Research Article
BibTex RIS Cite

Bi-2223 seramiklerinin süperiletkenlik ve sertlik özelliklerine CoFe2O4 ilavesinin etkisi

Year 2026, Volume: 14 Issue: 1, 130 - 142, 21.01.2026
https://doi.org/10.29130/dubited.1782087

Abstract

Bu çalışma, Bi-2223'ün mekanik, yapısal ve süperiletken özellikleri üzerinde CoFe2O4 (CFO) içerik değişiminin (x = 0,000 ila 0,010) etkisini araştırmaktadır. Vickers mikrosertlik ölçümleri, tane sınırı zayıflaması, yapısal kusurlar ve safsızlık fazlarıyla bağlantılı olarak CFO içeriğinin artmasıyla sertlikte belirgin bir azalma göstermektedir. Girinti boyutu etkisini (ISE) analiz etmek için çoklu sertlik modelleri uygulanmış ve Hays-Kendall modeli plato bölgesine en yakın uyumu sağlamıştır. SEM analizi, daha yüksek CFO katkısının artan tane parçalanmasına, düzensiz tane şekillerine ve azalan tane bağlantısına yol açtığını ortaya koymaktadır. Artan yapısal bozukluk ve artan manyetik saçılma nedeniyle kritik başlangıç sıcaklığının (Tc) 109,8 K'den (CFO-0) 93,4 K'ye (CFO-5) düşmesiyle mıknatıslanma-sıcaklık (M–T) ölçümleri gerçekleştirilmiştir. Özetle, çalışma CFO eklenmesinin Bi-2223 numunelerinin hem mekanik hem de süperiletken performansında düşüşe yol açtığını, bunun temel nedeninin ise tane sınırı kusurlarının ve manyetik saçılmanın artması olduğunu ortaya koymaktadır.

