Research Article
BibTex RIS Cite

Paketleme Malzemeleri İçin Çevresel Etki Değerlendirmesi

Year 2026, Volume: 14 Issue: 1, 177 - 188, 21.01.2026
https://doi.org/10.29130/dubited.1770053

Abstract

Bu makalede, Daikin Türkiye Ar-Ge merkezinde yürütülen çevre dostu tasarım çalışmalarına odaklanarak, karbon salınımını azaltmayı ve sürdürülebilir üretimi desteklemeyi hedefleyen yenilikçi yaklaşımlar ele alınmıştır. Bu kapsamda, ürün geliştirme süreçlerinde çevresel etkilerin azaltılması ve sürdürülebilirlik kriterlerine uyum sağlanması amacıyla farklı malzemelerin çevresel etkileri detaylı bir şekilde incelenmiştir. Bu çerçevede, Daikin Japonya (DIL) tarafından yayınlanan ve sürdürülebilir ürün geliştirme süreçlerinde yol gösterici olan 13 sürdürülebilir ürün kriteri gözden geçirilmiş, bu kriterlerden biri seçilerek derinlemesine analiz edilmiştir. Seçilen kriter doğrultusunda geliştirilen uygulama örneği de bu makalenin odak noktalarından biri olarak sunulmaktadır.
Uygulama örneğinde, kombi ürünlerinde kullanılan farklı tip paketleme malzemelerinin çevresel etkileri değerlendirilmiştir. Çevresel etki hesaplamaları, Ürün Kategori Kuralları (Product Categories Rules, PCR) ve paketlemeye dair yönetmelikler doğrultusunda teknik bilgilerle desteklenmiştir. Bu çalışma, dört farklı ambalaj malzemesinin (EPS, %100 geri dönüştürülmüş karton, karton petek paneli ve viol) çevresel etkilerini kapsamlı bir şekilde inceleyerek sürdürülebilirlik açısından en uygun alternatifleri belirlemeyi amaçlamıştır. Elde edilen verilerin literatür ile tutarlılığı detaylı bir şekilde incelenmiştir.
Çalışma sonucunda, belirlenen tasarım parametreler ışığında optimum çevresel etki değerine sahip paketleme malzemesi tespit edilmiştir. Bu paketleme malzemesi sayesinde, muadil ürünlere göre %62 daha az emisyon salımının önüne geçilmesi öngörülmektedir.

