Review
BibTex RIS Cite

Evaluation of Biomaterials and Implant Production Process in Terms of Biotribology

Year 2020, , 667 - 692, 31.01.2020
https://doi.org/10.29130/dubited.482400

Abstract

Tribology is one of
the research areas that examine the friction, wear and lubrication frequently
encountered in machines, interlocking parts and surfaces. Biotribology can be
defined as the applications of tribological effects on living things. This
concept is one of the most important factors that should be considered during
implant design, manufacturing and applications. Even if the designs of the
implants planned to be developed and
implemented on living organisms are
very good, it is not possible to achieve success without carrying out tests and
analyses on biotribology. Therefore, this article has been prepared to better
understand the subject of biotribology and to guide the researchers working in
this field. In this article, the theoretical and experimental studies about
biotribology in the last 15 years have been reviewed and future projections
have been given.

References

  • [1] I. Minami, “Ionic liquids in tribology.,” Molecules (Basel, Switzerland), c. 14, s. 6, ss. 2286–2305, 2009.
  • [2] Z. R. Zhou ve Z. M. Jin, “Biotribology: Recent progresses and future perspectives,” Biosurface and Biotribology, c. 1, s. 1, ss. 3–24, 2015.
  • [3] B. D. Ratner, A. S. Hoffman, F. J. Schoen, J. E. Lemons, “Introduction - Biomaterials Science: An Evolving, Multidisciplinary Endeavor,” Biomaterials Science: An Introduction to Materials: Third Edition, ss. 25–39, 2013.
  • [4] Ş. Y. Güven, “Biyouyumluluk ve Bi̇yomalzemeleri̇ Seçi̇mi̇,” Mühendislik Bilimleri ve Tasarım Dergisi, c. 2, s. 3, ss. 303-311, 2014.
  • [5] M. Sumita, T. Hanawa, S. H. Teoh, “Development of nitrogen-containing nickel-free austenitic stainless steels for metallic biomaterials - Review,” Materials Science and Engineering C, c. 24, s. 6-8, ss. 753–760, 2004.
  • [6] A. K. Gür ve M. Taşkın, “Metalik Biyomalzemeler ve Biyouyum,” Doğu Anadolu Bölgesi Araştırmaları, c. 2, s. 2. ss. 106–113, 2004.
  • [7] J. Breme, V. Biehl, “Handbook of Biomaterials Properties,” 1. baskı, Davon, England: Springer Science+Business Media Dordrecht, 1998, böl.2, ss. 135-143.
  • [8] E. Çap, H. Çelik, “Kobalt Esaslı Alaşımların Mikroyapı ve Mekanik Özelliklerine Ti ve Mn İlavesinin Etkisinin İncelenmesi,” Makine Teknolojileri Elektronik Dergisi, c. 9, s. 3, ss. 25-33, 2012.
  • [9] K. S. Katti, “Biomaterials in total joint replacement,” Colloids and Surfaces B: Biointerfaces, c. 39, s. 3, ss. 133–142, 2004.
  • [10] A. Kocijan, I. Milošev, and B. Pihlar, “Cobalt-based alloys for orthopaedic applications studied by electrochemical and XPS analysis,” Journal of Materials Science: Materials in Medicine, c. 15, s. 6, ss. 643–650, 2004.
  • [11] I. Milošev and H. H. Strehblow, “The composition of the surface passive film formed on CoCrMo alloy in simulated physiological solution,” Electrochimica Acta, c. 48, s. 19, ss. 2767–2774, 2003.
  • [12] Y. Okazaki and E. Gotoh, “Comparison of metal release from various metallic biomaterials in vitro,” Biomaterials, c. 26, s. 1, ss. 11–21, 2005.
  • [13] H. J. Rack ve J. I. Qazi, “Titanium alloys for biomedical applications,” Materials Science and Engineering C, c. 26, s. 8, ss. 1269–1277, 2006.
