Research Article
BibTex RIS Cite

Shear Moduli Prediction of Calabria Pine (Pinus brutia Ten.) using Ultrasonic Wave Propagation

Year 2018, , 176 - 187, 31.01.2018
https://doi.org/10.29130/dubited.371435

Abstract

Shear moduli of
Calabria pine (Pinus Brutia Ten.)
predicted using non-destructive test method in this study. Calabria pine logs
harvested from Beşkonak, Burdur and sawn in to Radial and Tangential planks. 26
surface polyhedral NDT samples prepared in 65x65x65mm dimensions. All samples
acclimatized at 20±1°C temperature and %65RH conditions. Ultrasonic shear wave
velocities of Calabria pine wood calculated using time of flight (ToF) values.
ToF values obtained using Olympus EPOCH 650 flaw detector and Panametrics NDT
V153 shear wave transducers.  Shear
moduli predicted using calculated velocities. Average density and moisture
content of the non-destructive test samples determined as 0.558g/cm3 and
%12.66, respectively. Shear wave velocities and shear moduli of LR, LT, and RT
planes were determined as 1408, 1306 and 666m/s and 1108, 952 and 248N/mm2,
respectively.  

References

  • [1] J.T. Drow, R.S. Mcburney, “Elastic Properties of Wood, Young's Moduli and Poisson's Ratios of Douglas-Fir and Their Relations to Moisture Content”, USDA, FPL, Rep. No. 1528-D, 1945.
  • [2] R.S. McBurney, D.V. Doyle, J.T. Drow, “The elastic properties of wood: Young's moduli, Poisson's ratios, and moduli of rigidity of Sweetgum at approximately 11 percent moisture content”, USDA, FPL, Rep. No. 1528-F, G, 1946.
  • [3] U.B. Halabe, H.V.S. GangaRao, C.E. Solomon, “Nondestructive Evaluation of Wood Using Ultrasonic Dry-Coupled Transducers”, in Review of Progress in Quantitative Nondestructive Evaluation, California, vol. 12, USA: Springer-Verlag, 1993, ch. 8, pp. 2251-2256.
  • [4] R.F.S. Hearmon, “The assessment of wood properties by vibrations and high frequency acoustic waves”, in Symposium on nondestructive testing of wood, Washington State Univ., WA-USA, 1965, pp. 49-66.
  • [5] J. Zimmer, J.R. Cost, “Determination of the Elastic Constants of a Unidirectional Fiber Composite Using Ultrasonic Velocity Measurements”, Journal of the Acoustical Society of America, vol. 47, pp. 795-803, 1970.
  • [6] V. Bucur, “Wood failure testing in ultrasonic methods”, in 4th Symposium Nondestructive Testing of Wood, Washington, WA-USA, 1978, pp. 223-226.
  • [7] C. Preziosa, M. Mudry, J. Launay, F. Gilletta, “Determination of the elasticity coefficients of wood with a goniometric acoustical method”, Comptes Rendus de l’Academie des Sciences – Serie II, vol. 2, no. 93, pp. 91-94, 1981.
  • [8] C. Preziosa, “Method for determining elastic constants of wood material by use of ultrasound”, Ph.D. dissertation, Université d’Orléans, Orléans-France, 1982.
  • [9] T. Dündar, F. Divos, “European Wood NDT & NDE Research and Practical Applications”, Eurasian Journal of Forest Science, vol. 1, no.1, pp. 35-43, 2014.
  • [10] W. Dzbenski, T. Wiktorski, “Ultrasonic evaluation of mechanical properties of wood in standing trees”, in COST E 53 Conference - Quality Control for Wood and Wood Products, Warsaw, Poland, 2007, pp. 21-26.
  • [11] F. Tallavo, G. Cascante, M.D. Pandey, “Estimation of the probability distribution of wave velocity in wood poles”, Journal of Materials in Civil Engineering, vol. 23 no.9, pp. 1272-1280, 2011.
  • [12] F. Tallavo, M.D. Pandey, G. Cascante, “Probabilistic characterization of ultrasonic wave propagation in wood poles”, Canadian Journal of Civil Engineering, vol. 39, no. 4, pp. 484-493, 2012.
  • [13] L. Karlinasari , H. Baihaqi, A. Maddu, T.R., Mardikanto, “The Acoustical Properties of Indonesian Hardwood Species”, Makara Journal of Science, vol. 16, no.2, pp. 110-114, 2012. [14] E. Hermoso, M.J. Montero, M. Esteban, R. Mateo, D.F. Llana, “The classification of large cross section sawn timber in the structural use of Pinus Silvestris L. using NDT together with visual grading”, in 18th Sympo¬sium Nondestructive Testing of Wood, Madison, WI-USA, 2013, pp. 418-424.
  • [15] E. Guntekin, T. Yılmaz Aydın, Niemz, P., “Some orthotropic elastic properties of Fagus orientalis as influenced by moisture content”, Wood Research, vol. 61, no. 6, pp. 993-1002, 2016.
  • [16] T. Dündar, X. Wang, N. As, E. Avcı, “Potential of ultrasonic pulse velocity for evaluating the dimensional stability of oak and chestnut wood”, Ultrasonics, vol. 66, pp. 86-90, 2016.
