Research Article
BibTex RIS Cite

Kimyasal ve Yüzey Modifikasyon İşlemlerinin Polyester Kumaşların Mekanik ve Kimyasal Özelliklerine Etkileri

Year 2018, , 1344 - 1353, 01.08.2018
https://doi.org/10.29130/dubited.423516

Abstract



Polyester kumaşların alkali ortamda işlem görmesi kumaşların
yumuşak tutum, hidrofilik karakter kazanması, dökümlü bir kumaş haline gelmesi
gibi istenen özelliklere sahip olmasını sağlayan alışılmış bir uygulamadır.
Fakat yapılan bu kimyasal modifikasyon işleminin parametreleri optimize
edilmediğinde, polyester kumaşların mekanik mukavemetlerinde ciddi düşüşler
görülebilmektedir. Bu çalışmada, düşük sıcaklıkta yapılan (<50
0C)  plazma aplikasyonu ile yüzey modifikasyon
işlemi; polyester kumaşların kimyasal modifikasyon işlemlerine bir alternatif
olarak kullanılmıştır ve her iki modifikasyon işleminin polyester kumaşların
mekanik ve kimyasal özelliklerine olan etkileri incelenmiştir. Süre ve
konsantrasyon gibi kimyasal modifikasyon işleminin parametreleri
çeşitlendirilirken, yüzey modifikasyon işleminde kumaşlar farklı plazma işlem
sürelerine tabi tutulmuştur. Her iki modifikasyondan sonra, polyester
kumaşların mekanik özellikleri, hidrofilite değerleri ve ağırlık kayıpları gibi
performans değerleri incelenmiş, taramalı elektron mikroskobu (SEM) görüntüleri
alınmıştır. Test sonuçlarına göre; kimyasal modifikasyondan sonra kumaşlarda
oluşan ağırlık kaybı plazma işlemi ile yapılan yüzey modifikasyonu işlemine
oranla daha fazla olmuştur. Bu çalışmada, özellikle yüksek konsantrasyonda
yapılan alkali işleme göre; polyester kumaşlara uygulanan yüzey modifikasyon
işleminin pek çok avantajı görülmüştür. Fonksiyonelleştirilmiş bu polyester
kumaşların üç boyutlu baskı uygulamalarında polimer aktarılmadan önce
alternatif bir platform olarak kullanılabileceği düşünülmüştür.




