Research Article
BibTex RIS Cite

The Investigation on The Effects of Different Temperature Types on Concrete Containing Expanded Perlite Aggregate

Year 2019, , 302 - 313, 31.01.2019
https://doi.org/10.29130/dubited.437472

Abstract

This study was carried out to investigate the effect of high temperature by using fire and oven on the physical and
mechanical properties of three different concrete classes that are C16/20, C20/25 and C40/50 also, concrete
samples are manufactured as containing expanded perlite aggregate (EPA) and not containing perlite aggregate.
The reference temperatures are specified as 22 ºC, 100 ºC, 300 ºC, 500 ºC in the oven and the case of fire. These
temperatures are applied to a sample having 100x100x100 mm3 dimensions. The tests made on each concrete type
are weight per unit volume, compressive strength, and ultrasonic pulse velocity. Consequently, the test results
come out statistically different of the concrete samples affected by high temperature according to if the heat is
applied by the oven or fire, the compressive strength of the samples decreases as the high-temperature degree
increases in a compressive strength test. Besides that, while the loss of compressive strength of oven samples at
500 ºC comes out approximately 60 %, for samples applied fire is approximately 10%.

References

  • [1] T. Erdoğan, Beton , Ankara, Türkiye: Geliştirme Vakfı Yayınları, 2003.
  • [2] O. Arioz “Effects of elevated temperatures on properties of concrete”. Fire Safety Journal. vol.42, pp.516-522, 2007.
  • [3] B. Luccioni, M. Figueroa and R. Danesi “Thermo-mechanic model for concrete exposed to elevated temperatures”, Engineering Structures. vol.25, pp.729-742, 2003.
  • [4] Z. P. Bažant, M. F. Kaplan and Z. P. Bazant, Concrete at high temperatures: material properties and mathematical models, London, UK: Addison-Wesley.1996.
  • [5] J. Xiao adn G. König, “Study on concrete at high temperature in China-an overview”, Fire Safety Journal, vol.39, pp.89-103, 2004.
  • [6] I. Janotka and T.Nürnbergerová, “Effect of temperature on structural quality of the cement paste and high-strength concrete with silica fume,” Nuclear Engineering and Design, vol.235, pp. 32, 2005.
  • [7] M. Akman, “Betonarme Yapılarda Yangın Hasarı ve Yangın Sonunda Taşıyıcılığın Belirlenmesi”. Sika Teknik Bülten, İstanbul, Türkiye. 2001.
  • [8] M. Riley, “Possible new method for the assessment of fire–damaged concrete”, Magazine of Concrete Research, vol.43. pp.87-92, 1991.
  • [9] C. Alonso, C. Andrade, M. Castellote and G. Khoury “Microstructure–Solid Phases. Course on Effect of Heat on Concrete”, International Centre for Mechanical Sciences (CISM), 2003, pp.9-13.
  • [10] C. Gülce “Farklı çimentolarla üretilen harçların yüksek sıcaklık ve değişik soğutma koşulları altındaki özelikleri,” Yükseklisans tezi, İnşaat Mühendisliği bölümü, Eskişehir Osmangazi Üniversitesi, Eskişehir, Türkiye 2009.
  • [11] H. Doğan ve F. Şener, “Hafif Yapı Malzemeleri (Pomza, Perlit, Ytong, Gazbeton) Kullanımının Yaygınlaştırılmasına Yönelik Sonuç ve Öneriler”. TMMOB Jeoloji Mühendisleri Odası Haber Bülteni, pp. 51-53, 2004.
  • [12] T. Drzymała, W. Jackiewicz-Rek, M. Tomaszewski, A. Kuś , J. Gałaj and R. Šukys, “Effects of high temperature on the properties of high performance concrete (HPC)”, Procedia Engineering. vol.172, pp.256-63, 2017.
  • [13] Q. Ma, R. Guo, Z. Zhao, Z. Lin and K. He, “Mechanical properties of concrete at high temperature-a review,” Construction and Building Materials, vol.93, pp.371-83, 2015.
  • [14] X. Luo, W. Sun and S. Y. N. Chan, “Effect of heating and cooling regimes on residual strength and microstructure of normal strength and high-performance concrete,” Cement and Concrete Research, vol.30, pp.379-83. 2000.
  • [15] L. T. Phan, “High-strength concrete at high temperature-an overview,” Proceedings of 6th International Symposiumon Utilization of High Strength/High Performance Concrete, Leipzig, Germany, pp.501-18, 2002.
  • [16] G. Khoury, C. Majorana and F. Pesavento, “Schrefler B. Modelling of heated concrete”. Magazine Of Concrete Research, vol.54, pp.77-101. 2002.
  • [17] K. D. Hertz, “Concrete strength for fire safety design”, Magazine of Concrete Research, vol.57, pp.445-53, 2005.
  • [18] M. Akman “Building damage and repair principles”. Turkish Chamber of Civil Engineers, Istanbul, Turkey, 2000.
  • [19] G. Khoury “Compressive strength of concrete at high temperatures: a reassessment”, Magazine of Concrete Research, vol.44, pp.291-309, 1992.
  • [20] M. Öztürk, “Pomza ve perlit içerikli hafif betonun fiziksel ve mekanik özelliklerinin incelenmesi”, Yüksek lisans Tezi, Fen Bilimleri Enstitüsü Namık Kemal Üniversitesi, Tekirdağ, Türkiye, 2012.
  • [21] M. Cülfik, “Deterioration of bond between cement paste and aggregate at high temperatures”. Doktora Tezi, Fen Bilimleri Enstitüsü, Boğaziçi Üniversitesi, İstanbul, Türkiye, 2001.
  • [22] N. Mahsanlar, “Yüksek sıcaklık etkisinde beton davranışı”, 2006.
  • [23] A. Fevziye, N. Yüzer ve S. Koral, “Portlant Çimentolu ve Silis Dumanı Katkılı Harçların Fiziksel ve Mekanik Özelliklerine Yüksek Sıcaklığın Etkileri”, Teknik Dergi, ss.6, 1995.
  • [24] Y. Chan, G. Peng and M. Anson, “Residual strength and pore structure of high-strength concrete and normal strength concrete after exposure to high temperatures”, Cement and Concrete Composites, vol.21 pp.23-7, 1999.

