Experimental Analysis of Balance-Induced Vibrations in Vehicle Shafts
Year 2026,
Volume: 14 Issue: 1, 263 - 273, 21.01.2026
Mehmet Bahadır
,
Menderes Kalkat
,
Hanifi Küçüksarıyıldız
Abstract
Extensive research has been conducted in recent years to mitigate damages caused by undesired vibrations in motor vehicles used for transportation. Vibrations occurring in highly active moving components of vehicles not only lead to discomfort in driving comfort but also reduce the material’s service life, causing fatigue and structural damage. Rotating elements in vehicles, such as the shaft (cardan shaft), crankshaft, and gears, can be sources of problems. In this study, vibrations resulting from an imbalance problem in the vehicle shaft were experimentally investigated, and the effects of balancing on the vehicle shaft were evaluated. For this purpose, vibration data were measured at three different points on a vehicle. Vibrations generated by the shaft under different road conditions and vehicle speeds were recorded and compared before and after balancing.
The results of the study demonstrated a one-third reduction in vibration amplitude at the point beneath the driver's seat, which is directly associated with the comfort of both driver and passengers. Specifically, under the most demanding conditions (80 km·h⁻¹ speed and an uneven road surface), the vibration amplitude induced by the unbalanced driveshaft reached a high value of 2198 µm; after balancing, a reduction of approximately 65–70% in this amplitude was achieved at the measurement point under the driver's seat. In contrast, no significant difference was observed in the vibrations measured at the engine block and the luggage compartment. The findings indicate that vibrations originating from the vehicle driveshaft can be substantially mitigated through proper balancing.
Ethical Statement
This study does not involve human or animal participants. All procedures followed scientific and ethical principles, and all referenced studies are appropriately cited.
Supporting Institution
This research received no external funding.or not-for-profit sectors.
Thanks
This study has been prepared based on the data and findings presented in Mehmet Bahadır’s master’s thesis. Hanifi Küçüksarıyıldız, a member of our research team, made significant contributions to the interpretation of the results, the preparation of the graphs, and the writing of the manuscript.
References
-
Becker, S., Beyer, C., & McAfee, R. (2005). 1st order boom noise relationship to driveline imbalance. SAE Technical Paper. https://doi.org/10.4271/2005-01-2299
-
Behera, A., & Sivalingam, M. (2017). Experimental and simulation studies on instability of a two wheeler vehicle. SAE International Journal of Vehicle Dynamics, Stability, and NVH, 1(2), 234-246. https://doi.org/10.4271/2017-01-1563
-
Bhelsekar, P., Kale, C., Bile, S., Kamble, S., & Shepal, S. (2019). Design & fabrication of static and dynamic vibration balancing machine. International Research Journal of Engineering and Technology, 6(2), 2605-2607.
-
Braun, W., Meinhardt, G., Walter, F., Steyer, G., & Voight, M. (2005). Driveline imbalance sensitivity testing methodology. SAE Technical Paper. https://doi.org/10.4271/2005-01-2307
-
Danh, T. H. (2025). Investigate the influence of dynamic parameters on the durability of automobile drive shafts. WSEAS Transactions On Applied And Theoretical Mechanics, 20, 119-129. https://doi.org/10.37394/232011.2025.20.14
-
Duarte, G. B., Cavalca, K. L., de Castro, H. F., & Tadeo, A. T. (2005). Experimental balancing technique by trial masses. SAE Technical Paper. https://doi.org/10.4271/2005-01-4006
-
Elanchezhian, C., Ramnath, B. V., Raghavendra, K. S., Muralidharan, M., & Rekha, G. (2018). Design and comparison of the strength and efficiency of drive shaft made of steel and composite materials. Materials Today: Proceedings, 5(1), 1000-1007. https://doi.org/10.1016/j.matpr.2017.11.176
-
Fedák, V., Záskalický, P., & Gelvanič, Z. (2014). Analysis of balancing of unbalanced rotors and long shafts using GUI MATLAB. In MATLAB applications for the practical engineer. IntechOpen. https://doi.org/10.5772/58378