References

  • [1] D. Jayshree, R. Kumar, and H. C. Srivastava, “Studies on Modification of Polyester Fabrics I: Alkaline Hydrolysis,” Journal of Applied Polymer Science, 33.2, 455-477, 1987.
  • [2] B. Tina, et al., "Enzymatic and Chemical Hydrolysis of Poly(ethylene terephthalate) Fabrics,” Journal of Polymer Science Part A: Polymer Chemistry, 46.19, 6435-6443, 2008.
  • [3] W. Zhaohui and Z. Gu., “A Study of One‐Bath Alkali–Amine Hydrolysis and Silk‐Fibroin Finishing of Polyester Microfiber Crepe Fabric,” Journal of Applied Polymer Science, 81.6, 1467-1473, 2001.
  • [4] K. M. Haghighat and M. Nouri, “Effects of sodium hydroxide and calcium hydroxide on polyester fabrics,” Journal of Applied Polymer Science, 72.5, 631-637, 1999.
  • [5] H. You-Lo, and L. A. Cram, “Enzymatic Hydrolysis to Improve Wetting and Absorbency of Polyester Fabrics,” Textile Research Journal 68.5, 311-319, 1998.
  • [6] H. R. Kim and W. Soon Song, “Lipase Treatment of Polyester Fabrics,” Fibers and Polymers,7.4, 339-343, 2006. [7] M. Alisch-Mark, A. Herrmann, and W. Zimmermann, “Increase Of The Hydrophilicity Of Polyethylene Terephthalate Fibres by Hydrolases from Thermomonospora fusca and Fusarium solani f. sp. pisi.,” Biotechnology letters, 28.10, 681-685, 2006.
  • [8] A. Bendak and S. M. El-Marsafi, “Effects of Chemical Modifications on Polyester Fibres,” Journal of Islamic Academy of Sciences, 4.4,275-284,1991.
  • [9] S. Heumann, et al. “New Model Substrates for Enzymes Hydrolysing Polyethyleneterephthalate and Polyamide Fibres,” Journal of Biochemical and Biophysical Methods, 69.1-2, 89-99, 2006.[10] S. R. Shukla and M. R. Mathur, “Action of Alkali on Polybutylene Terephthalate and Polyethylene Terephthalate Polyesters,” Journal of Applied Polymer Science, 75.9, 1097-1102, 2000.[11] M. Montazer and A. Sadighi, “Optimization Of The Hot Alkali Treatment of Polyester/Cotton Fabric with Sodium Hydrosulfite,” Journal of Applied Polymer Science, 100.6, 5049-5055, 2006.[12] S. H. Zeronian and M. J. Collins, “Surface Modification of Polyester by Alkaline Treatments”. Textile Progress, 20.2, 1-26,1989.[13] R. T. Shet, et al., “Modification of Polyester and Polyester/Cotton by Alkali Treatment,” Textile Chemist & Colorist, 14.1,1982. [14] C. E. Kyung, et al., “NF Process for The Recovery of Caustic Soda and Concentration of Disodium Terephthalate from Alkaline Wastewater from Polyester Fabrics,” Desalination,186.1-3, 29-37, 2005.
  • [15] H. R. Kim and W. S. Song, “Optimization of Enzymatic Treatment of Polyester Fabrics by Lipase from Porcine Pancreas,” Fibers and Polymers, 9.4, 423-430, 2008. [16] S. E. Shalaby, N. G. Al-Balakocy and S. M. A. B. O. El-ola, “Alkaline Treatment of Polyethylene Glycol Modified Poly(Ethylene Terephthalate) Fabrics,” Journal of the Textile Association, 31, 2007. [17] S. Natarajan and J. Jeyakodi Moses, “Surface modification of polyester fabric using polyvinyl alcohol in alkaline medium,” Indian Journal of Fibre & Textile Research,V.37, 287-291, 2012.[18] S. Perincek, et al., “Design Parameter Investigation of Industrial Size Ultrasound Textile Treatment Bath,” Ultrasonics Sonochemistry ,16.1,184-189, 2009[19] P. Bajaj, “Finishing of Textile Materials,” Journal of Applied Polymer Science, 83.3, 631-659, 2002. [20] T. H. C. Costa, et al. "Effects of Gas Composition During Plasma Modification of Polyester Fabrics." Journal of Materials Processing Technology ,173.1, 40-43, 2006.
  • [21] R. Rajendra, N. Deshmukh and V. Bhat, “The Mechanism of Adhesion and Printability of Plasma Processed PET Films,” Mat Res Innovat, 7.5, 283–290, 2003.
  • [22] K. Qi, JH .Xin and WA. Daoud, “Functionalizing Polyester Fiber with A Self-Cleaning Property Using Anatase TiO2 and Low-Temperature Plasma Treatment” Int J Appl Ceram Technology, 4.6, 554–563, 2007.
  • [23] C.J. Jahagirdar and L.B. Tiwari, “Study of Plasma Polymerization of Dichloromethane on Cotton and Polyester Fabrics,”J Appl Poly Sci, 94.5, 2014–2021, 2004.
  • [24] C. Riccardi et al., “Surface modification of poly(ethylene terephthalate) fibers induced by radio frequency air plasma treatment”. Appl Surface Sci,; 211.1–4, 386–397, 2003.
  • [25] F. Ferrero, “Wettability Measurements on Plasma Treated Synthetic Fabrics by Capillary Rise Method,”. Poly Test., 22.5,571–578, 2003.[26] M. Lehocky and A. Mracek, “Improvement of Dye Adsorption on Synthetic Polyester Fibers by Low Temperature Plasma Pre-Treatment” J Phys,; 56.2,1277–1282, 2006.
  • [27] A. Vesel, et al. "Surface Modification of Polyester by Oxygen and Nitrogen‐Plasma Treatment." Surface and interface analysis, 40.11,1444-1453, 2008.
  • [28] Shishoo R. “Plasma technologies for textiles”. Cambridge: Woodhead Publishers, 2007.
  • [29] R. H. Sanatgar, C. Campagne and V. Nierstrasz. “Investigation of the Adhesion Properties of Direct 3d Printing of Polymers and Nanocomposites on Textiles: Effect of FDM Printing Process Parameters,”Applied Surface Science, 403, 551-563, 2017.
  • [30] S. J. Leighet et al., “A Simple, Low-Cost Conductive Composite Material For 3D Printing of Electronic Sensors” PloS one, 7.11, 2012.
  • [31] H. Seyednejad, et al., “Preparation and Characterization of a Three-Dimensional Printed Scaffold Based on a Functionalized Polyester for Bone Tissue Engineering Applications,” Acta Biomaterialia ,7.5, 1999-2006, 2011.
  • [32] X. Li, et al., “3D-printed Biopolymers for Tissue Engineering Application,” International Journal of Polymer Science, 2014.
  • [33] S. R. Govindarajan, et al., “A Solvent and Initiator Free, Low-Modulus, Degradable Polyester Platform with Modular Functionality for Ambient-Temperature 3D Printing,” Macromolecules, 49.7, 2429-2437, 2016.
  • [34] F. AMM. Gonçalves, et al., “3D Printing of New Biobased Unsaturated Polyesters by Microstereo-Thermal-Lithography,” Biofabrication, 6.3, 035024, 2014.
  • [35] M. Korger, et al., “Possible Applications of 3d Printing Technology on Textile Substrates,” IOP Conference Series: Materials Science and Engineering. Vol. 141. No. 1. IOP Publishing, 2016.
  • [36] L. Sabantina, et al., “Combining 3D Printed Forms With Textile Structures-Mechanical and Geometrical Properties Of Multi-Material Systems,” IOP Conference Series: Materials Science and Engineering. Vol. 87. No. 1. IOP Publishing, 2015.
  • [37] R. Melnikova, A. Ehrmann, and K. Finsterbusch, “3D Printing of Textile-Based Structures by Fused Deposition Modelling (FDM) with Different Polymer Materials”. IOP Conference Series: Materials Science and Engineering. Vol. 62. No. 1. IOP Publishing, 2014.
  • [38] H. A. Çetindağ, Toktaş İ. and M. T. ÖZKAN. "3 Boyutlu Baskısı Yapılacak Ankastre Kirişlerin Eşit Miktarda Filament Kullanımı İle Eğilme Mukavemetine Göre Kesit Geometrisi Optimizasyonu." Duzce University Journal of Science & Technology, Volume 5, Issue 2, 466-476, 2017.
  • [39] B. Çotur, and Sezer. H. K., "Current 3 Dimensional Printing Technologies Used in Scaffold Design in Tissue Engineering, " Duzce University Journal of Science & Technology, Volume 5, 548-564, 2017.
  • [40] K. Çelik, and A. Özkan, "Eklemeli İmalat Yöntemleri İle Üretim ve Onarım Uygulamaları" Duzce University Journal of Science & Technology, Volume 5, 107-121, 2017.

