Research Article
BibTex RIS Cite

A Comparative Analysis of SPWM, THIPWM and HPWM Techniques with MATLAB / SIMULINK for Three-Phase Voltage Source Inverter

Year 2018, , 983 - 999, 01.08.2018
https://doi.org/10.29130/dubited.437845

Abstract

Pulse width modulation (DGM) techniques are very important in the control of some power electronic circuits. The development of microprocessor technologies has led to the diversity of pulse width modulation techniques (PWM). We can list the most commonly used techniques as sinus PWM (SPWM), space vector PWM (SVPWM), third harmonic PWM (THIPWM) and hysteresis PWM (HPWM). These techniques have advantages and disadvantages. In this study, a three phase voltage source inverter was applied in the MATLAB / SIMULINK environment of SPWM, THIPWM and HPWM techniques. The current, voltage graphs on a 1 kW resistive load and the total harmonic distortion (THD) in the voltage are compared. Simulation results show that the level of harmonics generated by HPWM method is best suited to IEEE 519 standards.

References

  • Aktaibi, A., Rahman, M., & Razali, A. A critical review of modulation techniques. Conference: the 19th Annual Newfoundland Electrical and Computer Eng. Conference,2010.
  • Mudlapur A, Raju A, Rao U. Evaluation of different PWM techniques for two level inverter in grid connected WECS. International Conference on Advances in Computing, Communications and Informatics. 1753-1758, 2013.
  • Phuong Hue Tran. Matlab/simulink implementation and analysis of three pulse-width modulation (pwm) techniques. A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Electrical Engineering, Boise State University. 2012.
  • R.K. Pongiannan, and N. Yadaiah, “FPGA Based Three Phase Sinusoidal PWM VVVF Controller,” IEEE ICEES, pp. 34-39, 2011.
  • J.Y. Lee, and Y.Y. Sun, “A New SPWM Inverter with Minimum Filter Requirement” ,International Journal of Electronics, Vol. 64, No. 5, pp. 815-826, 1988.
  • Colak I, Bayindir R, Kabalci E. A modified harmonic mitigation analysis using Third Harmonic Injection PWM in a multilevel inverter control. 14th International Power Electronics and Motion Control Conference, pp.215-220, 2010.
  • K.V. Kumar, P.A. Michael, J.P. John and S.S. Kumar, “Simulation and Comparison of SPWM and SVPWM control for Three Phase Inverter,” Asian Research Publishing Network, Vol. 5, No. 7, pp. 61-74, 2010.
  • H. Quan, Z.Gang, C. Jie, Z. Wu, and Z. Liu, “Study of A Novel Over-modulation Technique Based on Space-Vector PWM,” IEEE (CDCIEM), pp. 295-298, 2011.
  • K. Zhou and D. Wang, “Relationship Between Space-Vector Modulation and Three- Phase Carrier-Based PWM: A Comprehensive Analysis,” IEEE Transactions on Industrial Electronics, Vol. 49, No. 1, pp. 186-196, 2002.
  • W.F. Zhang and Y.H. Yu, “Comparison of Three SVPWM Strategies,” Journal of Electronic Science and Technology of China, Vol. 5, No. 3, pp. 283-287, 2007.
  • H. Mao, F. C. Y. Lee, D. Boroyevich and S. Hiti, “Review of high -performance three-phase power-factor correction circuits”, IEEE Trans. Industrial Electronics, vo1.44, No.4, pp. 437-446, 1997.
  • B.K.Bose, “An Adaptive Hysteresis-Band Current Control Technique of a Voltage Fed PWM Inverter for Machine Drive System”, IECON, pp.684-690, 1988.
  • Kwasinski A., Krein P.T., Chapman P.L., ‘Time domain comparison of pulse-width modulation schemes’ IEEE Power Electronics Letters, vol. 1, Issue 3, pp.64 – 68, 2003.
  • Bose, B. K., “An adaptive hysteresis-band current control technique of a voltage-fed PWM inverter for machine drive system”, IEEE Transactions on Industrial Electronics, 31(5), pp.402-408, 1990.
  • Gâtlan, C., Gâtlan, L., “AC to DC PWM voltage source converter under hysteresis current control”, ISIE'97 Proceedings of the IEEE International Symposium on Industrial Electronics, pp.469-473, 1997.
  • Bose, B. K., “Modern power electronics and AC drives”, Prentice-hall, pp.239, 2002.