References

  • Aljolani, O., Heberle, F., & Brüggemann, D. (2024). Thermo-economic and environmental analysis of a CO₂ residential air conditioning system in comparison to HFC-410A and HFC-32 in temperate and subtropical climates. Applied Energy, 353, Article 122073. https://doi.org/10.1016/j.apenergy.2023.122073
  • Ankesh, J., & Goyal, S. (2021). Properties of expanded polystyrene (EPS) and its environmental effects. Advances and Applications in Mathematical Sciences, 20(10), 2151–2162.
  • Arslan, M. (2023). The predictors of consumers’ purchasing intentions of environment-friendly products [Master’s thesis, Atılım University]. Atılım University Institutional Repository.
  • Avery, E., Nduagu, E., & Vozzola, E. (2025). Polyethylene packaging and alternative materials in the United States: A life cycle assessment. Science of the Total Environment, 961, Article 178359. https://doi.org/10.1016/j.scitotenv.2024.178359
  • Chen, C., Zhao, Z., Xiao, J., & Tiong, R. (2021). A conceptual framework for estimating building embodied carbon based on digital twin technology and life cycle assessment. Sustainability, 13(24), Article 13875. https://doi.org/10.3390/su132413875
  • Chen, Y., Wang, L., & Zhang, J. (2024). Exploring the environmental impacts of plastic packaging: A comprehensive life cycle analysis for seafood distribution crates. Science of the Total Environment, 951, 175452. https://doi.org/10.1016/j.scitotenv.2024.175452
  • Daikin. (2023, September 15). Press release. https://www.daikin.com/press/2023/20230915
  • Dhaliwal, H., Browne, M., Flanagan, W., Laurin, L., & Hamilton, M. (2014). A life cycle assessment of packaging options for contrast media delivery: Comparing polymer bottle vs. glass bottle. The International Journal of Life Cycle Assessment, 19(12), 1965–1973. https://doi.org/10.1007/s11367-014-0795-1
  • Duman, C. (2019). Elektrikli elektronik atıkların geri dönüşümünde yaşam döngüsü değerlendirmesi [Master’s thesis, Eskişehir Technical University]. Council of Higher Education National Thesis Center.
  • Duru, M. N., & Şua, E. (2013). Yeşil Pazarlama ve Tüketicilerin Çevre Dostu Ürünleri Kullanma Eğilimleri. Düzce Üniversitesi Orman Fakültesi Ormancılık Dergisi, 9(2), 126-136. https://dergipark.org.tr/tr/pub/duzceod/article/288999
  • Enarevba, D. R., & Haapala, K. R. (2023). A comparative life cycle assessment of expanded polystyrene and mycelium packaging box inserts. Procedia CIRP, 116, 654–659. https://doi.org/10.1016/j.procir.2023.02.110
  • EPD International. (2019). Packaging PCR 2019:13 (Version 1.1.2). https://www.environdec.com/pcr-library
  • EPD International. (2024a, July 30). Product category rules (PCR). https://www.environdec.com/pcr-library?q=packaging
  • EPD International. (2024b, August 9). Environmental product declaration EPD15296. https://www.environdec.com/library/epd15296
  • EPD International. (2024c, August 1). Environmental product declaration EPD15505. https://www.environdec.com/library/epd15505
  • EPD International. (2024d, August 1). Environmental performance indicators. https://www.environdec.com
  • Franklin Associates. (2014). Life cycle impacts of plastic packaging compared to substitutes in the United States and Canada. American Chemistry Council. https://www.americanchemistry.com/content/download/7885/file/Life-Cycle-Impacts-of-Plastic-Packaging-Compared-to-Substitutes-in-the-United-States-and-Canada.pdf
  • Gebreslassiea, B. H., Gosalbez, G. G., Jimenez, L., & Boer, D. (2009). Design of environmentally friendly absorption cooling systems via multi-objective optimization and life cycle assessment. Applied Energy, 86(9), 1712–1722. https://doi.org/10.1016/j.apenergy.2008.11.019
  • International Organization for Standardization (ISO). (2006a). ISO 14040: Environmental management—Life cycle assessment—Principles and framework.
  • International Organization for Standardization (ISO). (2006b). ISO 14044: Environmental management—Life cycle assessment—Requirements and guidelines.
  • Kaya, A. I., & Karaosmanoğlu, F. (2023). Life cycle assessment of a climate-friendly data center cooling device. Energy & Buildings, 288, Article 113006. https://doi.org/10.1016/j.enbuild.2023.113006
  • Laveglia, A., Ukrainczyk, N., De Belie, N., & Koenders, E. (2024). Cradle-to-grave environmental and economic sustainability of lime-based plasters manufactured with upcycled materials. Journal of Cleaner Production, 452, Article 142088. https://doi.org/10.1016/j.jclepro.2024.142088
  • Liao, W., Zhang, X., & Li, Z. (2022). Experimental investigation on the performance of a boiler system with flue gas dehumidification and combustion air humidification. Applied Energy, 323, Article 119623. https://doi.org/10.1016/j.apenergy.2022.119623
  • Makersite. (2024, September 11). Makersite platform. https://makersite.io
  • Matthews, H. S., Hendrickson, C. T., & Matthews, D. H. (2014). Life cycle assessment: Quantitative approaches for decisions that matter [Open access textbook]. https://lcatextbook.com/
  • Meneses, M., Pasqualino, J., & Castells, F. (2012). Environmental assessment of the milk life cycle: The effect of packaging selection and the variability of milk production data. Journal of Environmental Management, 107, 76–83. https://doi.org/https://doi.org/10.1016/j.jenvman.2012.04.019
  • Sandaruwan, I. P. T., Manoharan, K., & Kulatunga, U. (2024). Cradle-to-gate embodied carbon assessment of green office buildings using life cycle analysis: A case study from Sri Lanka. Journal of Building Engineering, 88, Article 109155. https://doi.org/10.1016/j.jobe.2024.109155
  • Varlamov, G., Glazyrin, S. A., Khamzina, A., Bimurzina, Z. A., & Zhakiyev, N. (2024). Hydrogen energy for advancing energy efficiency and environmental friendliness of the heat supply system of a residential house. Sustainable Energy Technologies and Assessments, 64, Article 103689. https://doi.org/10.1016/j.seta.2024.103689
  • Warmhaus. (2024, March 21). Warmhaus’tan çevre dostu sürdürülebilir ürünler. https://www.warmhaus.com/tr/basinda-biz-detay-sayfasi/warmhaustan-cevre-dostu-surdurulebilir-urunler
  • WeTheCA. (2024, February 10). Environmental effects of molded pulp packaging. https://wetheca.com/environmental-effects-of-molded-pulp-packaging/