-
Fu, P., Qiu, B., Ding, C., Shi, B., & Zhang, Y. (2018). Experimental Study of Unbalanced Multiple Propeller Shaft. SAE Technical Paper. https://doi.org/10.4271/2018-01-1398
-
Hemingray, P. (2004). The relationship of automotive balance limits to human perception. SAE Technical Paper. https://doi.org/10.4271/2004-01-0401
-
Higley, R. (2003). A Method for Selecting Optimal Correction-Mass Sets for Driveline Balancing Processes. SAE Technical Paper. https://doi.org/10.4271/2003-01-1483
-
Higley, R., & Hiatt, J. (2001). Errors in the driveline system balancing process. SAE Technical Paper. https://doi.org/10.4271/2001-01-1504
-
Hill, W., Kinchen, D., & Gehringer, M. A. (2017). FWD halfshaft angle optimization using 12 degree of freedom analytical model. SAE International Journal of Vehicle Dynamics, Stability, and NVH, 1(2), 384-389. https://doi.org/10.4271/2017-01-1770
-
Hu, Y., Zhang, B., & Tan, A. C. (2020). Acceleration signal with DTCWPT and novel optimize SNR index for diagnosis of misaligned cardan shaft in high-speed train. Mechanical Systems and Signal Processing, 140, Article 106723. https://doi.org/10.1016/j.ymssp.2020.106723
-
Hummel, S. R., & Chassapis, C. (2000). Configuration design and optimization of universal joints with manufacturing tolerances. Mechanism and Machine Theory, 35(3), 463-476. https://doi.org/10.1016/S0094-114X(98)00092-5
-
Kalkat, M., Yıldırım, Ş., & Uzmay, I. (2003). Rotor dynamics analysis of rotating machine systems using artificial neural networks. International Journal of Rotating Machinery, 9(4), 255-262. https://doi.org/10.1155/S1023621X0300023X
-
Kirmizi, H. (2022). Bi̇r kardan mi̇li̇ni̇n kri̇ti̇k Hiz artirimi ve kütle azaltimi esasli tasarimi ve imalati [Master’s thesis, Dokuz Eylul University].
-
Liu, C., & Orzechowski, J. (2007). Axle imbalance measurement and balancing strategies. SAE Technical Paper. https://doi.org/10.4271/2007-01-2238
-
Meinhardt, G. A., Sun, Z., & Steyer, G. (2011). An Application of Variation Simulation-Predicting Interior Driveline Vibration Based on Production Variation of Imbalance and Runout. SAE Technical Paper. https://doi.org/10.4271/2011-01-1543
-
Quang, N. T. (2021). Vibration Reduction on Automotive Cardan Shaft using Balancing Mass. In 2021 International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME). https://doi.org/10.1109/ICECCME52200.2021.9591092
-
Saveliev, V. A. (2018). Critical speed of propshaft and effect of forced synchroniztion in transmission of straight-four engine vehicles. IOP Conference Series: Materials Science and Engineering, 386, Article 012005. https://doi.org/10.1088/1757-899X/386/1/012005
-
Şen, O., & Atik, E. (2025). Kardan mili dayanıklılığının tahmin edilmesi için bir yaklaşım. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 31(6), 922-933.
https://doi.org/10.5505/pajes.2025.39129
-
Tchomeni, B. X., & Alugongo, A. (2021). Modelling and dynamic analysis of an unbalanced and cracked cardan shaft for vehicle propeller shaft systems. Applied sciences, 11(17), Article 8132. https:/doi.org/10.3390/app11178132
-
Uzmay, İ., & Sarıkaya, H. (1990). Makina dinamiği (Vol. 10). Erciyes Üniversitesi Yayını.
-
White, R. (2017). Measurement techniques for estimating critical speed of drivelines. SAE Technical Paper. https://doi.org/10.4271/2017-01-1800
-
Wu, G., Long, Y., Zhang, Y., & Zhang, Y. (2024). Review of identification, control, and evaluation of multi-source vibration and noise in vehicle drivetrains. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 239(14), 6948-6966. https:/doi.org/10.1177/09544070241304042
-
Yongxu, H., Kang, L., Yaru, Y., & Yan, L. (2025). Real-time static unbalance evaluation of the Cardan shaft equipped in high-speed train based on nonzero frequency filter. Scientific Reports, 15(1), Article 19289. https:/doi.org/10.1038/s41598-025-04221-y
-
Yu, S., & Higley, R. (2009). Separation of Transmission and Driveline Imbalances and Its Application. SAE Technical Paper. https://doi.org/10.4271/2009-01-2061
-