  • [17] K. Metwally, E. Lefevre, C. Baron, R. Zheng, M. Pithiux, P. Lasaygues, “Measuring mass density and ultrasonic wave velocity: A wavelet-based method applied in ultrasonic reflection mode”, Ultrasonics, vol. 65, pp. 10-17, 2016.
  • [18] L. Karlinasari, N. Indahsuary, H.T. Kusumo, E. Santoso, M. Turjaman, D. Nandika, “Sonic and ultrasonic waves in agarwood trees (Aquilaria microcarpa) inoculated with Fusarium solani”, Journal of Tropical Forest Science, vol. 27, no. 3, pp. 351-356, 2015.
  • [19] C.T. Puccini, R. Gonçalves, M.E.A. Monterio, “Statistical evaluation of the ultrasonic wave velocity variation in defective wood”, Revista Brasileira de Engenharia Agrícola e Ambiental, vol. 6, no. 3, pp. 499-503, 2002.
  • [20] L. Calegari, D.A. Gatto, D.M. Stangerlin, “Influence of moisture content, specific gravity and specimen geometry on the ultrasonic pulse velocity in Eucalyptus grandis Hill ex Maiden wood”, Ciência da Madeira (Brazilian Journal of Wood Science), vol. 2, no. 2, pp. 64-74, 2011.
  • [21] N. Wang, L. Wang, “Response of Ultrasonic Wave Velocity to Wood Structure Defect of Korean Pine”, Advanced Materials and Processes, vol. 311-313, pp. 1609-1613, 2011.
  • [22] C.B. Secco, R. Gonçalves, D.G.P. Cerri, E.C. Vasquez, F.A.F. Batista, “Behavior of ultrasonic waves in wood with presence of holes”, Cerne, Lavras, vol. 18, no. 3, pp. 507-514, 2012.
  • [23] L. Karlinasari, N. Putri, M. Turjaman, I. Wahyudi, D. Nandika, “Moisture content effect on sound wave velocity and acoustic tomograms in agarwood trees (Aquilaria malaccensis Lamk.)”, Turkish Journal of Agriculture and Forestry, vol. 40, pp. 696-704, 2016.
  • [24] H. Yang, L. Yu, L. Wang, “Effect of moisture content on the ultrasonic acoustic properties of wood”, Journal of Forestry Research, vol. 26, no. 3, pp. 753-757, 2015.
  • [25] H. Van Dyk, R.W. Rice, “Ultrasonic wave velocity as a moisture indicator in frozen and unfrozen lumber”, Forest Products Journal, vol.55, no. 6, pp. 68-72, 2005.
  • [26] T.G. Leighton, The acoustic bubble, London, UK: Academic Press, 2012, p. 640.
  • [27] G. Guan, H. Zhang, J.F. Hunt, H. Yan, “Determining shear modulus of thin wood composite materials using a cantilever beam vibration method”, Construction and Building Materials, vol. 121, pp. 285-289, 2016.
  • [28] R. Gonçalves, A.J. Trinca, B.P. Pellis, “Elastic constants of wood determined by ultrasound using three geometries of specimens”, Wood Science and Technology, vol. 48, pp. 269-287, 2014.
  • [29] C. Vázquez, R. Goncalves, C. Bertoldo, V. Bano, A. Vega, J. Crespo, M. Guaita, M., “Determination of the mechanical properties of Castanea sativa Mill. using ultrasonic wave propagation and comparison with static compression and bending methods”, Wood Science and Technology, vol. 49, pp. 607-622, 2015.
  • [30] R. Gonçalves, A.J. Trinca, D.G.P. Cerri, B.P. Pellis, “Elastic constants of wood determined by ultrasound wave propagation”, in 17th Symposium Nondestruc¬tive Testing of Wood, Sopron-Hungary, 2011, pp. 435-441.
  • [31] C. Vázquez, R. Gonçalves, M. Guaita, C. Bertoldo, “Determination of mechanical properties of Castanea Sativa Mill. by ultrasonic wave propagation and comparison with the compression method”, 18th Symposium Nondestructive Testing of Wood, Madison, WI-USA, 2013, pp. 426-433.
  • [32] C.A Senalik, G. Schueneman, R.J. Ross, “Ultrasonic-Based Nondestructive Evaluation Methods for Wood: A Primer and Historical Review”, USDA, FPL, General Technical Report FPL-GTR-235, 2014, pp. 36.
  • [33] E. Baradit, P. Niemz, “Selected physical and mechani¬cal properties of Chilean wood species Tepa, Olivillo, Lau¬rel, Lenga, Alerce and Manio”, 17th Sym¬posium Nondestructive Testing of Wood, Sopron-Hungary, 2011, pp. 395-401.
  • [34] U. Dackermann, R. Elsener, J. Li, K. Crews, “A comparative study of using static and ultrasonic material testing methods to determine the anisotropic material properties of wood”, Construction and Building Materials, vol. 102, pp. 963-976, 2016.
  • [35] F.F.P. Kollmann, E. Kuenzi, A.J. Stamm,, “Particleboard”, in Principles of Wood Science and Technology II Wood Based Materials, USA:Springer-Verlag, 1975, ch. 5, pp. 312-550.
  • [36] Wood-Sampling Methods and General Requirements for Physical and Mechanical Tests, TS2470, Turkish Standards Institution, Ankara, 2005.
  • [37] Wood-Determination of Density for Physical and Mechanical Tests, TS2472, Turkish Standards Institution, Ankara, 2005.
  • [38] Non-destructive testing - Characterization and verification of ultrasonic examination equipment - Part 1: Instruments, EN 12668-1, European Standards, Pilsen, 2010.