References

  • Bilgili, O., Selamet, Y., & Kocabas, K. (2008). Effects of Li substitution in Bi-2223 superconductors. Journal of Superconductivity and Novel Magnetism, 21, 439–449. https://doi.org/10.1007/s10948-008-0374-4
  • Cao, H., Zhang, S., Cui, Y., Zhi, L., Zhang, Y., Zhang, W., Liu, X., Liu, J., Li, C., & Zhang, P. (2024). Development of a novel fabrication technique for high-quality Bi-2223 bulks with high superconducting performance. Ceramics International, 50(7), 12212–12221. https://doi.org/10.1016/j.ceramint.2024.01.125
  • Dogruer, M. (2022). Influence of Fe/Ca substitute on fundamental properties of Bi1.8Pb0.35Sr1.9Ca2.2−xFexCu3Oy materials. Journal of Alloys and Compounds, 900, Article 163445. https://doi.org/10.1016/j.jallcom.2021.163445
  • Dogruer, M., Aksoy, C., Yildirim, G., Ozturk, O., & Terzioglu, C. (2021). Influence of Sr/Nd partial replacement on fundamental properties of Bi-2223 superconducting system. Journal of Materials Science: Materials in Electronics, 32, 7073–7089. https://doi.org/10.1007/s10854-021-05417-4
  • Dogruer, M., Motoki, T., Semba, M., Nakamura, S., & Shimoyama, J. (2024). Mechanical properties of Ag-added DyBa2Cu3Oy superconducting melt-textured bulks prepared by the single-direction melt growth method. Materials Today Communications, 39, Article 108605. https://doi.org/10.1016/j.mtcomm.2024.108605
  • Dogruer, M., Terzioglu, C., Yildirim, G., Pakdil, M., & Zalaoglu, Y. (2015). Decrement of crack propagation in bulk Bi-2223 superconducting ceramics with Sn-diffusion annealing temperature. Journal of Materials Science: Materials in Electronics, 26, 6013–6019. https://doi.org/10.1007/s10854-015-3177-y
  • Hassan, M. S., Mohamed, I. E., Matar, M., Abou-Aly, A. I., Awad, R., & Anas, M. (2023). Effect of hard magnetic ferrite (Ba0.5Sr0.5Fe12O19) nanoparticles on the mechanical properties of the (Bi, Pb)-2223 phase. Applied Physics A, 129, Article 333. https://doi.org/10.1007/s00339-023-06557-6
  • Hays, C., & Kendall, E. G. (1973). An analysis of Knoop microhardness. Metallography, 6, 275–282. https://doi.org/10.1016/0026-0800(73)90053-0
  • Houshiar, M., Zebhi, F., Razi, Z. J., Alidoust, A., & Askari, Z. (2014). Synthesis of cobalt ferrite (CoFe2O4) nanoparticles using combustion, coprecipitation, and precipitation methods: A comparison study of size, structural, and magnetic properties. Journal of Magnetism and Magnetic Materials, 371, 43–48. https://doi.org/10.1016/j.jmmm.2014.06.059
  • Matar, M., Najem, A., Habanjar, K., Anas, M., & Awad, R. (2025). Mechanical properties of (Ba0.4Sr0.4Ca0.2Fe12O19)x/(Bi1.6, Pb0.4)-2223 composite impacted in seawater. Applied Physics A, 131, Article 110. https://doi.org/10.1007/s00339-024-08196-x
  • Onnes, H. K. (1911). Further experiments with liquid helium. D. On the change of electrical resistance of pure metals at very low temperatures, etc. V. The disappearance of the resistance of mercury. KNAW Proceedings, 14, 113–115. https://dwc.knaw.nl/DL/publications/PU00013124.pdf
  • Ozturk, O., Asikuzun, E., Tascı, A. T., Gokcen, T., Ada, H., Koralay, H., & Cavdar, S. (2018). Comparison of Vickers microhardness of undoped and Ru doped BSCCO glass ceramic materials. Journal of Materials Science: Materials in Electronics, 29, 3957–3966. https://doi.org/10.1007/s10854-017-8336-x
  • Pham, A. T., Le, T., Hong, V. T. A., Lee, H., Park, T., Thien, N. D., Anh, D. T. K., Nam, N. H., Binh, N. T., Man, N. K., Thao, P. N., Hop, D. T. B., Miyanaga, T., Pham, Q. N., & Tran, D. H. (2024). Vortex phase diagram and transition in (Bi1.6Pb0.4Sr2Ca2Cu3O10-δ )1-x(SnO2)x superconductors. Results in Physics, 63, Article 107887. https://doi.org/10.1016/j.rinp.2024.107887
  • Saghafi, M., Shams, G., & Soltani, Z. (2024). Paraconductivity in Bi1.6Pb0.4Sr2Ca2Cu3O10+δ superconductors doped with Sm2O3 nanoparticles. Physica B: Condensed Matter, 678, Article 415754. https://doi.org/10.1016/j.physb.2024.415754
  • Sakashita, T., Ito, S., & Hashizume, H. (2010). Improvement of joint structure for mechanical butt joint of stacked BSCCO 2223 cable. IEEE Transactions on Applied Superconductivity, 20(3), 1751–1754. https://doi.org/10.1109/TASC.2010.2043660
  • Salem, M. K. B., Slimani, Y., Hannachi, E., Azzouz, F. B., & Salem, M. B. (2018). Bi-based superconductors prepared with addition of CoFe2O4 for the design of a magnetic probe. Cryogenics, 89, 53–57. https://doi.org/10.1016/j.cryogenics.2017.11.005
  • Sedky, A., & Salah, A. (2022). Comparative study of the effects of La-substituted Ca in (Bi, Pb):2212 and (Bi, Pb):2223 superconductors. Journal of Electronic Materials, 51, 3042–3058. https://doi.org/10.1007/s11664-022-09476-z
  • Tran, D. H., Le, T. M., Do, T. H., Dinh, Q. T., Duong, N. T. T., Anh, D. T. K., Man, N. K., Pham, D., & Kang, W. N. (2018). Enhancements of critical current density in the Bi–Pb–Sr–Ca–Cu–O superconductor by Na substitution. Materials Transactions, 59(7), 1071–1074. https://doi.org/10.2320/matertrans.MD201715
  • Tran, D. H., Pham, A. T., Binh, N. T., Anh, D. T. K., Nam, N. H., Hong, N. T. M., Cuong, L. V., Pham, P. V., Huy, N. Q., Huong, T. T., Man, N. K., Lim, K. P., Kechik, M. M. A., Chen, S. K., & Le, T. (2025b). Superconductivity in Bi1.6Pb0.4Sr2Ca2Cu3O10+δ ceramics with cobalt ferrite (CoFe2O4) nanoparticle addition. Ceramics International, 51(12), 16134–16142. https://doi.org/10.1016/j.ceramint.2025.01.451
  • Tran, D. H., Pham A. T., Nam, N. H., Thuy, K. X., Truong, A. D., Le, T., Le, V. C., Hong, N. T. M., Hai, P., Hop, D. T. B., & Dogruer, M. (2025a). Effect of ZnFe2O4 addition on the phase stability, hardness and superconducting properties of Bi-2223 phase. Ceramics International, 51(20), 30974–30983. https://doi.org/10.1016/j.ceramint.2025.04.289
  • Tran, D. T., Pham, A. T., Pham, H. H., Nguyen, N. T., Nam, N. H., Man, N. K., Kang, W. N., Hsu, I. J., Klysubun, W., & Tran, D. H. (2021). Local structure and superconductivity in (Bi1.6Pb0.4Sr2Ca2Cu3O10+δ)1-x(Fe3O4)x compounds. Ceramics International, 47(12), 16950–16955. https://doi.org/10.1016/j.ceramint.2021.02.267
  • Turkoz, M. B., Zalaoglu, Y., Turgay, T., Ozturk, O., Akkurt, B., & Yildirim, G. (2019). Evaluation of key mechanical design properties and mechanical characteristic features of advanced Bi-2212 ceramic materials with homovalent Bi/Ga partial replacement: Combination of experimental and theoretical approaches. Ceramics International, 45(17), 21183–21192. https://doi.org/10.1016/j.ceramint.2019.07.098
  • Ulgen, A. T., Okur, S., Erdem, U., Terzioglu, C., Turgay, T., Turkoz, M. B., & Yildirim, G. (2023). Development of modulation, pairing mechanism, and slip system with optimum vanadium substitution at Bi-sites in Bi-2212 ceramic structure. Materials Chemistry and Physics, 307, Article 128171. https://doi.org/10.1016/j.matchemphys.2023.128171
  • Vu, L.H., Pham, A.T., Thien, N.D., Nam, N.H., Riviere, E., Pham, Q.N., Man, N.K., Binh, N.T., Hong, N.T.M., Cuong, L.V., Nguyen, T.L., & Tran, D.H. (2023). Enhancements of critical current density in Bi1.6Pb0.4Sr2Ca2Cu3O10+δ superconductors by additions of SnO2 nanoparticles. Ceramics International, 49(16), 27614–27621. https://doi.org/10.1016/j.ceramint.2023.06.047