Üç Fazlı Gerilim Kaynaklı Evirici için SDGM, ÜHDGM ve HDGM Tekniklerinin MATLAB/SİMULİNK ile Karşılaştırmalı Analizi

Year 2018, , 983 - 999, 01.08.2018
https://doi.org/10.29130/dubited.437845

Abstract

Bazı
güç elektroniği devrelerinin kontrolünde darbe genişlik modülasyon (DGM)
teknikleri büyük önem taşımaktadır. Mikroişlemci teknolojilerinin gelişmesi
darbe genişlik modülasyon tekniklerinin çeşitlilik kazanmasına yol açmıştır. En
yaygın kullanılan teknikleri sinüs DGM (SDGM), uzay vektör DGM (UVDGM), üçüncü
harmonik DGM (ÜHDGM) ve histerisiz DGM (HDGM) olarak sıralayabiliriz. Bu
tekniklerin bir birlerine olan avantaj ve dezavantajları bulunmaktadır. Bu
çalışmada SDGM, ÜHDGM ve HDGM teknikleri MATLAB/SIMULINK ortamında üç fazlı
gerilim kaynaklı bir eviriciye uygulanmıştır. 1 kW’lık bir omik yük üzerinde
oluşan akım, gerilim grafikleri ile gerilimde meydana gelen toplam harmonik
bozulumların(THB) karşılaştırılması yapılmıştır. Simülasyon sonuçlarından, HDGM
yönteminde oluşan harmonik seviyenin IEEE 519 standartlarına en uygun olduğu
görülmüştür.

References

  • Aktaibi, A., Rahman, M., & Razali, A. A critical review of modulation techniques. Conference: the 19th Annual Newfoundland Electrical and Computer Eng. Conference,2010.
  • Mudlapur A, Raju A, Rao U. Evaluation of different PWM techniques for two level inverter in grid connected WECS. International Conference on Advances in Computing, Communications and Informatics. 1753-1758, 2013.
  • Phuong Hue Tran. Matlab/simulink implementation and analysis of three pulse-width modulation (pwm) techniques. A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Electrical Engineering, Boise State University. 2012.
  • R.K. Pongiannan, and N. Yadaiah, “FPGA Based Three Phase Sinusoidal PWM VVVF Controller,” IEEE ICEES, pp. 34-39, 2011.
  • J.Y. Lee, and Y.Y. Sun, “A New SPWM Inverter with Minimum Filter Requirement” ,International Journal of Electronics, Vol. 64, No. 5, pp. 815-826, 1988.
  • Colak I, Bayindir R, Kabalci E. A modified harmonic mitigation analysis using Third Harmonic Injection PWM in a multilevel inverter control. 14th International Power Electronics and Motion Control Conference, pp.215-220, 2010.
  • K.V. Kumar, P.A. Michael, J.P. John and S.S. Kumar, “Simulation and Comparison of SPWM and SVPWM control for Three Phase Inverter,” Asian Research Publishing Network, Vol. 5, No. 7, pp. 61-74, 2010.
  • H. Quan, Z.Gang, C. Jie, Z. Wu, and Z. Liu, “Study of A Novel Over-modulation Technique Based on Space-Vector PWM,” IEEE (CDCIEM), pp. 295-298, 2011.
  • K. Zhou and D. Wang, “Relationship Between Space-Vector Modulation and Three- Phase Carrier-Based PWM: A Comprehensive Analysis,” IEEE Transactions on Industrial Electronics, Vol. 49, No. 1, pp. 186-196, 2002.
  • W.F. Zhang and Y.H. Yu, “Comparison of Three SVPWM Strategies,” Journal of Electronic Science and Technology of China, Vol. 5, No. 3, pp. 283-287, 2007.
  • H. Mao, F. C. Y. Lee, D. Boroyevich and S. Hiti, “Review of high -performance three-phase power-factor correction circuits”, IEEE Trans. Industrial Electronics, vo1.44, No.4, pp. 437-446, 1997.
  • B.K.Bose, “An Adaptive Hysteresis-Band Current Control Technique of a Voltage Fed PWM Inverter for Machine Drive System”, IECON, pp.684-690, 1988.
  • Kwasinski A., Krein P.T., Chapman P.L., ‘Time domain comparison of pulse-width modulation schemes’ IEEE Power Electronics Letters, vol. 1, Issue 3, pp.64 – 68, 2003.
  • Bose, B. K., “An adaptive hysteresis-band current control technique of a voltage-fed PWM inverter for machine drive system”, IEEE Transactions on Industrial Electronics, 31(5), pp.402-408, 1990.
  • Gâtlan, C., Gâtlan, L., “AC to DC PWM voltage source converter under hysteresis current control”, ISIE'97 Proceedings of the IEEE International Symposium on Industrial Electronics, pp.469-473, 1997.
  • Bose, B. K., “Modern power electronics and AC drives”, Prentice-hall, pp.239, 2002.
There are 16 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Mustafa Dursun 0000-0001-9952-9358