  • [14] J. zhi Chen, Y. long Shi, L. Wang, F. ying Yan, F. qiang Zhang, “Preparation and properties of hydroxyapatite-containing titania coating by micro-arc oxidation,” Materials Letters, c. 60, s. 20, ss. 2538–2543, 2006.
  • [15] G. Dearnaley ve J. H. Arps, “Biomedical applications of diamond-like carbon (DLC) coatings: A review,” Surface and Coatings Technology, c. 200, s. 7, ss. 2518–2524, 2005.
  • [16] N. Hallab, K. Merritt, J. J. Jacobs, “Metal sensitivity in patients with orthopaedic implants,” Journal of Bone and Joint Surgery - Series A, c. 83, s. 3, ss. 428–436, 2001.
  • [17] J. D. Bobyn, G. J. Stackpool, S. A. Hacking, M. Tanzer, J. J. Krygier, “Characteristics of bone ingrowth and interface mechanics of a new porous tantalum biomaterial,” Journal of Bone and Joint Surgery - Series B, c. 81, s. 5, ss. 907–914, 1999.
  • [18] B. R. Levine, S. Sporer, R. A. Poggie, C. J. Della Valle, J. J. Jacobs, “Experimental and clinical performance of porous tantalum in orthopedic surgery,” Biomaterials, c. 27, s. 27, ss. 4671–4681, 2006.
  • [19] H. Kato ve diğ, “Bonding of alkali- and heat-treated tantalum implants to bone,” Journal of Biomedical Materials Research, c. 53, s. 1, ss. 28–35, 2000.
  • [20] M. D. Ries, A. Salehi, K. Widding, and G. Hunter, “Polyethylene wear performance of oxidized zirconium and cobalt-chromium knee components under abrasive conditions,” Journal of Bone and Joint Surgery - Series A, c. 84, s. 2, ss. 129–135, 2002.
  • [21] V. Benezra, S. Mangin, M. Treska, M. Spector, G. Hunter, L.W. Hobbs, “Microstructural Investigation of the Oxide Scale on Zr-2.5Nb and its Interface with the Alloy Substrate,” Materials Research Society Symposium Proceedings, c. 550, 1999, ss. 337-342.
  • [22] A. Gulsen, G. Merve, P. Meltem, “Biotribology of Cartilage Wear in Knee and Hip Joints Review of Recent Developments,” IOP Conference Series: Materials Science and Engineering, c. 295, s. 1, 2018.
  • [23] Y. Cai, C. Liang, S. Zhu, Z. Cui, X. Yang, “Formation of bonelike apatite-collagen composite coating on the surface of NiTi shape memory alloy,” Scripta Materialia, c. 54, s. 1, ss. 89–92, 2006.
  • [24] T. W. Duerig, D. E. Tolomeo, M. Wholey, “An overview of superelastic stent design An overview of superelastic stent design,” Minimally Invasive Therapy & Allied Technologies, c. 9, s. 3-4, 2000.
  • [25] H. Evlen, M. A. Özdemir, A. Çalışkan, “Doluluk Oranlarının PLA ve PET Malzemelerin Mekanik Özellikleri Üzerine Etkileri,” Journal of Polytechnic, s. Şubat, 2019.
  • [26] M. Jäger ve A. Wilke, “Comprehensive biocompatibility testing of a new PMMA-HA bone cement versus conventional PMMA cement in vitro,” Journal of Biomaterials Science, Polymer Edition, c. 14, s. 11, ss. 1283–1298, 2003.
  • [27] O. Findl, W. Buehl, R. Menapace, S. Sacu, M. Georgopoulos, G. Rainer, “Long-term effect of sharp optic edges of a polymethyl methacrylate intraocular lens on posterior capsule opacification: A randomized trial,” Ophthalmology, c. 112, s. 11, ss. 2004–2008, 2005.