Environmental Impact Assessment for Packaging Materials

Year 2026, Volume: 14 Issue: 1, 177 - 188, 21.01.2026
https://doi.org/10.29130/dubited.1770053

Abstract

This paper presents the eco-friendly design efforts carried out at the Daikin Türkiye R&D Center, addressing innovative approaches aimed at reducing carbon emissions and supporting sustainable production. In this context, the environmental impacts of different materials were examined in detail to reduce environmental effects in product development processes and to ensure compliance with sustainability criteria. Within this framework, the 13 sustainable product criteria published by Daikin Japan (DIL), which serve as a guide in sustainable product development processes, were reviewed, and one of these criteria was selected for in-depth analysis. An application example developed in line with the selected criterion is also presented as one of the focal points of this paper.
In the application example, the environmental impacts of different types of packaging materials used in boiler products were evaluated. Environmental impact calculations were supported with technical information in accordance with the Product Category Rules (PCR) and packaging-related regulations. This study aimed to determine the most suitable alternatives in terms of sustainability by comprehensively examining the environmental impacts of four different packaging materials (EPS, 100% recycled cardboard, cardboard honeycomb panel, and molded pulp). The consistency of the obtained data with the literature was also examined in detail.
As a result of the study, the packaging material with the optimum environmental impact value was identified in light of the determined design parameters. It is projected that this packaging material will prevent 62% more emission release compared to equivalent products.

Ethical Statement

This study does not involve human or animal participants. All procedures followed scientific and ethical principles, and all referenced studies are appropriately cited.

Supporting Institution

This research received no external funding.

Thanks

Mr. Hüseyin Can MENGÜÇ handled the environmental package product research as a project, including technical and design information. This article focuses on the results obtained through the support provided in calculating environmental impacts, a valuation criterion within the project. I would like to express my gratitude to Mr. H.C. MENGÜÇ and my managers for their dedication and knowledge sharing.