  • [39] Wood, Determination of Moisture Content for Physical and Mechanical Tests, TS2471, Turkish Standards Institution, Ankara, 2005.
  • [40] V. Bucur, R.C. Chivers, “Acoustic Properties and Anisotropy of Some Australian Wood Species”, Acoustica, vol. 75, pp. 69-74, 1991.
  • [41] F.G.R. Oliveira, M. Candian, F.F. Lucchette, J. Luis Salgon, A. Sales, “A technical note on the relationship between ultrasonic velocity and moisture content of Brazilian hardwood (Goupia glabra)”, Building and Environment, vol. 40, no. 2, pp. 297-300, 2005.
  • [42] J. Baar, J. Tippner, V. Gryc, “The influence of wood density on longitudinal wave velocity determined by the ultrasound method in comparison to the resonance longitudinal method”, European Journal of Wood and Wood Products, vol. 70, no. 5, pp. 767-769, 2012.
  • [43] R. Brandner, E. Gehri, T. Bogensperger, G. Schickhofer, “Determination of modulus of shear and elasticity of glued laminated timber and related examinations”, in Int. Council for Research and Innovation in Building and Construction Working Commission CIB-W18, Bled- Slovenia, 2007, pp. 40-12-2.
  • [44] F.G.R. Oliveira, A. de Sales, “Relationship between density and ultrasonic velocity in Brazilian tropical woods”, Bioresource Technology, vol. 97, no. 18, pp. 2443-2446, 2006.
  • [45] A. Mishiro, “Effect of density on ultrasonic velocity in wood”, Mokuzai Gakkaishi, vol. 42, no. 9, pp. 887-894, 1996.
  • [46] G.R. Oliveira, J.A.O. de Campos, E. Pletz, A. Sales, “Nondestructive evaluation of wood using ultrasonic technique”, Maderas Ciencia y tecnología, vol. 4, pp. 133-139, 2002.
  • [47] J. Ilic, “Dynamic MOE of 55 species using small wood beams”, Holz als Roh- und Werkstoff, vol. 61, pp. 167-172, 2003.
  • [48] F.T. Teles, C.S. Del Menezzi, F. de Souza, M.R. Souza, “Nondestructive evaluation of a tropical hardwood: Interrelationship between methods and physical-acoustical variables”, Ciência da Madeira, vol. 2, no. 1, pp. 1-14, 2011.
  • [49] R. Gonçalves, C.B. Pedroso, M.V. Massak, “Acoustic and bending properties in Pinus elliottii beams obtained from trees of different ages”, Journal of Wood Science, vol. 59, pp. 127-132, 2013.
  • [50] S. Koponen, T. Toratti, P. Kanerva, “Modelling elastic and shrinkage properties of wood based on cell structure”, Wood Science Technology, vol. 25, pp. 25-32, 1991.
  • [51] E.G. Mason, M. Hayes, N. Pink, “Validation of ultrasonic velocity estimates of wood properties in discs of radiata pine”, New Zealand Journal of Forestry Science, vol. 47, pp. 16, 2017.
  • [52] V. Bucur, “Environmental Modifiers of Wood Structural Parameters Detected with Ultrasonic Waves”, in Acoustics of Wood, USA: Springer Berlin, Heidelberg, 2006, pp. 241-270.
  • [53] F.E. Feeney, R.C. Chivers, J.A. Evertsen, J. Keating, “The influence of inhomogeneity on the propagation of ultrasound in wood”, Ultrasonics, vol. 36, pp. 449-453, 1998.
  • [54] R.F.D. Hearmon, W.W. Barkas, “The effect of grain direction on the Young's moduli and rigidity moduli of beech and sitka spruce”, in Proceedings of the Physical Society, vol. 53, no. 6, pp. 674-680, 1941.
  • [55] J. Bodig, J.R. Goodman, “Prediction of elastic parameters for wood”, Wood Science, vol. 5, pp. 249-264, 1973.
  • [56] A.J. Neumann, “Identification and evaluation of the elastic properties of solid wood depending on the moisture and anisotropy”, M.Sc. Thesis, Dresden Technical University, Dresden, Germany, 1988.
  • [57] M. Brabec, R. Lagana, J. Milch, T. Jan, S. Vaclav, “Utilization of digital image correlation in determining of both longitudinal shear moduli of wood at single torsion test”, Wood Science and Technology, vol.51, pp. 29-45, 2017.
  • [58] P.P. Gillis, “Orthotropic elastic constants of wood”, Wood Science and Technology, vol.6, pp. 138-156, 1972.
  • [59] R.F.S. Hearmon, “The elasticity of wood and plywood. Department of Science and Industry Research”, Forest Products Research Special Report No 7, HMSO, London, 1948.
  • [60] R.J. Ross, Wood Handbook: Wood as an Engineering Material, USA: USDA Forest Products Laboratory, Madison, 2010, p. 509.
  • [61] D. Haines, “On musical instrument wood”, Catgut Acoustical Society Newsletter, vol. 31, no.1, pp. 23-32, 1979.
  • [62] N. Ghelmeziu, I.P. Beldie, “On the characteristics of resonance spruce wood”, Catgut Acoustical Society Newsletter, vol. 17, pp. 10-16, 1972.
  • [63] E. Guntekin, T. Yılmaz Aydın, M. Aydın, “Elastic constants of Calabrian pine and cedar”, in Int. Forestry Symposium, Kastamonu, Türkiye, pp. 645-649, 2016.