Effect of CoFe2O4 Addition in the Superconducting and Hardness Characteristics of Bi-2223 Ceramics

Year 2026, Volume: 14 Issue: 1, 130 - 142, 21.01.2026
https://doi.org/10.29130/dubited.1782087

Abstract

This study investigates the influence of CoFe2O4 (CFO) content variation (x = 0.000 to 0.010) on the mechanical, structural and superconducting properties of Bi-2223. Vickers microhardness measurements show a clear decrease in hardness with increasing CFO content. This decrease is linked to grain boundary weakening, structural defects, and impurity phases. Multiple hardness models are applied to analyze the indentation size effect (ISE). The Hays-Kendall model provided the closest fit to plateau region. SEM analysis reveals that higher CFO doping leads to increased grain fragmentation, irregular grain shapes, and reduced grain connectivity. Magnetization versus temperature (M–T) measurements are performed. The critical onset temperature (Tc) decreasing from 109.8 K (CFO-0) to 93.4 K (CFO-5) due to enhanced structural disorder and increased magnetic scattering. In summary, the study reveals that adding CFO leads to a decline in both mechanical and superconducting performance of the Bi-2223 samples. This is mainly because of increased grain boundary defects and magnetic scattering.

Ethical Statement

This study does not involve human or animal participants. All procedures followed scientific and ethical principles, and all referenced studies are appropriately cited.

Supporting Institution

This research received no external funding.

Thanks

The author expresses gratitude to Dr. D. Hai Tran of the University of Hanoi, Vietnam, for providing the CFO-doped Bi-2223 samples.

