B978-1-78242-307-2.00010-5
-
Darwish, F. H., & Shivakumar, K. N. (2014). Experimental and analytical modeling of scarf repaired composite panels. Mechanics of Advanced Materials and Structures, 21(3), 207–212. https://doi.org/10.1080/15376494.2013.834096
-
Dindar, B., & Ağır, İ. (2021). Charpy impact response of notched aluminum 5754-H111 of repaired with carbon/epoxy and e-glass/epoxy. European Journal of Science and Technology, (22), 352–356. https://doi.org/10.31590/ejosat.844824
-
Du, B., Chen, L., Liu, H., He, Q., Qin, W., & Li, W. (2020). Resistance welding of glass fiber reinforced thermoplastic composite: Experimental investigation and process parameter optimization. Chinese Journal of Aeronautics, 33(12), 3469–3478. https://doi.org/10.1016/j.cja.2020.02.018
-
Dubinskii, S., Feygenbaum, Y., Senik, V., & Metelkin, E. (2019). A study of accidental impact scenarios for composite wing damage tolerance evaluation. The Aeronautical Journal, 123(1268), 1724–1739. https://doi.org/10.1017/aer.2018.152
-
Erdem, A. T. (2024). İçerisinde çatlak bulunan pim bağlantılı kompozitlerin yama ile tamiri ve tamir sonrası mukavemetinin incelenmesi [Master's thesis, Firat University].
-
Eveno, E. C., & Gillespie, J. W. (1988). Resistance welding of graphite polyetheretherketone composites: an experimental investigation. Journal of Thermoplastic Composite Materials, 1(4), 322–338. https://doi.org/10.1177/089270578800100402
-
Evren, M. (2024). Hava araçlarında kullanılan kompozit yapısalların onarım yöntemlerinde uygulanan yapıştırma bağlantılarının optimizasyonu [Master's thesis, Yildiz Technical University].
-
Gong, X.-J., Cheng, P., Aivazzadeh, S., & Xiao, X. (2015). Design and optimization of bonded patch repairs of laminated composite structures. Composite Structures, 123, 292–300. https://doi.org/10.1016/j.compstruct.2014.12.048
-
Gouin O’Shaughnessey, P., Dubé, M., & Fernandez Villegas, I. (2016). Modeling and experimental investigation of induction welding of thermoplastic composites and comparison with other welding processes. Journal of Composite Materials, 50(21), 2895–2910. https://doi.org/10.1177/0021998315614991
-
Hale, J. (2014, December). Boeing 787 from the ground up. Boeing Aero Magazine, 56. https://skybrary.aero/sites/default/files/bookshelf/3815.pdf
-
Kaman, M. O., & Cetişli, F. (2011). Yama ile tamir edilmiş kenar çatlak içeren kompozit levha probleminin sayısal analizi. Prooceedings of 9th International Fracture Conference, (pp. 232–243). http://www.endil.yildiz.edu.tr/proceedings9/24.pdf
-
Katnam, K. B., Da Silva, L. F. M., & Young, T. M. (2013). Bonded repair of composite aircraft structures: A review of scientific challenges and opportunities. Progress in Aerospace Sciences, 61, 26–42. https://doi.org/10.1016/j.paerosci.2013.03.003
-
Kepir, Y., Günöz, A., & Kara, M. (2022). Repairing of damaged composite materials and self-healing composites. Turkish Journal of Engineering, 6(2), 149–155. https://doi.org/10.31127/tuje.866955
-
Köhler, F., Villegas, I., Dransfeld, C., & Herrmann, A. (2021). Static ultrasonic welding of carbon fibre unidirectional thermoplastic materials and the influence of heat generation and heat transfer. Journal of Composite Materials, 55(15), 2087–2102. https://doi.org/10.1177/0021998320976818
-
Korycki, A., Garnier, C., Bonmatin, M., Laurent, E., & Chabert, F. (2022). Assembling of carbon fibre/PEEK composites: Comparison of ultrasonic, induction, and transmission laser welding. Materials, 15(18), Article 6365. https://doi.org/10.3390/ma15186365
-
Koutras, N., Villegas, I. F., & Benedictus, R. (2018). Influence of temperature on the strength of resistance welded glass fibre reinforced PPS joints. Composites Part A: Applied Science and Manufacturing, 105, 57–67. https://doi.org/10.1016/j.compositesa.2017.11.003
-