  • [28] A. J. Kruger, J. Schauersberger, C. Abela, G. Schild, M. Amon, “Two year results: Sharp versus rounded optic edges on silicone lenses,” Journal of Cataract and Refractive Surgery, c. 26, s. 4, ss. 566–570, 2000.
  • [29] T. Oshika ve diğ., “Three year prospective, randomized evaluation of intraocular lens implantation through 3.2 and 5.5 mm incisions,” Journal of Cataract and Refractive Surgery, c. 24, s. 4, ss. 509–514, 1998.
  • [30] S. M. Kurtz ve J. N. Devine, “Peek biomaterials in trauma, orthopedic, and spinal implants,” Biomaterials, c. 28, s. 32, ss. 4845–4869, 2007.
  • [31] J. M. Toth, M. Wang, B. T. Estes, J. L. Scifert, H. B. Seim, and A. S. Turner, “Polyetheretherketone as a biomaterial for spinal applications,” Biomaterials, c. 27, s. 3, ss. 324–334, 2006.
  • [32] S. Akhavan et al., “Clinical and histologic results related to a low-modulus composite total hip replacement stem,” Journal of Bone and Joint Surgery - Series A, c. 88, s. 6, ss. 1308–1314, 2006.
  • [33] J. W. Brantigan, A. Neidre, and J. S. Toohey, “The Lumbar I/F Cage for posterior lumbar interbody fusion with the Variable Screw Placement System: 10-year results of a Food and Drug Administration clinical trial,” Spine Journal, c. 4, s. 6, ss. 681–688, 2004.
  • [34] J. Kärrholm et al., “Evaluation of a Femoral Stem With Reduced Stiffness,” The Journal of Bone and Joint Surgery-American Volume, c. 84, s. 9, ss. 1651–1658, 2002.
  • [35] A. H. Glassman, R. D. Crowninshield, R. Schenck, P. Herberts, “A low stiffness composite biologically fixed prosthesis,” Clinical Orthopaedics and Related Research, s. 393, ss. 128–136, 2001.
  • [36] J. W. Brantigan, A. D. Steffee, M. L. Lewis, L. M. Quinn, J. M. Persenaire, “Lumbar interbody fusion using the Brantigan I/F Cage for posterior lumbar interbody fusion and the Variable Pedicle Screw Placement System: Two- year results from a Food and Drug Administration investigational device exemption clinical trial,” Spine, c. 25, s. 11, ss. 1437–1446, 2000.
  • [37] S. Yu, K. P. Hariram, R. Kumar, P. Cheang, K. K. Aik, “In vitro apatite formation and its growth kinetics on hydroxyapatite/ polyetheretherketone biocomposites,” Biomaterials, c. 26, s. 15, ss. 2343–2352, 2005.
  • [38] J. P. Fan, C. P. Tsui, C. Y. Tang, C. L. Chow, “Influence of interphase layer on the overall elasto-plastic behaviors of HA/PEEK biocomposite,” Biomaterials, c. 25, s. 23, ss. 5363–5373, 2004.
  • [39] K. H. Tan ve diğ.., “Scaffold development using selective laser sintering of polyetheretherketone-hydroxyapatite biocomposite blends,” Biomaterials, c. 24, s. 18, ss. 3115–3123, 2003.
  • [40] M. S. Abu Bakar ve diğ.., “Tensile properties, tension-tension fatigue and biological response of polyetheretherketone-hydroxyapatite composites for load-bearing orthopedic implants,” Biomaterials, c. 24, s. 13, ss. 2245–2250, 2003.
  • [41] J. C. Middleton ve A. J. Tipton, “Synthetic biodegradable polymers as orthopedic devices,” Biomaterials, c. 21, s. 23, ss. 2335–2346, 2000.
  • [42] S. Langstaff, M. Sayer, T. J. Smith, S. M. Pugh, “Resorbable bioceramics based on stabilized calcium phosphates. Part II: evaluation of biological response.,” Biomaterials, c. 22, s. 2, ss. 135–50, 2001.