Effects of Chemical and Surface Modification on Mechanical and Chemical Properties of Polyester Fabrics

Year 2018, , 1344 - 1353, 01.08.2018
https://doi.org/10.29130/dubited.423516

Abstract



The treatment of polyester fabric in alkali medium is
a common chemical modification process for producing a fabric with desirable
qualities such as soft cloth, fabric regain, water absorbency, and fabric
pilling with draping. However, if the optimization of the chemical treatment
was not maintained, there could be serious decrease in mechanical strength of
polyester fabrics. In this study, surface modification via low-temperature
plasma application (<50 0C) were used as an alternative to
chemical modification of polyester fabrics with alkaline treatment and the
effects of both chemical and surface modification on mechanical and chemical
properties of polyester fabrics were investigated.  Parameters of chemical modification such as
exposure time and concentration of alkali were varied while different exposure
time was used in plasma application as a surface modification treatment.
Performance tests such as mechanical strength, loss of weight and
hydrophilicity of polyester fabrics were tested after each modification.
Scanning electron microscope (SEM) micrographs were characterized as well.
According to the test results; loss of weight of polyester fabrics after
chemical modification was more than occurred right after surface modification.
Advantages of surface modification on polyester fabrics were clearly seen in
this study, especially when compared to high concentration alkali treatment. It
was also considered that these functionalized polyester fabrics could be used
as an alternative platform for 3DP (three-dimentional printing) applications
before deposition of the
polymers.