Kızılçam (Pinus brutia Ten.) odunu kesme modüllerinin Ultrasonik dalga yayılımı ile tahmini

Year 2018, , 176 - 187, 31.01.2018
https://doi.org/10.29130/dubited.371435

Abstract

Bu çalışmada Kızılçam (Pinus brutia Ten.) odunu kesme modülleri
tahribatsız test yöntemi ile tahmin edilmiştir. Kızılçam tomruklar Beşkonak,
Burdur yöresinden temin edilmiştir ve radyal ve teğet yönlerde kesilerek 65x65x65mm
ölçülerinde 26 yüzeyli tahribatsız test örnekleri hazırlanmıştır. Test
örnekleri 20±1°C sıcaklık ve %65RH’de iklimlendirilmiştir. Kızılçam odunu
ultrasonik ses dalgası hızları sinyal uçuş süresi ile hesaplanmıştır. Bu
süreler Olympus EPOCH 650 ultrasonik hata dedektörü ve Panametrics NDT V153
kesme dalgası transdüserleri kullanılarak elde edilmiştir. Elde edilen kesme
hızları ile kesme modülleri belirlenmiştir. Tahribatsız test örneklerinin
ortalama yoğunluğu ve rutubet içeriği 0,558g/cm3 ve %12,66 olarak
belirlenmiştir. LR, LT ve RT düzlemlerindeki kesme hızları ve modülleri
sırasıyla 1408, 1306 ve 666m/sn ve 1108, 952 ve 248N/mm2 olarak
belirlenmiştir.