Liu, B., Xu, F., Feng, W., Yan, R., & Xie, W. (2016). Experiment and design methods of composite scarf repair for primary-load bearing structures. Composites Part A: Applied Science and Manufacturing, 88, 27–38. https://doi.org/10.1016/j.compositesa.2016.05.011
-
Modi, V., Bandaru, A. K., Ramaswamy, K., Kelly, C., McCarthy, C., Flanagan, T., & O’Higgins, R. (2023). Repair of impacted thermoplastic composite laminates using induction welding. Polymers, 15(15), Article 3238. https://doi.org/10.3390/polym15153238
-
Nagatsuka, K., Xiao, B., Wu, L., Nakata, K., Saeki, S., Kitamoto, Y., & Iwamoto, Y. (2018). Resistance spot welding of metal/carbon-fibre-reinforced plastics and applying silane coupling treatment. Science and Technology of Welding and Joining, 23(3), 181–186. https://doi.org/10.1080/13621718.2017.1362159
-
Olajide, S. O., Kandare, E., & Khatibi, A. A. (2017). Fatigue life uncertainty of adhesively bonded composite scarf joints – an airworthiness perspective. The Journal of Adhesion, 93(7), 515–530. https://doi.org/10.1080/00218464.2015.1112796
-
Raju, I. S., & O’Brien, T. K. (2008). Fracture mechanics concepts, stress fields, strain energy release rates, delamination initiation and growth criteria. In S. Sridharan (Ed.), Delamination Behaviour of Composites (pp. 3–27). Woodhead Publishing. https://doi.org/10.1533/9781845694821.1.3
-
Reis, J. P., de Moura, M., & Samborski, S. (2020). Thermoplastic composites and their promising applications in joining and repair composites structures: A review. Materials, 13(24), Article 5832. https://doi.org/10.3390/ma13245832
-
Rodríguez-Vidal, E., Sanz, C., Soriano, C., Leunda, J., & Verhaeghe, G. (2016). Effect of metal micro-structuring on the mechanical behavior of polymer–metal laser T-joints. Journal of Materials Processing Technology, 229, 668–677. https://doi.org/10.1016/j.jmatprotec.2015.10.026
-
Rohart, V., Lebel, L. L., & Dubé, M. (2020). Effects of environmental conditions on the lap shear strength of resistance-welded carbon fibre/thermoplastic composite joints. Composites Part B: Engineering, 198, Article 108239. https://doi.org/10.1016/j.compositesb.2020.108239
-
Sacchetti, F., Grouve, W. J. B., Warnet, L. L., & Villegas, I. F. (2015). Influence of surface preparation on fusion bonding of thermoplastic composites. In Proceedings of the 20th International Conference on Composite Materials (ICCM-20). https://repository.tudelft.nl/record/uuid:202a5e4e-aabb-4e60-b22f-4b46aea2a41b
-
Sacchetti, F., Grouve, W. J. B., Warnet, L. L., & Villegas, I. F. (2018). Effect of resin-rich bond line thickness and fibre migration on the toughness of unidirectional carbon/PEEK joints. Composites Part A: Applied Science and Manufacturing, 109, 197–206. https://doi.org/10.1016/j.compositesa.2018.02.035
-
Samancı, A., & Avcı, A. (2007). Al-Mg alaşımı üzerine yapılan farklı kompozit yamaların çentikli çekme dayanımına etkisi. In Prooceedings of 8th International Fracture Conference, (pp. 346–350). http://www.endil.yildiz.edu.tr/proceedings/37.pdf
-
Sarasini, F., Tirillò, J., Puglia, D., Dominici, F., Santulli, C., Boimau, K., Valente, T., & Torre, L. (2017). Biodegradable polycaprolactone-based composites reinforced with ramie and borassus fibres. Composite Structures, 167, 20–29. https://doi.org/10.1016/j.compstruct.2017.01.071
-
Shi, H., Villegas, I. F., & Bersee, H. E. N. (2015a). A displacement-detection based approach for process monitoring and processing window definition of resistance welding of thermoplastic composites. Composites Part A: Applied Science and Manufacturing, 74, 1–9. https://doi.org/10.1016/j.compositesa.2015.03.002
-
Shi, H., Villegas, I. F., Octeau, M.-A., Bersee, H. E. N., & Yousefpour, A. (2015b). Continuous resistance welding of thermoplastic composites: Modelling of heat generation and heat transfer. Composites Part A: Applied Science and Manufacturing, 70, 16–26. https://doi.org/10.1016/j.compositesa.2014.12.007
-