References

  • Bilgili, O., Selamet, Y., & Kocabas, K. (2008). Effects of Li substitution in Bi-2223 superconductors. Journal of Superconductivity and Novel Magnetism, 21, 439–449. https://doi.org/10.1007/s10948-008-0374-4
  • Cao, H., Zhang, S., Cui, Y., Zhi, L., Zhang, Y., Zhang, W., Liu, X., Liu, J., Li, C., & Zhang, P. (2024). Development of a novel fabrication technique for high-quality Bi-2223 bulks with high superconducting performance. Ceramics International, 50(7), 12212–12221. https://doi.org/10.1016/j.ceramint.2024.01.125
  • Dogruer, M. (2022). Influence of Fe/Ca substitute on fundamental properties of Bi1.8Pb0.35Sr1.9Ca2.2−xFexCu3Oy materials. Journal of Alloys and Compounds, 900, Article 163445. https://doi.org/10.1016/j.jallcom.2021.163445
  • Dogruer, M., Aksoy, C., Yildirim, G., Ozturk, O., & Terzioglu, C. (2021). Influence of Sr/Nd partial replacement on fundamental properties of Bi-2223 superconducting system. Journal of Materials Science: Materials in Electronics, 32, 7073–7089. https://doi.org/10.1007/s10854-021-05417-4
  • Dogruer, M., Motoki, T., Semba, M., Nakamura, S., & Shimoyama, J. (2024). Mechanical properties of Ag-added DyBa2Cu3Oy superconducting melt-textured bulks prepared by the single-direction melt growth method. Materials Today Communications, 39, Article 108605. https://doi.org/10.1016/j.mtcomm.2024.108605
  • Dogruer, M., Terzioglu, C., Yildirim, G., Pakdil, M., & Zalaoglu, Y. (2015). Decrement of crack propagation in bulk Bi-2223 superconducting ceramics with Sn-diffusion annealing temperature. Journal of Materials Science: Materials in Electronics, 26, 6013–6019. https://doi.org/10.1007/s10854-015-3177-y
  • Hassan, M. S., Mohamed, I. E., Matar, M., Abou-Aly, A. I., Awad, R., & Anas, M. (2023). Effect of hard magnetic ferrite (Ba0.5Sr0.5Fe12O19) nanoparticles on the mechanical properties of the (Bi, Pb)-2223 phase. Applied Physics A, 129, Article 333. https://doi.org/10.1007/s00339-023-06557-6
  • Hays, C., & Kendall, E. G. (1973). An analysis of Knoop microhardness. Metallography, 6, 275–282. https://doi.org/10.1016/0026-0800(73)90053-0
  • Houshiar, M., Zebhi, F., Razi, Z. J., Alidoust, A., & Askari, Z. (2014). Synthesis of cobalt ferrite (CoFe2O4) nanoparticles using combustion, coprecipitation, and precipitation methods: A comparison study of size, structural, and magnetic properties. Journal of Magnetism and Magnetic Materials, 371, 43–48. https://doi.org/10.1016/j.jmmm.2014.06.059
  • Matar, M., Najem, A., Habanjar, K., Anas, M., & Awad, R. (2025). Mechanical properties of (Ba0.4Sr0.4Ca0.2Fe12O19)x/(Bi1.6, Pb0.4)-2223 composite impacted in seawater. Applied Physics A, 131, Article 110. https://doi.org/10.1007/s00339-024-08196-x
  • Onnes, H. K. (1911). Further experiments with liquid helium. D. On the change of electrical resistance of pure metals at very low temperatures, etc. V. The disappearance of the resistance of mercury. KNAW Proceedings, 14, 113–115. https://dwc.knaw.nl/DL/publications/PU00013124.pdf
  • Ozturk, O., Asikuzun, E., Tascı, A. T., Gokcen, T., Ada, H., Koralay, H., & Cavdar, S. (2018). Comparison of Vickers microhardness of undoped and Ru doped BSCCO glass ceramic materials. Journal of Materials Science: Materials in Electronics, 29, 3957–3966. https://doi.org/10.1007/s10854-017-8336-x
  • Pham, A. T., Le, T., Hong, V. T. A., Lee, H., Park, T., Thien, N. D., Anh, D. T. K., Nam, N. H., Binh, N. T., Man, N. K., Thao, P. N., Hop, D. T. B., Miyanaga, T., Pham, Q. N., & Tran, D. H. (2024). Vortex phase diagram and transition in (Bi1.6Pb0.4Sr2Ca2Cu3O10-δ )1-x(SnO2)x superconductors. Results in Physics, 63, Article 107887. https://doi.org/10.1016/j.rinp.2024.107887