References

  • [1] J.T. Drow, R.S. Mcburney, “Elastic Properties of Wood, Young's Moduli and Poisson's Ratios of Douglas-Fir and Their Relations to Moisture Content”, USDA, FPL, Rep. No. 1528-D, 1945.
  • [2] R.S. McBurney, D.V. Doyle, J.T. Drow, “The elastic properties of wood: Young's moduli, Poisson's ratios, and moduli of rigidity of Sweetgum at approximately 11 percent moisture content”, USDA, FPL, Rep. No. 1528-F, G, 1946.
  • [3] U.B. Halabe, H.V.S. GangaRao, C.E. Solomon, “Nondestructive Evaluation of Wood Using Ultrasonic Dry-Coupled Transducers”, in Review of Progress in Quantitative Nondestructive Evaluation, California, vol. 12, USA: Springer-Verlag, 1993, ch. 8, pp. 2251-2256.
  • [4] R.F.S. Hearmon, “The assessment of wood properties by vibrations and high frequency acoustic waves”, in Symposium on nondestructive testing of wood, Washington State Univ., WA-USA, 1965, pp. 49-66.
  • [5] J. Zimmer, J.R. Cost, “Determination of the Elastic Constants of a Unidirectional Fiber Composite Using Ultrasonic Velocity Measurements”, Journal of the Acoustical Society of America, vol. 47, pp. 795-803, 1970.
  • [6] V. Bucur, “Wood failure testing in ultrasonic methods”, in 4th Symposium Nondestructive Testing of Wood, Washington, WA-USA, 1978, pp. 223-226.
  • [7] C. Preziosa, M. Mudry, J. Launay, F. Gilletta, “Determination of the elasticity coefficients of wood with a goniometric acoustical method”, Comptes Rendus de l’Academie des Sciences – Serie II, vol. 2, no. 93, pp. 91-94, 1981.
  • [8] C. Preziosa, “Method for determining elastic constants of wood material by use of ultrasound”, Ph.D. dissertation, Université d’Orléans, Orléans-France, 1982.
  • [9] T. Dündar, F. Divos, “European Wood NDT & NDE Research and Practical Applications”, Eurasian Journal of Forest Science, vol. 1, no.1, pp. 35-43, 2014.
  • [10] W. Dzbenski, T. Wiktorski, “Ultrasonic evaluation of mechanical properties of wood in standing trees”, in COST E 53 Conference - Quality Control for Wood and Wood Products, Warsaw, Poland, 2007, pp. 21-26.
  • [11] F. Tallavo, G. Cascante, M.D. Pandey, “Estimation of the probability distribution of wave velocity in wood poles”, Journal of Materials in Civil Engineering, vol. 23 no.9, pp. 1272-1280, 2011.
  • [12] F. Tallavo, M.D. Pandey, G. Cascante, “Probabilistic characterization of ultrasonic wave propagation in wood poles”, Canadian Journal of Civil Engineering, vol. 39, no. 4, pp. 484-493, 2012.
  • [13] L. Karlinasari , H. Baihaqi, A. Maddu, T.R., Mardikanto, “The Acoustical Properties of Indonesian Hardwood Species”, Makara Journal of Science, vol. 16, no.2, pp. 110-114, 2012. [14] E. Hermoso, M.J. Montero, M. Esteban, R. Mateo, D.F. Llana, “The classification of large cross section sawn timber in the structural use of Pinus Silvestris L. using NDT together with visual grading”, in 18th Sympo¬sium Nondestructive Testing of Wood, Madison, WI-USA, 2013, pp. 418-424.
  • [15] E. Guntekin, T. Yılmaz Aydın, Niemz, P., “Some orthotropic elastic properties of Fagus orientalis as influenced by moisture content”, Wood Research, vol. 61, no. 6, pp. 993-1002, 2016.
  • [16] T. Dündar, X. Wang, N. As, E. Avcı, “Potential of ultrasonic pulse velocity for evaluating the dimensional stability of oak and chestnut wood”, Ultrasonics, vol. 66, pp. 86-90, 2016.
  • [17] K. Metwally, E. Lefevre, C. Baron, R. Zheng, M. Pithiux, P. Lasaygues, “Measuring mass density and ultrasonic wave velocity: A wavelet-based method applied in ultrasonic reflection mode”, Ultrasonics, vol. 65, pp. 10-17, 2016.
  • [18] L. Karlinasari, N. Indahsuary, H.T. Kusumo, E. Santoso, M. Turjaman, D. Nandika, “Sonic and ultrasonic waves in agarwood trees (Aquilaria microcarpa) inoculated with Fusarium solani”, Journal of Tropical Forest Science, vol. 27, no. 3, pp. 351-356, 2015.
  • [19] C.T. Puccini, R. Gonçalves, M.E.A. Monterio, “Statistical evaluation of the ultrasonic wave velocity variation in defective wood”, Revista Brasileira de Engenharia Agrícola e Ambiental, vol. 6, no. 3, pp. 499-503, 2002.