References

  • Aljolani, O., Heberle, F., & Brüggemann, D. (2024). Thermo-economic and environmental analysis of a CO₂ residential air conditioning system in comparison to HFC-410A and HFC-32 in temperate and subtropical climates. Applied Energy, 353, Article 122073. https://doi.org/10.1016/j.apenergy.2023.122073
  • Ankesh, J., & Goyal, S. (2021). Properties of expanded polystyrene (EPS) and its environmental effects. Advances and Applications in Mathematical Sciences, 20(10), 2151–2162.
  • Arslan, M. (2023). The predictors of consumers’ purchasing intentions of environment-friendly products [Master’s thesis, Atılım University]. Atılım University Institutional Repository.
  • Avery, E., Nduagu, E., & Vozzola, E. (2025). Polyethylene packaging and alternative materials in the United States: A life cycle assessment. Science of the Total Environment, 961, Article 178359. https://doi.org/10.1016/j.scitotenv.2024.178359
  • Chen, C., Zhao, Z., Xiao, J., & Tiong, R. (2021). A conceptual framework for estimating building embodied carbon based on digital twin technology and life cycle assessment. Sustainability, 13(24), Article 13875. https://doi.org/10.3390/su132413875
  • Chen, Y., Wang, L., & Zhang, J. (2024). Exploring the environmental impacts of plastic packaging: A comprehensive life cycle analysis for seafood distribution crates. Science of the Total Environment, 951, 175452. https://doi.org/10.1016/j.scitotenv.2024.175452
  • Daikin. (2023, September 15). Press release. https://www.daikin.com/press/2023/20230915
  • Dhaliwal, H., Browne, M., Flanagan, W., Laurin, L., & Hamilton, M. (2014). A life cycle assessment of packaging options for contrast media delivery: Comparing polymer bottle vs. glass bottle. The International Journal of Life Cycle Assessment, 19(12), 1965–1973. https://doi.org/10.1007/s11367-014-0795-1
  • Duman, C. (2019). Elektrikli elektronik atıkların geri dönüşümünde yaşam döngüsü değerlendirmesi [Master’s thesis, Eskişehir Technical University]. Council of Higher Education National Thesis Center.
  • Duru, M. N., & Şua, E. (2013). Yeşil Pazarlama ve Tüketicilerin Çevre Dostu Ürünleri Kullanma Eğilimleri. Düzce Üniversitesi Orman Fakültesi Ormancılık Dergisi, 9(2), 126-136. https://dergipark.org.tr/tr/pub/duzceod/article/288999
  • Enarevba, D. R., & Haapala, K. R. (2023). A comparative life cycle assessment of expanded polystyrene and mycelium packaging box inserts. Procedia CIRP, 116, 654–659. https://doi.org/10.1016/j.procir.2023.02.110
  • EPD International. (2019). Packaging PCR 2019:13 (Version 1.1.2). https://www.environdec.com/pcr-library
  • EPD International. (2024a, July 30). Product category rules (PCR). https://www.environdec.com/pcr-library?q=packaging
  • EPD International. (2024b, August 9). Environmental product declaration EPD15296. https://www.environdec.com/library/epd15296
  • EPD International. (2024c, August 1). Environmental product declaration EPD15505. https://www.environdec.com/library/epd15505
  • EPD International. (2024d, August 1). Environmental performance indicators. https://www.environdec.com
  • Franklin Associates. (2014). Life cycle impacts of plastic packaging compared to substitutes in the United States and Canada. American Chemistry Council. https://www.americanchemistry.com/content/download/7885/file/Life-Cycle-Impacts-of-Plastic-Packaging-Compared-to-Substitutes-in-the-United-States-and-Canada.pdf
  • Gebreslassiea, B. H., Gosalbez, G. G., Jimenez, L., & Boer, D. (2009). Design of environmentally friendly absorption cooling systems via multi-objective optimization and life cycle assessment. Applied Energy, 86(9), 1712–1722. https://doi.org/10.1016/j.apenergy.2008.11.019
  • International Organization for Standardization (ISO). (2006a). ISO 14040: Environmental management—Life cycle assessment—Principles and framework.
  • International Organization for Standardization (ISO). (2006b). ISO 14044: Environmental management—Life cycle assessment—Requirements and guidelines.
  • Kaya, A. I., & Karaosmanoğlu, F. (2023). Life cycle assessment of a climate-friendly data center cooling device. Energy & Buildings, 288, Article 113006. https://doi.org/10.1016/j.enbuild.2023.113006
  • Laveglia, A., Ukrainczyk, N., De Belie, N., & Koenders, E. (2024). Cradle-to-grave environmental and economic sustainability of lime-based plasters manufactured with upcycled materials. Journal of Cleaner Production, 452, Article 142088. https://doi.org/10.1016/j.jclepro.2024.142088
  • Liao, W., Zhang, X., & Li, Z. (2022). Experimental investigation on the performance of a boiler system with flue gas dehumidification and combustion air humidification. Applied Energy, 323, Article 119623. https://doi.org/10.1016/j.apenergy.2022.119623
  • Makersite. (2024, September 11). Makersite platform. https://makersite.io
  • Matthews, H. S., Hendrickson, C. T., & Matthews, D. H. (2014). Life cycle assessment: Quantitative approaches for decisions that matter [Open access textbook]. https://lcatextbook.com/
  • Meneses, M., Pasqualino, J., & Castells, F. (2012). Environmental assessment of the milk life cycle: The effect of packaging selection and the variability of milk production data. Journal of Environmental Management, 107, 76–83. https://doi.org/https://doi.org/10.1016/j.jenvman.2012.04.019
  • Sandaruwan, I. P. T., Manoharan, K., & Kulatunga, U. (2024). Cradle-to-gate embodied carbon assessment of green office buildings using life cycle analysis: A case study from Sri Lanka. Journal of Building Engineering, 88, Article 109155. https://doi.org/10.1016/j.jobe.2024.109155
  • Varlamov, G., Glazyrin, S. A., Khamzina, A., Bimurzina, Z. A., & Zhakiyev, N. (2024). Hydrogen energy for advancing energy efficiency and environmental friendliness of the heat supply system of a residential house. Sustainable Energy Technologies and Assessments, 64, Article 103689. https://doi.org/10.1016/j.seta.2024.103689
  • Warmhaus. (2024, March 21). Warmhaus’tan çevre dostu sürdürülebilir ürünler. https://www.warmhaus.com/tr/basinda-biz-detay-sayfasi/warmhaustan-cevre-dostu-surdurulebilir-urunler
  • WeTheCA. (2024, February 10). Environmental effects of molded pulp packaging. https://wetheca.com/environmental-effects-of-molded-pulp-packaging/
There are 30 citations in total.