  • Saghafi, M., Shams, G., & Soltani, Z. (2024). Paraconductivity in Bi1.6Pb0.4Sr2Ca2Cu3O10+δ superconductors doped with Sm2O3 nanoparticles. Physica B: Condensed Matter, 678, Article 415754. https://doi.org/10.1016/j.physb.2024.415754
  • Sakashita, T., Ito, S., & Hashizume, H. (2010). Improvement of joint structure for mechanical butt joint of stacked BSCCO 2223 cable. IEEE Transactions on Applied Superconductivity, 20(3), 1751–1754. https://doi.org/10.1109/TASC.2010.2043660
  • Salem, M. K. B., Slimani, Y., Hannachi, E., Azzouz, F. B., & Salem, M. B. (2018). Bi-based superconductors prepared with addition of CoFe2O4 for the design of a magnetic probe. Cryogenics, 89, 53–57. https://doi.org/10.1016/j.cryogenics.2017.11.005
  • Sedky, A., & Salah, A. (2022). Comparative study of the effects of La-substituted Ca in (Bi, Pb):2212 and (Bi, Pb):2223 superconductors. Journal of Electronic Materials, 51, 3042–3058. https://doi.org/10.1007/s11664-022-09476-z
  • Tran, D. H., Le, T. M., Do, T. H., Dinh, Q. T., Duong, N. T. T., Anh, D. T. K., Man, N. K., Pham, D., & Kang, W. N. (2018). Enhancements of critical current density in the Bi–Pb–Sr–Ca–Cu–O superconductor by Na substitution. Materials Transactions, 59(7), 1071–1074. https://doi.org/10.2320/matertrans.MD201715
  • Tran, D. H., Pham, A. T., Binh, N. T., Anh, D. T. K., Nam, N. H., Hong, N. T. M., Cuong, L. V., Pham, P. V., Huy, N. Q., Huong, T. T., Man, N. K., Lim, K. P., Kechik, M. M. A., Chen, S. K., & Le, T. (2025b). Superconductivity in Bi1.6Pb0.4Sr2Ca2Cu3O10+δ ceramics with cobalt ferrite (CoFe2O4) nanoparticle addition. Ceramics International, 51(12), 16134–16142. https://doi.org/10.1016/j.ceramint.2025.01.451
  • Tran, D. H., Pham A. T., Nam, N. H., Thuy, K. X., Truong, A. D., Le, T., Le, V. C., Hong, N. T. M., Hai, P., Hop, D. T. B., & Dogruer, M. (2025a). Effect of ZnFe2O4 addition on the phase stability, hardness and superconducting properties of Bi-2223 phase. Ceramics International, 51(20), 30974–30983. https://doi.org/10.1016/j.ceramint.2025.04.289
  • Tran, D. T., Pham, A. T., Pham, H. H., Nguyen, N. T., Nam, N. H., Man, N. K., Kang, W. N., Hsu, I. J., Klysubun, W., & Tran, D. H. (2021). Local structure and superconductivity in (Bi1.6Pb0.4Sr2Ca2Cu3O10+δ)1-x(Fe3O4)x compounds. Ceramics International, 47(12), 16950–16955. https://doi.org/10.1016/j.ceramint.2021.02.267
  • Turkoz, M. B., Zalaoglu, Y., Turgay, T., Ozturk, O., Akkurt, B., & Yildirim, G. (2019). Evaluation of key mechanical design properties and mechanical characteristic features of advanced Bi-2212 ceramic materials with homovalent Bi/Ga partial replacement: Combination of experimental and theoretical approaches. Ceramics International, 45(17), 21183–21192. https://doi.org/10.1016/j.ceramint.2019.07.098
  • Ulgen, A. T., Okur, S., Erdem, U., Terzioglu, C., Turgay, T., Turkoz, M. B., & Yildirim, G. (2023). Development of modulation, pairing mechanism, and slip system with optimum vanadium substitution at Bi-sites in Bi-2212 ceramic structure. Materials Chemistry and Physics, 307, Article 128171. https://doi.org/10.1016/j.matchemphys.2023.128171
  • Vu, L.H., Pham, A.T., Thien, N.D., Nam, N.H., Riviere, E., Pham, Q.N., Man, N.K., Binh, N.T., Hong, N.T.M., Cuong, L.V., Nguyen, T.L., & Tran, D.H. (2023). Enhancements of critical current density in Bi1.6Pb0.4Sr2Ca2Cu3O10+δ superconductors by additions of SnO2 nanoparticles. Ceramics International, 49(16), 27614–27621. https://doi.org/10.1016/j.ceramint.2023.06.047
There are 24 citations in total.