Farklı Sıcaklık Türünün Genleştirilmiş Perlit Agregalı Betonlar Üzerindeki Etkilerinin Araştırılması

Year 2019, , 302 - 313, 31.01.2019
https://doi.org/10.29130/dubited.437472

Abstract

Bu çalışmada, üç farklı beton sınıfında genleştirilmiş perlit katkılı ve katkısız betonlar üretilerek yüksek sıcaklık
fırınında ve gerçek yangın durumunda betonun fiziksel ve mekanik özellikleri test edilmiştir. Beton sınıfları
sırasıyla C16/20, C20/25 ve C40/50’dır. Fırında ve gerçek yangın durumunda uygulanan sıcaklıklar Ref (22ºC),
100ºC, 300ºC, 500ºC olarak belirlenmişlerdir. Bu sıcaklık değerleri 100x100x100 mm3 ölçülerindeki betonlar
üzerinde uygulanmıştır. Her beton türüne birim hacim ağırlık (BHA), ultrases geçiş hızı (UGH) ve basınç dayanımı
(BD) deneyleri yapılmıştır. Sonuçta, yüksek sıcaklık fırını ile yangın arasında her bir deney arasında istatiksel
olarak fark olduğu, BD’da sıcaklık değeri arttıkça yangın ve yüksek sıcaklık değerini giderek azaldığı tespit
edilmiştir. Ayrıca, fırın numunelerinin 500 ºC’deki BD kayıpları ortalama %60 civarındayken, yangın
numunelerinin %10 civarında olduğu belirlenmiştir.

