Research Article
BibTex RIS Cite

Azaltan ve Yükselten DA-DA Dönüştürücüleri için Tek Çevrim Denetleyici Tasarımı

Year 2019, , 757 - 768, 31.01.2019
https://doi.org/10.29130/dubited.442804

Abstract

Bu çalışmada, Azaltan ve Yükselten da-da dönüştürücüleri için sabit bir anahtarlama frekansında çalışan Tek
Çevrim denetim yöntemi sunulmaktadır. Önerilen denetleyici, doğrusal olmayan denetim türündedir ve her
anahtarlama periyodunda anahtarlanan değişkenin ortalama değerini, referans işaretine eşit veya referans
işaretiyle orantılı olmasını sağlamak için anahtarın doluluk oranını ayarlamaktadır. Bu denetim yönteminde,
denetim referansı ile anahtarlanan değişkenin ortalama değeri arasında sabit bir hata veya dinamik hata olmadığı
için sürekli durum hatası sıfırdır, aşma yoktur ve geçici cevap hızlıdır. Yük ve kaynak geriliminde görülen ani
değişikler altında, önerilen denetleyicinin geçerliği PSIM benzetim programı ile doğrulanmıştır.

References

  • [1] A. J. Forsyth, S. V. Mollow, “Modeling and control of dc-dc converters,” IEE power engineering journal, vol. 12, no. 5, pp. 229-236, Oct. 1998.
  • [2] E. Cetin, D. Omer ve S. Huseyin, “Adaptive fuzzy logic controller for DC–DC converters,” Expert Syst. Appl., vol. 36, no. 2, pp. 1540-1548, 2009.
  • [3] P. Mattavelli, L. Rossetto, G. Spiazzi ve P. Tenti, “General-purpose fuzzy controller for DC-DC converters,” IEEE Transactions on Power Electronics, vol. 12, no. 1, pp. 79-86, 1997.
  • [4] A. G. Perry, G. Feng, Y. Liu ve P. C. Sen, “A Design Method for PI-like Fuzzy Logic Controllers for DC–DC Converter,” IEEE Transactions on Industrial Electronics, vol. 54, no. 5, pp. 2688-2696, 2007.
  • [5] W. Zhang, G. Feng, Y. F. Liu ve B. Wu, “A digital power factor correction (PFC) control strategy optimized for DSP,” IEEE Trans. Power Electronics, vol. 19, no. 6, pp. 1474-1485, 2004.
  • [6] P. Acuna, R. P. Aguilera, A. M. Y. M. Ghias, M. Rivera, C. R. Baier ve V. G. Agelidis, “Cascade-Free Model Predictive Control for Single-Phase Grid-Connected Power Converters,” IEEE Transactions on Industrial Electronics, vol. 64, no. 1, pp. 285-294, 2017.
  • [7] B. Wang, V. R. K. Kanamarlapudi, L. Xian, X. Peng, K. T. Tan ve P. L. So, “Model Predictive Voltage Control for Single-Inductor Multiple-Output DC–DC Converter With Reduced Cross Regulation," IEEE Transactions on Industrial Electronics, vol. 63, no. 7, pp. 4187-4197, 2016.
  • [8] Y. Xie, R. Ghaemi, J. Sun ve J. S. Freudenberg, “Model Predictive Control for a Full Bridge DC/DC Converter,” IEEE Transactions on Control Systems Technology, vol. 20, no. 1, pp. 164-172, 2012.
  • [9] S. Kim, C. R. Park, J. Kim ve Y. I. Lee, “A Stabilizing Model Predictive Controller for Voltage Regulation of a DC/DC Boost Converter,” IEEE Transactions on Control Systems Technology, vol. 22, no. 5, pp. 2016-2023, 2014.
  • [10] S. C. Tan, Y. M. Lai, C. K. Tse ve M. K. H. Cheung, “A fixed frequency pulsewidthmodulation-based quasi-sliding-mode controller for buck converters,” IEEE Trans. Power Electron.,vol. 20, no. 6, pp. 1379-1392, 2005.
  • [11] V. Utkin, “Discussion Aspects of High-Order Sliding Mode Control,” IEEE Transactions on Automatic Control, vol. 61, no. 3, pp. 829-833, 2016.
  • [12] S. Oucheriah ve L. Guo, “PWM-Based Adaptive Sliding-Mode Control for Boost DC–DC Converters,” IEEE Transactions on Industrial Electronics, vol. 60, no. 8, pp. 3291-3294, 2013.
  • [13] K. M. Smedley, S. Cuk, “One-cycle control of switching converters,” IEEE Transactions on Power Electronics, vol. 10, no. 6, pp. 625-633, 1995.
  • [14] D. Ma, J. Wang ve M. Song, "Adaptive On-Chip Power Supply With Robust One-Cycle Control Technique,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 16, no. 9, pp. 1240-1243, 2008.
  • [15] N. Vamanan ve V. John, “Dual Comparison One Cycle Control for Single Phase AC to DC Converters,” IEEE Transactions on Industry Applications, vol. 52, no. 4, pp. 3267-3278, 2016.
  • [16] B. Wu, L. Yang, X. Zhang, K. M. Smedley ve G. Li, “Modeling and Analysis of Variable Frequency One-Cycle Control on High-Power Switched-Capacitor Converters," IEEE Transactions on Power Electronics, vol. 33, no. 6, pp. 5465-5475, 2018.
  • [17] A. A. de Melo Bento ve E. R. Cabral da Silva, “Hybrid One-Cycle Controller for Boost PFC Rectifier,” IEEE Transactions on Industry Applications, vol. 45, no. 1, pp. 268-277, 2009.
  • [18] S. Primavera, G. Rella, F. Maddaleno, K. Smedley ve A. Abramovitz, “One-cycle controlled three-phase electronic load,” IET Power Electronics, vol. 5, no. 6, pp. 827-832, 2012.
  • [19] T. Sheng, X. Wang, J. Zhang ve Z. Deng, “Torque-Ripple Mitigation for Brushless DC Machine Drive System Using One-Cycle Average Torque Control,” IEEE Transactions on Industrial Electronics, vol. 62, no. 4, pp. 2114-2122, 2015.
  • [20] D. V. Ghodke, S. E. S., K. Chatterjee ve B. G. Fernandes, “One-Cycle-Controlled Bidirectional AC-to-DC Converter With Constant Power Factor,” IEEE Transactions on Industrial Electronics, vol. 56, no. 5, pp. 1499-1510, 2009.