References

  • [1] D. Jayshree, R. Kumar, and H. C. Srivastava, “Studies on Modification of Polyester Fabrics I: Alkaline Hydrolysis,” Journal of Applied Polymer Science, 33.2, 455-477, 1987.
  • [2] B. Tina, et al., "Enzymatic and Chemical Hydrolysis of Poly(ethylene terephthalate) Fabrics,” Journal of Polymer Science Part A: Polymer Chemistry, 46.19, 6435-6443, 2008.
  • [3] W. Zhaohui and Z. Gu., “A Study of One‐Bath Alkali–Amine Hydrolysis and Silk‐Fibroin Finishing of Polyester Microfiber Crepe Fabric,” Journal of Applied Polymer Science, 81.6, 1467-1473, 2001.
  • [4] K. M. Haghighat and M. Nouri, “Effects of sodium hydroxide and calcium hydroxide on polyester fabrics,” Journal of Applied Polymer Science, 72.5, 631-637, 1999.
  • [5] H. You-Lo, and L. A. Cram, “Enzymatic Hydrolysis to Improve Wetting and Absorbency of Polyester Fabrics,” Textile Research Journal 68.5, 311-319, 1998.
  • [6] H. R. Kim and W. Soon Song, “Lipase Treatment of Polyester Fabrics,” Fibers and Polymers,7.4, 339-343, 2006. [7] M. Alisch-Mark, A. Herrmann, and W. Zimmermann, “Increase Of The Hydrophilicity Of Polyethylene Terephthalate Fibres by Hydrolases from Thermomonospora fusca and Fusarium solani f. sp. pisi.,” Biotechnology letters, 28.10, 681-685, 2006.
  • [8] A. Bendak and S. M. El-Marsafi, “Effects of Chemical Modifications on Polyester Fibres,” Journal of Islamic Academy of Sciences, 4.4,275-284,1991.
  • [9] S. Heumann, et al. “New Model Substrates for Enzymes Hydrolysing Polyethyleneterephthalate and Polyamide Fibres,” Journal of Biochemical and Biophysical Methods, 69.1-2, 89-99, 2006.[10] S. R. Shukla and M. R. Mathur, “Action of Alkali on Polybutylene Terephthalate and Polyethylene Terephthalate Polyesters,” Journal of Applied Polymer Science, 75.9, 1097-1102, 2000.[11] M. Montazer and A. Sadighi, “Optimization Of The Hot Alkali Treatment of Polyester/Cotton Fabric with Sodium Hydrosulfite,” Journal of Applied Polymer Science, 100.6, 5049-5055, 2006.[12] S. H. Zeronian and M. J. Collins, “Surface Modification of Polyester by Alkaline Treatments”. Textile Progress, 20.2, 1-26,1989.[13] R. T. Shet, et al., “Modification of Polyester and Polyester/Cotton by Alkali Treatment,” Textile Chemist & Colorist, 14.1,1982. [14] C. E. Kyung, et al., “NF Process for The Recovery of Caustic Soda and Concentration of Disodium Terephthalate from Alkaline Wastewater from Polyester Fabrics,” Desalination,186.1-3, 29-37, 2005.
  • [15] H. R. Kim and W. S. Song, “Optimization of Enzymatic Treatment of Polyester Fabrics by Lipase from Porcine Pancreas,” Fibers and Polymers, 9.4, 423-430, 2008. [16] S. E. Shalaby, N. G. Al-Balakocy and S. M. A. B. O. El-ola, “Alkaline Treatment of Polyethylene Glycol Modified Poly(Ethylene Terephthalate) Fabrics,” Journal of the Textile Association, 31, 2007. [17] S. Natarajan and J. Jeyakodi Moses, “Surface modification of polyester fabric using polyvinyl alcohol in alkaline medium,” Indian Journal of Fibre & Textile Research,V.37, 287-291, 2012.[18] S. Perincek, et al., “Design Parameter Investigation of Industrial Size Ultrasound Textile Treatment Bath,” Ultrasonics Sonochemistry ,16.1,184-189, 2009[19] P. Bajaj, “Finishing of Textile Materials,” Journal of Applied Polymer Science, 83.3, 631-659, 2002. [20] T. H. C. Costa, et al. "Effects of Gas Composition During Plasma Modification of Polyester Fabrics." Journal of Materials Processing Technology ,173.1, 40-43, 2006.
  • [21] R. Rajendra, N. Deshmukh and V. Bhat, “The Mechanism of Adhesion and Printability of Plasma Processed PET Films,” Mat Res Innovat, 7.5, 283–290, 2003.