Zhao, Q., Zhang, L., Jia, J., Wu, L., Zhuang, H., Yu, H., Lu, S., Zhao, H., Poduturu, A., & Jain, S. (2020). In-depth PHEV driveline torsional vibration induced vehicle NVH response study by integrated CAE/Testing methodology. SAE Technical Paper. https://doi.org/10.4271/2020-01-1507
Taşıt Şaftlarındaki Balans Kaynaklı Titreşimlerin Deneysel Olarak İncelenmesi
Year 2026,
Volume: 14 Issue: 1, 263 - 273, 21.01.2026
Mehmet Bahadır
,
Menderes Kalkat
,
Hanifi Küçüksarıyıldız
Abstract
Son yıllarda ulaşımda kullanılan motorlu araçlarda istenmeyen titreşimlerin neden olduğu hasarları azaltmak amacıyla kapsamlı araştırmalar yapılmıştır. Araçların yoğun hareketli bileşenlerinde meydana gelen titreşimler, yalnızca sürüş konforunu olumsuz etkilemekle kalmaz, aynı zamanda malzemenin hizmet ömrünü azaltarak yorulma ve yapısal hasara yol açar. Araçlarda bulunan dönel elemanlar, örneğin şaft (kardan mili), krank mili ve dişliler, bu tür problemlerin kaynağı olabilir. Bu çalışmada araç şaftında oluşan dengesizlik probleminden kaynaklanan titreşimler deneysel olarak incelenmiş ve balans işleminin araç şaftı üzerindeki etkileri değerlendirilmiştir. Bu amaçla bir araç üzerinde üç farklı noktadan titreşim verileri ölçülmüştür. Şaftın farklı yol koşulları ve araç hızları altındaki titreşimleri balans öncesi ve sonrası için kaydedilmiş ve karşılaştırılmıştır. Çalışma sonucunda sürücü koltuğunun altındaki noktada, yani sürücü ve yolcu konforu ile doğrudan ilişkili bölgede, titreşim genliğinde üçte bir oranında azalma elde edilmiştir. Buna karşılık motor bloğu ve bagaj bölgesinde ölçülen titreşimlerde anlamlı bir fark gözlenmemiştir. Bulgular, araç şaftından kaynaklanan titreşimlerin uygun balanslama ile önemli ölçüde azaltılabileceğini göstermektedir.
Ethical Statement
Bu çalışmada insan veya hayvan denek kullanılmamıştır. Araştırma, bilimsel, etik ve yasal ilkelere uygun olarak yürütülmüştür. Etik kurul izni gerektiren bir durum bulunmamaktadır. Makale özgün olup daha önce herhangi bir yerde yayımlanmamış veya yayımlanmak üzere gönderilmemiştir. Tüm yazarlar makalenin son hâlini incelemiş, onaylamış ve çıkar çatışması bulunmadığını beyan etmiştir.
Supporting Institution
Bu çalışma herhangi bir kurum veya kuruluş tarafından desteklenmemiştir.
References
-
Becker, S., Beyer, C., & McAfee, R. (2005). 1st order boom noise relationship to driveline imbalance. SAE Technical Paper. https://doi.org/10.4271/2005-01-2299
-
Behera, A., & Sivalingam, M. (2017). Experimental and simulation studies on instability of a two wheeler vehicle. SAE International Journal of Vehicle Dynamics, Stability, and NVH, 1(2), 234-246. https://doi.org/10.4271/2017-01-1563
-
Bhelsekar, P., Kale, C., Bile, S., Kamble, S., & Shepal, S. (2019). Design & fabrication of static and dynamic vibration balancing machine. International Research Journal of Engineering and Technology, 6(2), 2605-2607.
-
Braun, W., Meinhardt, G., Walter, F., Steyer, G., & Voight, M. (2005). Driveline imbalance sensitivity testing methodology. SAE Technical Paper. https://doi.org/10.4271/2005-01-2307
-
Danh, T. H. (2025). Investigate the influence of dynamic parameters on the durability of automobile drive shafts. WSEAS Transactions On Applied And Theoretical Mechanics, 20, 119-129. https://doi.org/10.37394/232011.2025.20.14
-
Duarte, G. B., Cavalca, K. L., de Castro, H. F., & Tadeo, A. T. (2005). Experimental balancing technique by trial masses. SAE Technical Paper. https://doi.org/10.4271/2005-01-4006
-
Elanchezhian, C., Ramnath, B. V., Raghavendra, K. S., Muralidharan, M., & Rekha, G. (2018). Design and comparison of the strength and efficiency of drive shaft made of steel and composite materials. Materials Today: Proceedings, 5(1), 1000-1007. https://doi.org/10.1016/j.matpr.2017.11.176
-
Fedák, V., Záskalický, P., & Gelvanič, Z. (2014). Analysis of balancing of unbalanced rotors and long shafts using GUI MATLAB. In MATLAB applications for the practical engineer. IntechOpen. https://doi.org/10.5772/58378
-
Fu, P., Qiu, B., Ding, C., Shi, B., & Zhang, Y. (2018). Experimental Study of Unbalanced Multiple Propeller Shaft. SAE Technical Paper. https://doi.org/10.4271/2018-01-1398