Soykök, İ. F. (2023). Patch repair analysis of impact damaged glass fiber/epoxy composite tubes operating under internal pressure. Dokuz Eylul University Engineering Faculty Science and Engineering Journal, 25(73), 107–120. https://doi.org/10.21205/deufmd.2023257309
-
Stankiewicz, K., Lipkowski, A., Kowalczyk, P., Giżyński, M., & Waśniewski, B. (2024). Resistance welding of thermoplastic composites, including welding to thermosets and metals: A review. Materials, 17(19), Article 4797. https://doi.org/10.3390/ma17194797
-
Suresh, K. S., Rani, M. R., Prakasan, K., & Rudramoorthy, R. (2007). Modeling of temperature distribution in ultrasonic welding of thermoplastics for various joint designs. Journal of Materials Processing Technology, 186(1–3), 138–146. https://doi.org/10.1016/j.jmatprotec.2006.12.028
-
Talbot, É., Hubert, P., Dubé, M., & Yousefpour, A. (2013). Optimization of thermoplastic composites resistance welding parameters based on transient heat transfer finite element modeling. Journal of Thermoplastic Composite Materials, 26(5), 699–717. https://doi.org/10.1177/0892705711428657
-
Tao, W., Su, X., Wang, H., Zhang, Z., Li, H., & Chen, J. (2019). Influence mechanism of welding time and energy director to the thermoplastic composite joints by ultrasonic welding. Journal of Manufacturing Processes, 37, 196–202. https://doi.org/10.1016/j.jmapro.2018.11.002
-
Tsokanas, P., Santandrea, F., Momm, G. G., Rajčić, V., Skejić, D., Rajnovic, D., da Silva, L. F. M., & Kostopoulos, V. (2025). Certification of adhesively bonded structures: Review and outlook. International Journal of Adhesion and Adhesives, 141, Article 104041. https://doi.org/10.1016/j.ijadhadh.2025.104041
-
Uslu, M. (2020). Yama ile tamir edilmiş çentikli kompozit levhalarda hasar analizi [Master's thesis, Firat University].
-
Villegas, I. F., Moser, L., Yousefpour, A., Mitschang, P., & Bersee, H. E. (2013). Process and performance evaluation of ultrasonic, induction and resistance welding of advanced thermoplastic composites. Journal of Thermoplastic Composite Materials, 26(8), 1007–1024. https://doi.org/10.1177/0892705712456031
-
Voleppe, Q., Ballout, W., Van Velthem, P., Bailly, C., & Pardoen, T. (2021). Enhanced fracture resistance of thermoset/thermoplastic interfaces through crack trapping in a morphology gradient. Polymer, 218, Article 123497. https://doi.org/10.1016/j.polymer.2021.123497
-
Wang, C. H., & Gunnion, A. J. (2008). Optimum shapes for minimising bond stress in scarf repairs. Australian Journal of Mechanical Engineering, 6(2), 153–158. https://doi.org/10.1080/14484846.2008.11464570
-
Wang, J., Zhou, Z., Vodicka, R., & Chiu, W. K. (2009). Selection of patch and adhesive materials for helicopter battle damage repair applications. Composite Structures, 91(3), 278–285. https://doi.org/10.1016/j.compstruct.2009.04.042
-
Xie, L., Liu, H., Wu, W., Abliz, D., Duan, Y., & Li, D. (2016). Fusion bonding of thermosets composite structures with thermoplastic binder co-cure and prepreg interlayer in electrical resistance welding. Materials & Design, 98, 143–149. https://doi.org/10.1016/j.matdes.2016.03.020
-
Yousefpour, A., Hojjati, M., & Immarigeon, J.-P. (2004). Fusion Bonding/Welding of Thermoplastic Composites. Journal of Thermoplastic Composite Materials, 17(4), 303–341. https://doi.org/10.1177/0892705704045187
-
Yücel, S. B., Zor, M., Doğan, H., & Karamolla, M. (2019). The impact degrees of basic parameters on repair performance in composite patch applications. Celal Bayar University Journal of Science, 15(2), 187–191. https://doi.org/10.18466/cbayarfbe.498884
-
Zhao, Q., Wu, H., Chen, X., Ni, Y., An, X., Wu, W., & Zhao, T. (2022). Insights into the structural design strategies of multi-spot ultrasonic welded joints in thermoplastic composites: A finite element analysis. Composite Structures, 299, Article 115996. https://doi.org/10.1016/j.compstruct.2022.115996