  • [22] K. Qi, JH .Xin and WA. Daoud, “Functionalizing Polyester Fiber with A Self-Cleaning Property Using Anatase TiO2 and Low-Temperature Plasma Treatment” Int J Appl Ceram Technology, 4.6, 554–563, 2007.
  • [23] C.J. Jahagirdar and L.B. Tiwari, “Study of Plasma Polymerization of Dichloromethane on Cotton and Polyester Fabrics,”J Appl Poly Sci, 94.5, 2014–2021, 2004.
  • [24] C. Riccardi et al., “Surface modification of poly(ethylene terephthalate) fibers induced by radio frequency air plasma treatment”. Appl Surface Sci,; 211.1–4, 386–397, 2003.
  • [25] F. Ferrero, “Wettability Measurements on Plasma Treated Synthetic Fabrics by Capillary Rise Method,”. Poly Test., 22.5,571–578, 2003.[26] M. Lehocky and A. Mracek, “Improvement of Dye Adsorption on Synthetic Polyester Fibers by Low Temperature Plasma Pre-Treatment” J Phys,; 56.2,1277–1282, 2006.
  • [27] A. Vesel, et al. "Surface Modification of Polyester by Oxygen and Nitrogen‐Plasma Treatment." Surface and interface analysis, 40.11,1444-1453, 2008.
  • [28] Shishoo R. “Plasma technologies for textiles”. Cambridge: Woodhead Publishers, 2007.
  • [29] R. H. Sanatgar, C. Campagne and V. Nierstrasz. “Investigation of the Adhesion Properties of Direct 3d Printing of Polymers and Nanocomposites on Textiles: Effect of FDM Printing Process Parameters,”Applied Surface Science, 403, 551-563, 2017.
  • [30] S. J. Leighet et al., “A Simple, Low-Cost Conductive Composite Material For 3D Printing of Electronic Sensors” PloS one, 7.11, 2012.
  • [31] H. Seyednejad, et al., “Preparation and Characterization of a Three-Dimensional Printed Scaffold Based on a Functionalized Polyester for Bone Tissue Engineering Applications,” Acta Biomaterialia ,7.5, 1999-2006, 2011.
  • [32] X. Li, et al., “3D-printed Biopolymers for Tissue Engineering Application,” International Journal of Polymer Science, 2014.
  • [33] S. R. Govindarajan, et al., “A Solvent and Initiator Free, Low-Modulus, Degradable Polyester Platform with Modular Functionality for Ambient-Temperature 3D Printing,” Macromolecules, 49.7, 2429-2437, 2016.
  • [34] F. AMM. Gonçalves, et al., “3D Printing of New Biobased Unsaturated Polyesters by Microstereo-Thermal-Lithography,” Biofabrication, 6.3, 035024, 2014.
  • [35] M. Korger, et al., “Possible Applications of 3d Printing Technology on Textile Substrates,” IOP Conference Series: Materials Science and Engineering. Vol. 141. No. 1. IOP Publishing, 2016.
  • [36] L. Sabantina, et al., “Combining 3D Printed Forms With Textile Structures-Mechanical and Geometrical Properties Of Multi-Material Systems,” IOP Conference Series: Materials Science and Engineering. Vol. 87. No. 1. IOP Publishing, 2015.
  • [37] R. Melnikova, A. Ehrmann, and K. Finsterbusch, “3D Printing of Textile-Based Structures by Fused Deposition Modelling (FDM) with Different Polymer Materials”. IOP Conference Series: Materials Science and Engineering. Vol. 62. No. 1. IOP Publishing, 2014.
  • [38] H. A. Çetindağ, Toktaş İ. and M. T. ÖZKAN. "3 Boyutlu Baskısı Yapılacak Ankastre Kirişlerin Eşit Miktarda Filament Kullanımı İle Eğilme Mukavemetine Göre Kesit Geometrisi Optimizasyonu." Duzce University Journal of Science & Technology, Volume 5, Issue 2, 466-476, 2017.
  • [39] B. Çotur, and Sezer. H. K., "Current 3 Dimensional Printing Technologies Used in Scaffold Design in Tissue Engineering, " Duzce University Journal of Science & Technology, Volume 5, 548-564, 2017.
  • [40] K. Çelik, and A. Özkan, "Eklemeli İmalat Yöntemleri İle Üretim ve Onarım Uygulamaları" Duzce University Journal of Science & Technology, Volume 5, 107-121, 2017.
There are 28 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Zeynep Ömeroğulları Başyiğit