M.kenan Döşoğlu

Publication Date August 1, 2018
Published in Issue Year 2018

Cite

APA Dursun, M., & Döşoğlu, M. (2018). Üç Fazlı Gerilim Kaynaklı Evirici için SDGM, ÜHDGM ve HDGM Tekniklerinin MATLAB/SİMULİNK ile Karşılaştırmalı Analizi. Duzce University Journal of Science and Technology, 6(4), 983-999. https://doi.org/10.29130/dubited.437845
AMA Dursun M, Döşoğlu M. Üç Fazlı Gerilim Kaynaklı Evirici için SDGM, ÜHDGM ve HDGM Tekniklerinin MATLAB/SİMULİNK ile Karşılaştırmalı Analizi. DÜBİTED. August 2018;6(4):983-999. doi:10.29130/dubited.437845
Chicago Dursun, Mustafa, and M.kenan Döşoğlu. “Üç Fazlı Gerilim Kaynaklı Evirici için SDGM, ÜHDGM Ve HDGM Tekniklerinin MATLAB/SİMULİNK Ile Karşılaştırmalı Analizi”. Duzce University Journal of Science and Technology 6, no. 4 (August 2018): 983-99. https://doi.org/10.29130/dubited.437845.
EndNote Dursun M, Döşoğlu M (August 1, 2018) Üç Fazlı Gerilim Kaynaklı Evirici için SDGM, ÜHDGM ve HDGM Tekniklerinin MATLAB/SİMULİNK ile Karşılaştırmalı Analizi. Duzce University Journal of Science and Technology 6 4 983–999.
IEEE M. Dursun and M. Döşoğlu, “Üç Fazlı Gerilim Kaynaklı Evirici için SDGM, ÜHDGM ve HDGM Tekniklerinin MATLAB/SİMULİNK ile Karşılaştırmalı Analizi”, DÜBİTED, vol. 6, no. 4, pp. 983–999, 2018, doi: 10.29130/dubited.437845.
ISNAD Dursun, Mustafa - Döşoğlu, M.kenan. “Üç Fazlı Gerilim Kaynaklı Evirici için SDGM, ÜHDGM Ve HDGM Tekniklerinin MATLAB/SİMULİNK Ile Karşılaştırmalı Analizi”. Duzce University Journal of Science and Technology 6/4 (August 2018), 983-999. https://doi.org/10.29130/dubited.437845.
JAMA Dursun M, Döşoğlu M. Üç Fazlı Gerilim Kaynaklı Evirici için SDGM, ÜHDGM ve HDGM Tekniklerinin MATLAB/SİMULİNK ile Karşılaştırmalı Analizi. DÜBİTED. 2018;6:983–999.
MLA Dursun, Mustafa and M.kenan Döşoğlu. “Üç Fazlı Gerilim Kaynaklı Evirici için SDGM, ÜHDGM Ve HDGM Tekniklerinin MATLAB/SİMULİNK Ile Karşılaştırmalı Analizi”. Duzce University Journal of Science and Technology, vol. 6, no. 4, 2018, pp. 983-99, doi:10.29130/dubited.437845.
Vancouver Dursun M, Döşoğlu M. Üç Fazlı Gerilim Kaynaklı Evirici için SDGM, ÜHDGM ve HDGM Tekniklerinin MATLAB/SİMULİNK ile Karşılaştırmalı Analizi. DÜBİTED. 2018;6(4):983-99.