  • [20] L. Calegari, D.A. Gatto, D.M. Stangerlin, “Influence of moisture content, specific gravity and specimen geometry on the ultrasonic pulse velocity in Eucalyptus grandis Hill ex Maiden wood”, Ciência da Madeira (Brazilian Journal of Wood Science), vol. 2, no. 2, pp. 64-74, 2011.
  • [21] N. Wang, L. Wang, “Response of Ultrasonic Wave Velocity to Wood Structure Defect of Korean Pine”, Advanced Materials and Processes, vol. 311-313, pp. 1609-1613, 2011.
  • [22] C.B. Secco, R. Gonçalves, D.G.P. Cerri, E.C. Vasquez, F.A.F. Batista, “Behavior of ultrasonic waves in wood with presence of holes”, Cerne, Lavras, vol. 18, no. 3, pp. 507-514, 2012.
  • [23] L. Karlinasari, N. Putri, M. Turjaman, I. Wahyudi, D. Nandika, “Moisture content effect on sound wave velocity and acoustic tomograms in agarwood trees (Aquilaria malaccensis Lamk.)”, Turkish Journal of Agriculture and Forestry, vol. 40, pp. 696-704, 2016.
  • [24] H. Yang, L. Yu, L. Wang, “Effect of moisture content on the ultrasonic acoustic properties of wood”, Journal of Forestry Research, vol. 26, no. 3, pp. 753-757, 2015.
  • [25] H. Van Dyk, R.W. Rice, “Ultrasonic wave velocity as a moisture indicator in frozen and unfrozen lumber”, Forest Products Journal, vol.55, no. 6, pp. 68-72, 2005.
  • [26] T.G. Leighton, The acoustic bubble, London, UK: Academic Press, 2012, p. 640.
  • [27] G. Guan, H. Zhang, J.F. Hunt, H. Yan, “Determining shear modulus of thin wood composite materials using a cantilever beam vibration method”, Construction and Building Materials, vol. 121, pp. 285-289, 2016.
  • [28] R. Gonçalves, A.J. Trinca, B.P. Pellis, “Elastic constants of wood determined by ultrasound using three geometries of specimens”, Wood Science and Technology, vol. 48, pp. 269-287, 2014.
  • [29] C. Vázquez, R. Goncalves, C. Bertoldo, V. Bano, A. Vega, J. Crespo, M. Guaita, M., “Determination of the mechanical properties of Castanea sativa Mill. using ultrasonic wave propagation and comparison with static compression and bending methods”, Wood Science and Technology, vol. 49, pp. 607-622, 2015.
  • [30] R. Gonçalves, A.J. Trinca, D.G.P. Cerri, B.P. Pellis, “Elastic constants of wood determined by ultrasound wave propagation”, in 17th Symposium Nondestruc¬tive Testing of Wood, Sopron-Hungary, 2011, pp. 435-441.
  • [31] C. Vázquez, R. Gonçalves, M. Guaita, C. Bertoldo, “Determination of mechanical properties of Castanea Sativa Mill. by ultrasonic wave propagation and comparison with the compression method”, 18th Symposium Nondestructive Testing of Wood, Madison, WI-USA, 2013, pp. 426-433.
  • [32] C.A Senalik, G. Schueneman, R.J. Ross, “Ultrasonic-Based Nondestructive Evaluation Methods for Wood: A Primer and Historical Review”, USDA, FPL, General Technical Report FPL-GTR-235, 2014, pp. 36.
  • [33] E. Baradit, P. Niemz, “Selected physical and mechani¬cal properties of Chilean wood species Tepa, Olivillo, Lau¬rel, Lenga, Alerce and Manio”, 17th Sym¬posium Nondestructive Testing of Wood, Sopron-Hungary, 2011, pp. 395-401.
  • [34] U. Dackermann, R. Elsener, J. Li, K. Crews, “A comparative study of using static and ultrasonic material testing methods to determine the anisotropic material properties of wood”, Construction and Building Materials, vol. 102, pp. 963-976, 2016.
  • [35] F.F.P. Kollmann, E. Kuenzi, A.J. Stamm,, “Particleboard”, in Principles of Wood Science and Technology II Wood Based Materials, USA:Springer-Verlag, 1975, ch. 5, pp. 312-550.
  • [36] Wood-Sampling Methods and General Requirements for Physical and Mechanical Tests, TS2470, Turkish Standards Institution, Ankara, 2005.
  • [37] Wood-Determination of Density for Physical and Mechanical Tests, TS2472, Turkish Standards Institution, Ankara, 2005.
  • [38] Non-destructive testing - Characterization and verification of ultrasonic examination equipment - Part 1: Instruments, EN 12668-1, European Standards, Pilsen, 2010.
  • [39] Wood, Determination of Moisture Content for Physical and Mechanical Tests, TS2471, Turkish Standards Institution, Ankara, 2005.
  • [40] V. Bucur, R.C. Chivers, “Acoustic Properties and Anisotropy of Some Australian Wood Species”, Acoustica, vol. 75, pp. 69-74, 1991.
  • [41] F.G.R. Oliveira, M. Candian, F.F. Lucchette, J. Luis Salgon, A. Sales, “A technical note on the relationship between ultrasonic velocity and moisture content of Brazilian hardwood (Goupia glabra)”, Building and Environment, vol. 40, no. 2, pp. 297-300, 2005.