Publication Date August 1, 2018
Published in Issue Year 2018

Cite

APA Ömeroğulları Başyiğit, Z. (2018). Effects of Chemical and Surface Modification on Mechanical and Chemical Properties of Polyester Fabrics. Duzce University Journal of Science and Technology, 6(4), 1344-1353. https://doi.org/10.29130/dubited.423516
AMA Ömeroğulları Başyiğit Z. Effects of Chemical and Surface Modification on Mechanical and Chemical Properties of Polyester Fabrics. DÜBİTED. August 2018;6(4):1344-1353. doi:10.29130/dubited.423516
Chicago Ömeroğulları Başyiğit, Zeynep. “Effects of Chemical and Surface Modification on Mechanical and Chemical Properties of Polyester Fabrics”. Duzce University Journal of Science and Technology 6, no. 4 (August 2018): 1344-53. https://doi.org/10.29130/dubited.423516.
EndNote Ömeroğulları Başyiğit Z (August 1, 2018) Effects of Chemical and Surface Modification on Mechanical and Chemical Properties of Polyester Fabrics. Duzce University Journal of Science and Technology 6 4 1344–1353.
IEEE Z. Ömeroğulları Başyiğit, “Effects of Chemical and Surface Modification on Mechanical and Chemical Properties of Polyester Fabrics”, DÜBİTED, vol. 6, no. 4, pp. 1344–1353, 2018, doi: 10.29130/dubited.423516.
ISNAD Ömeroğulları Başyiğit, Zeynep. “Effects of Chemical and Surface Modification on Mechanical and Chemical Properties of Polyester Fabrics”. Duzce University Journal of Science and Technology 6/4 (August 2018), 1344-1353. https://doi.org/10.29130/dubited.423516.
JAMA Ömeroğulları Başyiğit Z. Effects of Chemical and Surface Modification on Mechanical and Chemical Properties of Polyester Fabrics. DÜBİTED. 2018;6:1344–1353.
MLA Ömeroğulları Başyiğit, Zeynep. “Effects of Chemical and Surface Modification on Mechanical and Chemical Properties of Polyester Fabrics”. Duzce University Journal of Science and Technology, vol. 6, no. 4, 2018, pp. 1344-53, doi:10.29130/dubited.423516.
Vancouver Ömeroğulları Başyiğit Z. Effects of Chemical and Surface Modification on Mechanical and Chemical Properties of Polyester Fabrics. DÜBİTED. 2018;6(4):1344-53.