Details

Primary Language English
Subjects Environmentally Sustainable Engineering
Journal Section Research Article
Authors

Asena Ceylan 0000-0002-9593-5743

Hüseyin Pehlivan 0000-0003-3048-8986

Submission Date August 22, 2025
Acceptance Date December 9, 2025
Publication Date January 21, 2026
Published in Issue Year 2026 Volume: 14 Issue: 1

Cite

APA Ceylan, A., & Pehlivan, H. (2026). Environmental Impact Assessment for Packaging Materials. Duzce University Journal of Science and Technology, 14(1), 177-188. https://doi.org/10.29130/dubited.1770053
AMA Ceylan A, Pehlivan H. Environmental Impact Assessment for Packaging Materials. DUBİTED. January 2026;14(1):177-188. doi:10.29130/dubited.1770053
Chicago Ceylan, Asena, and Hüseyin Pehlivan. “Environmental Impact Assessment for Packaging Materials”. Duzce University Journal of Science and Technology 14, no. 1 (January 2026): 177-88. https://doi.org/10.29130/dubited.1770053.
EndNote Ceylan A, Pehlivan H (January 1, 2026) Environmental Impact Assessment for Packaging Materials. Duzce University Journal of Science and Technology 14 1 177–188.
IEEE A. Ceylan and H. Pehlivan, “Environmental Impact Assessment for Packaging Materials”, DUBİTED, vol. 14, no. 1, pp. 177–188, 2026, doi: 10.29130/dubited.1770053.
ISNAD Ceylan, Asena - Pehlivan, Hüseyin. “Environmental Impact Assessment for Packaging Materials”. Duzce University Journal of Science and Technology 14/1 (January2026), 177-188. https://doi.org/10.29130/dubited.1770053.
JAMA Ceylan A, Pehlivan H. Environmental Impact Assessment for Packaging Materials. DUBİTED. 2026;14:177–188.
MLA Ceylan, Asena and Hüseyin Pehlivan. “Environmental Impact Assessment for Packaging Materials”. Duzce University Journal of Science and Technology, vol. 14, no. 1, 2026, pp. 177-88, doi:10.29130/dubited.1770053.
Vancouver Ceylan A, Pehlivan H. Environmental Impact Assessment for Packaging Materials. DUBİTED. 2026;14(1):177-88.