References

  • [1] T. Erdoğan, Beton , Ankara, Türkiye: Geliştirme Vakfı Yayınları, 2003.
  • [2] O. Arioz “Effects of elevated temperatures on properties of concrete”. Fire Safety Journal. vol.42, pp.516-522, 2007.
  • [3] B. Luccioni, M. Figueroa and R. Danesi “Thermo-mechanic model for concrete exposed to elevated temperatures”, Engineering Structures. vol.25, pp.729-742, 2003.
  • [4] Z. P. Bažant, M. F. Kaplan and Z. P. Bazant, Concrete at high temperatures: material properties and mathematical models, London, UK: Addison-Wesley.1996.
  • [5] J. Xiao adn G. König, “Study on concrete at high temperature in China-an overview”, Fire Safety Journal, vol.39, pp.89-103, 2004.
  • [6] I. Janotka and T.Nürnbergerová, “Effect of temperature on structural quality of the cement paste and high-strength concrete with silica fume,” Nuclear Engineering and Design, vol.235, pp. 32, 2005.
  • [7] M. Akman, “Betonarme Yapılarda Yangın Hasarı ve Yangın Sonunda Taşıyıcılığın Belirlenmesi”. Sika Teknik Bülten, İstanbul, Türkiye. 2001.
  • [8] M. Riley, “Possible new method for the assessment of fire–damaged concrete”, Magazine of Concrete Research, vol.43. pp.87-92, 1991.
  • [9] C. Alonso, C. Andrade, M. Castellote and G. Khoury “Microstructure–Solid Phases. Course on Effect of Heat on Concrete”, International Centre for Mechanical Sciences (CISM), 2003, pp.9-13.
  • [10] C. Gülce “Farklı çimentolarla üretilen harçların yüksek sıcaklık ve değişik soğutma koşulları altındaki özelikleri,” Yükseklisans tezi, İnşaat Mühendisliği bölümü, Eskişehir Osmangazi Üniversitesi, Eskişehir, Türkiye 2009.
  • [11] H. Doğan ve F. Şener, “Hafif Yapı Malzemeleri (Pomza, Perlit, Ytong, Gazbeton) Kullanımının Yaygınlaştırılmasına Yönelik Sonuç ve Öneriler”. TMMOB Jeoloji Mühendisleri Odası Haber Bülteni, pp. 51-53, 2004.
  • [12] T. Drzymała, W. Jackiewicz-Rek, M. Tomaszewski, A. Kuś , J. Gałaj and R. Šukys, “Effects of high temperature on the properties of high performance concrete (HPC)”, Procedia Engineering. vol.172, pp.256-63, 2017.
  • [13] Q. Ma, R. Guo, Z. Zhao, Z. Lin and K. He, “Mechanical properties of concrete at high temperature-a review,” Construction and Building Materials, vol.93, pp.371-83, 2015.
  • [14] X. Luo, W. Sun and S. Y. N. Chan, “Effect of heating and cooling regimes on residual strength and microstructure of normal strength and high-performance concrete,” Cement and Concrete Research, vol.30, pp.379-83. 2000.
  • [15] L. T. Phan, “High-strength concrete at high temperature-an overview,” Proceedings of 6th International Symposiumon Utilization of High Strength/High Performance Concrete, Leipzig, Germany, pp.501-18, 2002.
  • [16] G. Khoury, C. Majorana and F. Pesavento, “Schrefler B. Modelling of heated concrete”. Magazine Of Concrete Research, vol.54, pp.77-101. 2002.
  • [17] K. D. Hertz, “Concrete strength for fire safety design”, Magazine of Concrete Research, vol.57, pp.445-53, 2005.
  • [18] M. Akman “Building damage and repair principles”. Turkish Chamber of Civil Engineers, Istanbul, Turkey, 2000.
  • [19] G. Khoury “Compressive strength of concrete at high temperatures: a reassessment”, Magazine of Concrete Research, vol.44, pp.291-309, 1992.
  • [20] M. Öztürk, “Pomza ve perlit içerikli hafif betonun fiziksel ve mekanik özelliklerinin incelenmesi”, Yüksek lisans Tezi, Fen Bilimleri Enstitüsü Namık Kemal Üniversitesi, Tekirdağ, Türkiye, 2012.
  • [21] M. Cülfik, “Deterioration of bond between cement paste and aggregate at high temperatures”. Doktora Tezi, Fen Bilimleri Enstitüsü, Boğaziçi Üniversitesi, İstanbul, Türkiye, 2001.
  • [22] N. Mahsanlar, “Yüksek sıcaklık etkisinde beton davranışı”, 2006.
  • [23] A. Fevziye, N. Yüzer ve S. Koral, “Portlant Çimentolu ve Silis Dumanı Katkılı Harçların Fiziksel ve Mekanik Özelliklerine Yüksek Sıcaklığın Etkileri”, Teknik Dergi, ss.6, 1995.
  • [24] Y. Chan, G. Peng and M. Anson, “Residual strength and pore structure of high-strength concrete and normal strength concrete after exposure to high temperatures”, Cement and Concrete Composites, vol.21 pp.23-7, 1999.
There are 24 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Gökhan Durmuş 0000-0002-8827-7041