  • [42] J. Baar, J. Tippner, V. Gryc, “The influence of wood density on longitudinal wave velocity determined by the ultrasound method in comparison to the resonance longitudinal method”, European Journal of Wood and Wood Products, vol. 70, no. 5, pp. 767-769, 2012.
  • [43] R. Brandner, E. Gehri, T. Bogensperger, G. Schickhofer, “Determination of modulus of shear and elasticity of glued laminated timber and related examinations”, in Int. Council for Research and Innovation in Building and Construction Working Commission CIB-W18, Bled- Slovenia, 2007, pp. 40-12-2.
  • [44] F.G.R. Oliveira, A. de Sales, “Relationship between density and ultrasonic velocity in Brazilian tropical woods”, Bioresource Technology, vol. 97, no. 18, pp. 2443-2446, 2006.
  • [45] A. Mishiro, “Effect of density on ultrasonic velocity in wood”, Mokuzai Gakkaishi, vol. 42, no. 9, pp. 887-894, 1996.
  • [46] G.R. Oliveira, J.A.O. de Campos, E. Pletz, A. Sales, “Nondestructive evaluation of wood using ultrasonic technique”, Maderas Ciencia y tecnología, vol. 4, pp. 133-139, 2002.
  • [47] J. Ilic, “Dynamic MOE of 55 species using small wood beams”, Holz als Roh- und Werkstoff, vol. 61, pp. 167-172, 2003.
  • [48] F.T. Teles, C.S. Del Menezzi, F. de Souza, M.R. Souza, “Nondestructive evaluation of a tropical hardwood: Interrelationship between methods and physical-acoustical variables”, Ciência da Madeira, vol. 2, no. 1, pp. 1-14, 2011.
  • [49] R. Gonçalves, C.B. Pedroso, M.V. Massak, “Acoustic and bending properties in Pinus elliottii beams obtained from trees of different ages”, Journal of Wood Science, vol. 59, pp. 127-132, 2013.
  • [50] S. Koponen, T. Toratti, P. Kanerva, “Modelling elastic and shrinkage properties of wood based on cell structure”, Wood Science Technology, vol. 25, pp. 25-32, 1991.
  • [51] E.G. Mason, M. Hayes, N. Pink, “Validation of ultrasonic velocity estimates of wood properties in discs of radiata pine”, New Zealand Journal of Forestry Science, vol. 47, pp. 16, 2017.
  • [52] V. Bucur, “Environmental Modifiers of Wood Structural Parameters Detected with Ultrasonic Waves”, in Acoustics of Wood, USA: Springer Berlin, Heidelberg, 2006, pp. 241-270.
  • [53] F.E. Feeney, R.C. Chivers, J.A. Evertsen, J. Keating, “The influence of inhomogeneity on the propagation of ultrasound in wood”, Ultrasonics, vol. 36, pp. 449-453, 1998.
  • [54] R.F.D. Hearmon, W.W. Barkas, “The effect of grain direction on the Young's moduli and rigidity moduli of beech and sitka spruce”, in Proceedings of the Physical Society, vol. 53, no. 6, pp. 674-680, 1941.
  • [55] J. Bodig, J.R. Goodman, “Prediction of elastic parameters for wood”, Wood Science, vol. 5, pp. 249-264, 1973.
  • [56] A.J. Neumann, “Identification and evaluation of the elastic properties of solid wood depending on the moisture and anisotropy”, M.Sc. Thesis, Dresden Technical University, Dresden, Germany, 1988.
  • [57] M. Brabec, R. Lagana, J. Milch, T. Jan, S. Vaclav, “Utilization of digital image correlation in determining of both longitudinal shear moduli of wood at single torsion test”, Wood Science and Technology, vol.51, pp. 29-45, 2017.
  • [58] P.P. Gillis, “Orthotropic elastic constants of wood”, Wood Science and Technology, vol.6, pp. 138-156, 1972.
  • [59] R.F.S. Hearmon, “The elasticity of wood and plywood. Department of Science and Industry Research”, Forest Products Research Special Report No 7, HMSO, London, 1948.
  • [60] R.J. Ross, Wood Handbook: Wood as an Engineering Material, USA: USDA Forest Products Laboratory, Madison, 2010, p. 509.
  • [61] D. Haines, “On musical instrument wood”, Catgut Acoustical Society Newsletter, vol. 31, no.1, pp. 23-32, 1979.
  • [62] N. Ghelmeziu, I.P. Beldie, “On the characteristics of resonance spruce wood”, Catgut Acoustical Society Newsletter, vol. 17, pp. 10-16, 1972.
  • [63] E. Guntekin, T. Yılmaz Aydın, M. Aydın, “Elastic constants of Calabrian pine and cedar”, in Int. Forestry Symposium, Kastamonu, Türkiye, pp. 645-649, 2016.
There are 62 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Murat Aydın