One Cycle Controller Design for Buck and Boost DC-DC Converters

Year 2019, , 757 - 768, 31.01.2019
https://doi.org/10.29130/dubited.442804

Abstract

In this study, one cycle control method with constant switching frequency is presented for Buck and Boost dc-dc
converters. The proposed controller is a nonlinear control type and adjusts duty ratio of switch to ensure that the
average value of the switched variable is equal to the reference signal or proportional to the reference signal in
each switching period. In this control method, because there is no fixed error or dynamic error between the
control reference and the mean value of the switched variable, the continuous state error is zero, there is no
overshoot, and the transient response is fast. Under sudden changes in load and source voltage, the validation of
the proposed controller is verified by the PSIM simulation program.

References

  • [1] A. J. Forsyth, S. V. Mollow, “Modeling and control of dc-dc converters,” IEE power engineering journal, vol. 12, no. 5, pp. 229-236, Oct. 1998.
  • [2] E. Cetin, D. Omer ve S. Huseyin, “Adaptive fuzzy logic controller for DC–DC converters,” Expert Syst. Appl., vol. 36, no. 2, pp. 1540-1548, 2009.
  • [3] P. Mattavelli, L. Rossetto, G. Spiazzi ve P. Tenti, “General-purpose fuzzy controller for DC-DC converters,” IEEE Transactions on Power Electronics, vol. 12, no. 1, pp. 79-86, 1997.
  • [4] A. G. Perry, G. Feng, Y. Liu ve P. C. Sen, “A Design Method for PI-like Fuzzy Logic Controllers for DC–DC Converter,” IEEE Transactions on Industrial Electronics, vol. 54, no. 5, pp. 2688-2696, 2007.
  • [5] W. Zhang, G. Feng, Y. F. Liu ve B. Wu, “A digital power factor correction (PFC) control strategy optimized for DSP,” IEEE Trans. Power Electronics, vol. 19, no. 6, pp. 1474-1485, 2004.
  • [6] P. Acuna, R. P. Aguilera, A. M. Y. M. Ghias, M. Rivera, C. R. Baier ve V. G. Agelidis, “Cascade-Free Model Predictive Control for Single-Phase Grid-Connected Power Converters,” IEEE Transactions on Industrial Electronics, vol. 64, no. 1, pp. 285-294, 2017.
  • [7] B. Wang, V. R. K. Kanamarlapudi, L. Xian, X. Peng, K. T. Tan ve P. L. So, “Model Predictive Voltage Control for Single-Inductor Multiple-Output DC–DC Converter With Reduced Cross Regulation," IEEE Transactions on Industrial Electronics, vol. 63, no. 7, pp. 4187-4197, 2016.
  • [8] Y. Xie, R. Ghaemi, J. Sun ve J. S. Freudenberg, “Model Predictive Control for a Full Bridge DC/DC Converter,” IEEE Transactions on Control Systems Technology, vol. 20, no. 1, pp. 164-172, 2012.
  • [9] S. Kim, C. R. Park, J. Kim ve Y. I. Lee, “A Stabilizing Model Predictive Controller for Voltage Regulation of a DC/DC Boost Converter,” IEEE Transactions on Control Systems Technology, vol. 22, no. 5, pp. 2016-2023, 2014.
  • [10] S. C. Tan, Y. M. Lai, C. K. Tse ve M. K. H. Cheung, “A fixed frequency pulsewidthmodulation-based quasi-sliding-mode controller for buck converters,” IEEE Trans. Power Electron.,vol. 20, no. 6, pp. 1379-1392, 2005.
  • [11] V. Utkin, “Discussion Aspects of High-Order Sliding Mode Control,” IEEE Transactions on Automatic Control, vol. 61, no. 3, pp. 829-833, 2016.
  • [12] S. Oucheriah ve L. Guo, “PWM-Based Adaptive Sliding-Mode Control for Boost DC–DC Converters,” IEEE Transactions on Industrial Electronics, vol. 60, no. 8, pp. 3291-3294, 2013.
  • [13] K. M. Smedley, S. Cuk, “One-cycle control of switching converters,” IEEE Transactions on Power Electronics, vol. 10, no. 6, pp. 625-633, 1995.
  • [14] D. Ma, J. Wang ve M. Song, "Adaptive On-Chip Power Supply With Robust One-Cycle Control Technique,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 16, no. 9, pp. 1240-1243, 2008.
  • [15] N. Vamanan ve V. John, “Dual Comparison One Cycle Control for Single Phase AC to DC Converters,” IEEE Transactions on Industry Applications, vol. 52, no. 4, pp. 3267-3278, 2016.
  • [16] B. Wu, L. Yang, X. Zhang, K. M. Smedley ve G. Li, “Modeling and Analysis of Variable Frequency One-Cycle Control on High-Power Switched-Capacitor Converters," IEEE Transactions on Power Electronics, vol. 33, no. 6, pp. 5465-5475, 2018.
  • [17] A. A. de Melo Bento ve E. R. Cabral da Silva, “Hybrid One-Cycle Controller for Boost PFC Rectifier,” IEEE Transactions on Industry Applications, vol. 45, no. 1, pp. 268-277, 2009.
  • [18] S. Primavera, G. Rella, F. Maddaleno, K. Smedley ve A. Abramovitz, “One-cycle controlled three-phase electronic load,” IET Power Electronics, vol. 5, no. 6, pp. 827-832, 2012.
  • [19] T. Sheng, X. Wang, J. Zhang ve Z. Deng, “Torque-Ripple Mitigation for Brushless DC Machine Drive System Using One-Cycle Average Torque Control,” IEEE Transactions on Industrial Electronics, vol. 62, no. 4, pp. 2114-2122, 2015.
  • [20] D. V. Ghodke, S. E. S., K. Chatterjee ve B. G. Fernandes, “One-Cycle-Controlled Bidirectional AC-to-DC Converter With Constant Power Factor,” IEEE Transactions on Industrial Electronics, vol. 56, no. 5, pp. 1499-1510, 2009.
There are 20 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Fatih Evran