Mehmet Çelik This is me

Publication Date January 31, 2019
Published in Issue Year 2019

Cite

APA Durmuş, G., & Çelik, M. (2019). The Investigation on The Effects of Different Temperature Types on Concrete Containing Expanded Perlite Aggregate. Duzce University Journal of Science and Technology, 7(1), 302-313. https://doi.org/10.29130/dubited.437472
AMA Durmuş G, Çelik M. The Investigation on The Effects of Different Temperature Types on Concrete Containing Expanded Perlite Aggregate. DÜBİTED. January 2019;7(1):302-313. doi:10.29130/dubited.437472
Chicago Durmuş, Gökhan, and Mehmet Çelik. “The Investigation on The Effects of Different Temperature Types on Concrete Containing Expanded Perlite Aggregate”. Duzce University Journal of Science and Technology 7, no. 1 (January 2019): 302-13. https://doi.org/10.29130/dubited.437472.
EndNote Durmuş G, Çelik M (January 1, 2019) The Investigation on The Effects of Different Temperature Types on Concrete Containing Expanded Perlite Aggregate. Duzce University Journal of Science and Technology 7 1 302–313.
IEEE G. Durmuş and M. Çelik, “The Investigation on The Effects of Different Temperature Types on Concrete Containing Expanded Perlite Aggregate”, DÜBİTED, vol. 7, no. 1, pp. 302–313, 2019, doi: 10.29130/dubited.437472.
ISNAD Durmuş, Gökhan - Çelik, Mehmet. “The Investigation on The Effects of Different Temperature Types on Concrete Containing Expanded Perlite Aggregate”. Duzce University Journal of Science and Technology 7/1 (January 2019), 302-313. https://doi.org/10.29130/dubited.437472.
JAMA Durmuş G, Çelik M. The Investigation on The Effects of Different Temperature Types on Concrete Containing Expanded Perlite Aggregate. DÜBİTED. 2019;7:302–313.
MLA Durmuş, Gökhan and Mehmet Çelik. “The Investigation on The Effects of Different Temperature Types on Concrete Containing Expanded Perlite Aggregate”. Duzce University Journal of Science and Technology, vol. 7, no. 1, 2019, pp. 302-13, doi:10.29130/dubited.437472.
Vancouver Durmuş G, Çelik M. The Investigation on The Effects of Different Temperature Types on Concrete Containing Expanded Perlite Aggregate. DÜBİTED. 2019;7(1):302-13.