Hasan Hüseyin Ciritcioğlu

Publication Date January 31, 2018
Published in Issue Year 2018

Cite

APA Aydın, M., & Ciritcioğlu, H. H. (2018). Shear Moduli Prediction of Calabria Pine (Pinus brutia Ten.) using Ultrasonic Wave Propagation. Duzce University Journal of Science and Technology, 6(1), 176-187. https://doi.org/10.29130/dubited.371435
AMA Aydın M, Ciritcioğlu HH. Shear Moduli Prediction of Calabria Pine (Pinus brutia Ten.) using Ultrasonic Wave Propagation. DÜBİTED. January 2018;6(1):176-187. doi:10.29130/dubited.371435
Chicago Aydın, Murat, and Hasan Hüseyin Ciritcioğlu. “Shear Moduli Prediction of Calabria Pine (Pinus Brutia Ten.) Using Ultrasonic Wave Propagation”. Duzce University Journal of Science and Technology 6, no. 1 (January 2018): 176-87. https://doi.org/10.29130/dubited.371435.
EndNote Aydın M, Ciritcioğlu HH (January 1, 2018) Shear Moduli Prediction of Calabria Pine (Pinus brutia Ten.) using Ultrasonic Wave Propagation. Duzce University Journal of Science and Technology 6 1 176–187.
IEEE M. Aydın and H. H. Ciritcioğlu, “Shear Moduli Prediction of Calabria Pine (Pinus brutia Ten.) using Ultrasonic Wave Propagation”, DÜBİTED, vol. 6, no. 1, pp. 176–187, 2018, doi: 10.29130/dubited.371435.
ISNAD Aydın, Murat - Ciritcioğlu, Hasan Hüseyin. “Shear Moduli Prediction of Calabria Pine (Pinus Brutia Ten.) Using Ultrasonic Wave Propagation”. Duzce University Journal of Science and Technology 6/1 (January 2018), 176-187. https://doi.org/10.29130/dubited.371435.
JAMA Aydın M, Ciritcioğlu HH. Shear Moduli Prediction of Calabria Pine (Pinus brutia Ten.) using Ultrasonic Wave Propagation. DÜBİTED. 2018;6:176–187.
MLA Aydın, Murat and Hasan Hüseyin Ciritcioğlu. “Shear Moduli Prediction of Calabria Pine (Pinus Brutia Ten.) Using Ultrasonic Wave Propagation”. Duzce University Journal of Science and Technology, vol. 6, no. 1, 2018, pp. 176-87, doi:10.29130/dubited.371435.
Vancouver Aydın M, Ciritcioğlu HH. Shear Moduli Prediction of Calabria Pine (Pinus brutia Ten.) using Ultrasonic Wave Propagation. DÜBİTED. 2018;6(1):176-87.