-
Hemingray, P. (2004). The relationship of automotive balance limits to human perception. SAE Technical Paper. https://doi.org/10.4271/2004-01-0401
-
Higley, R. (2003). A Method for Selecting Optimal Correction-Mass Sets for Driveline Balancing Processes. SAE Technical Paper. https://doi.org/10.4271/2003-01-1483
-
Higley, R., & Hiatt, J. (2001). Errors in the driveline system balancing process. SAE Technical Paper. https://doi.org/10.4271/2001-01-1504
-
Hill, W., Kinchen, D., & Gehringer, M. A. (2017). FWD halfshaft angle optimization using 12 degree of freedom analytical model. SAE International Journal of Vehicle Dynamics, Stability, and NVH, 1(2), 384-389. https://doi.org/10.4271/2017-01-1770
-
Hu, Y., Zhang, B., & Tan, A. C. (2020). Acceleration signal with DTCWPT and novel optimize SNR index for diagnosis of misaligned cardan shaft in high-speed train. Mechanical Systems and Signal Processing, 140, Article 106723. https://doi.org/10.1016/j.ymssp.2020.106723
-
Hummel, S. R., & Chassapis, C. (2000). Configuration design and optimization of universal joints with manufacturing tolerances. Mechanism and Machine Theory, 35(3), 463-476. https://doi.org/10.1016/S0094-114X(98)00092-5
-
Kalkat, M., Yıldırım, Ş., & Uzmay, I. (2003). Rotor dynamics analysis of rotating machine systems using artificial neural networks. International Journal of Rotating Machinery, 9(4), 255-262. https://doi.org/10.1155/S1023621X0300023X
-
Kirmizi, H. (2022). Bi̇r kardan mi̇li̇ni̇n kri̇ti̇k Hiz artirimi ve kütle azaltimi esasli tasarimi ve imalati [Master’s thesis, Dokuz Eylul University].
-
Liu, C., & Orzechowski, J. (2007). Axle imbalance measurement and balancing strategies. SAE Technical Paper. https://doi.org/10.4271/2007-01-2238
-
Meinhardt, G. A., Sun, Z., & Steyer, G. (2011). An Application of Variation Simulation-Predicting Interior Driveline Vibration Based on Production Variation of Imbalance and Runout. SAE Technical Paper. https://doi.org/10.4271/2011-01-1543
-
Quang, N. T. (2021). Vibration Reduction on Automotive Cardan Shaft using Balancing Mass. In 2021 International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME). https://doi.org/10.1109/ICECCME52200.2021.9591092
-
Saveliev, V. A. (2018). Critical speed of propshaft and effect of forced synchroniztion in transmission of straight-four engine vehicles. IOP Conference Series: Materials Science and Engineering, 386, Article 012005. https://doi.org/10.1088/1757-899X/386/1/012005
-
Şen, O., & Atik, E. (2025). Kardan mili dayanıklılığının tahmin edilmesi için bir yaklaşım. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 31(6), 922-933.
https://doi.org/10.5505/pajes.2025.39129
-
Tchomeni, B. X., & Alugongo, A. (2021). Modelling and dynamic analysis of an unbalanced and cracked cardan shaft for vehicle propeller shaft systems. Applied sciences, 11(17), Article 8132. https:/doi.org/10.3390/app11178132
-
Uzmay, İ., & Sarıkaya, H. (1990). Makina dinamiği (Vol. 10). Erciyes Üniversitesi Yayını.
-
White, R. (2017). Measurement techniques for estimating critical speed of drivelines. SAE Technical Paper. https://doi.org/10.4271/2017-01-1800
-
Wu, G., Long, Y., Zhang, Y., & Zhang, Y. (2024). Review of identification, control, and evaluation of multi-source vibration and noise in vehicle drivetrains. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 239(14), 6948-6966. https:/doi.org/10.1177/09544070241304042
-
Yongxu, H., Kang, L., Yaru, Y., & Yan, L. (2025). Real-time static unbalance evaluation of the Cardan shaft equipped in high-speed train based on nonzero frequency filter. Scientific Reports, 15(1), Article 19289. https:/doi.org/10.1038/s41598-025-04221-y
-
Yu, S., & Higley, R. (2009). Separation of Transmission and Driveline Imbalances and Its Application. SAE Technical Paper. https://doi.org/10.4271/2009-01-2061
-
Zhao, Q., Zhang, L., Jia, J., Wu, L., Zhuang, H., Yu, H., Lu, S., Zhao, H., Poduturu, A., & Jain, S. (2020). In-depth PHEV driveline torsional vibration induced vehicle NVH response study by integrated CAE/Testing methodology. SAE Technical Paper. https://doi.org/10.4271/2020-01-1507