Publication Date January 31, 2019
Published in Issue Year 2019

Cite

APA Evran, F. (2019). Azaltan ve Yükselten DA-DA Dönüştürücüleri için Tek Çevrim Denetleyici Tasarımı. Duzce University Journal of Science and Technology, 7(1), 757-768. https://doi.org/10.29130/dubited.442804
AMA Evran F. Azaltan ve Yükselten DA-DA Dönüştürücüleri için Tek Çevrim Denetleyici Tasarımı. DÜBİTED. January 2019;7(1):757-768. doi:10.29130/dubited.442804
Chicago Evran, Fatih. “Azaltan Ve Yükselten DA-DA Dönüştürücüleri için Tek Çevrim Denetleyici Tasarımı”. Duzce University Journal of Science and Technology 7, no. 1 (January 2019): 757-68. https://doi.org/10.29130/dubited.442804.
EndNote Evran F (January 1, 2019) Azaltan ve Yükselten DA-DA Dönüştürücüleri için Tek Çevrim Denetleyici Tasarımı. Duzce University Journal of Science and Technology 7 1 757–768.
IEEE F. Evran, “Azaltan ve Yükselten DA-DA Dönüştürücüleri için Tek Çevrim Denetleyici Tasarımı”, DÜBİTED, vol. 7, no. 1, pp. 757–768, 2019, doi: 10.29130/dubited.442804.
ISNAD Evran, Fatih. “Azaltan Ve Yükselten DA-DA Dönüştürücüleri için Tek Çevrim Denetleyici Tasarımı”. Duzce University Journal of Science and Technology 7/1 (January 2019), 757-768. https://doi.org/10.29130/dubited.442804.
JAMA Evran F. Azaltan ve Yükselten DA-DA Dönüştürücüleri için Tek Çevrim Denetleyici Tasarımı. DÜBİTED. 2019;7:757–768.
MLA Evran, Fatih. “Azaltan Ve Yükselten DA-DA Dönüştürücüleri için Tek Çevrim Denetleyici Tasarımı”. Duzce University Journal of Science and Technology, vol. 7, no. 1, 2019, pp. 757-68, doi:10.29130/dubited.442804.
Vancouver Evran F. Azaltan ve Yükselten DA-DA Dönüştürücüleri için Tek Çevrim Denetleyici Tasarımı. DÜBİTED. 2019;7(1):757-68.