Details

Primary Language English
Subjects Classical Physics (Other)
Journal Section Research Article
Authors

Musa Doğruer 0000-0002-4214-9159

Submission Date September 11, 2025
Acceptance Date December 1, 2025
Publication Date January 21, 2026
Published in Issue Year 2026 Volume: 14 Issue: 1

Cite

APA Doğruer, M. (2026). Effect of CoFe2O4 Addition in the Superconducting and Hardness Characteristics of Bi-2223 Ceramics. Duzce University Journal of Science and Technology, 14(1), 130-142. https://doi.org/10.29130/dubited.1782087
AMA Doğruer M. Effect of CoFe2O4 Addition in the Superconducting and Hardness Characteristics of Bi-2223 Ceramics. DUBİTED. January 2026;14(1):130-142. doi:10.29130/dubited.1782087
Chicago Doğruer, Musa. “Effect of CoFe2O4 Addition in the Superconducting and Hardness Characteristics of Bi-2223 Ceramics”. Duzce University Journal of Science and Technology 14, no. 1 (January 2026): 130-42. https://doi.org/10.29130/dubited.1782087.
EndNote Doğruer M (January 1, 2026) Effect of CoFe2O4 Addition in the Superconducting and Hardness Characteristics of Bi-2223 Ceramics. Duzce University Journal of Science and Technology 14 1 130–142.
IEEE M. Doğruer, “Effect of CoFe2O4 Addition in the Superconducting and Hardness Characteristics of Bi-2223 Ceramics”, DUBİTED, vol. 14, no. 1, pp. 130–142, 2026, doi: 10.29130/dubited.1782087.
ISNAD Doğruer, Musa. “Effect of CoFe2O4 Addition in the Superconducting and Hardness Characteristics of Bi-2223 Ceramics”. Duzce University Journal of Science and Technology 14/1 (January2026), 130-142. https://doi.org/10.29130/dubited.1782087.
JAMA Doğruer M. Effect of CoFe2O4 Addition in the Superconducting and Hardness Characteristics of Bi-2223 Ceramics. DUBİTED. 2026;14:130–142.
MLA Doğruer, Musa. “Effect of CoFe2O4 Addition in the Superconducting and Hardness Characteristics of Bi-2223 Ceramics”. Duzce University Journal of Science and Technology, vol. 14, no. 1, 2026, pp. 130-42, doi:10.29130/dubited.1782087.
Vancouver Doğruer M. Effect of CoFe2O4 Addition in the Superconducting and Hardness Characteristics of Bi-2223 Ceramics. DUBİTED. 2026;14(1):130-42.