  • [43] A. Pasinli, “Biyomedikal Uygulamalarda Kullanılan Biyomalzemeler,” Makine Teknolojileri Elektronik Dergisi, c. 4, ss. 25-34, 2004.
  • [44] C. Piconi ve G. Maccauro, “Zirconia as a ceramic biomaterial,” Biomaterials, c. 20, s. 1, ss. 1–25, 1999.
  • [45] R. Glauser, I. Sailer, A. Wohlwend, S. Studer, M. Schibli, P. Schärer, “Experimental zirconia abutments for implant-supported single-tooth restorations in esthetically demanding regions: 4-year results of a prospective clinical study.,” The International journal of prosthodontics, c. 17, s. 3, ss. 285–90, 2004.
  • [46] I. Ahmad, “Yttrium-Partially Stabilized Zirconium Dioxide Posts: An Approach to Restoring Coronally Compromised Nonvital Teeth,” International Journal of Periodontics and Restorative Dentistry, c. 18, s. 5, ss. 455–465, 1998.
  • [47] Y. Akagawa, R. Hosokawa, Y. Sato, K. Kamayama, “Comparison between freestanding and tooth-connected partially stabilized zirconia implants after two years’ function in monkeys: a clinical and histologic study.,” The Journal of prosthetic dentistry, c. 80, s. 5, ss. 551–558, 1998.
  • [48] A. Scarano, F. Di Carlo, M. Quaranta, A. Piattelli, “Bone response to zirconia ceramic implants: an experimental study in rabbits.,” The Journal of oral implantology, c. 29, s. 1, ss. 8–12, 2003.
  • [49] S. A. Catledge, M. Cook, Y. K. Vohra, E. M. Santos, M. D. Mcclenny, K. D. Moore, “Surface crystalline phases and nanoindentation hardness of explanted zirconia femoral heads,” Journal of Materials Science: Materials in Medicine, c. 14, s. 10, ss. 863–867, 2003.
  • [50] K. Haraguchi, N. Sugano, T. Nishii, H. Miki, K. Oka, H. Yoshikawa, “Phase transformation of a zirconia ceramic head after total hip arthroplasty,” Journal of Bone and Joint Surgery - Series B, c. 83, s. 7, ss. 996–1000, 2001.
  • [51] D. Munz, T. Fett, Ceramics: Mechanical Properties, Failure Behaviour, Materials Selection, 1. baskı, Berlin, Heidelberg, Germany: Springer-Verlag, 1999, böl. 1, ss. 1-9.
  • [52] G. Willmann, “Ceramic femoral heads for total hip arthroplasty,” Advanced Engineering Materials, c. 2, s. 3, ss. 114–122, 2000.
  • [53] K. E. McCracken ve J. Y. Yoon, “Recent approaches for optical smartphone sensing in resource-limited settings: A brief review,” Analytical Methods, c. 8, s. 36, ss. 6591–6601, 2016.
  • [54] K. Güleryüz, “Deformasyon yaşlanmasının Al7075 alaşımının mekanik özelliklerine ve aşınma davranışına etkisi,” Yüksek lisans Tezi, İmalat Mühendisliği Bölümü, Karabük Üniversitesi, Zonguldak, Türkiye, 2011.
  • [55] R. Koç, “Bilgisayar kontrollü aşınma test cihazı tasarımı ve imalatı,” 2. Ulusal Tasarım İmalat ve Analiz Kongresi (TİMAK-2010), Balıkesir, Türkiye, 2010, ss. 129-137.
  • [56] S.M. Kurtz, The UHMWPE Handbook: Ultra-High Molecular Weight Polyethylene in Total Joint Replacement, 1. baskı, New York, USA: Elsevier Academic Press, böl. 1, 2004, ss. 1-12.
  • [57] S. Kondo, S. Liza, N. Ohtake, H. Akasaka, M. Matsuo, Y. Iwamoto, “Mechanical characterization of segment-structured hydrogen-free a-C films fabricated by filtered cathodic vacuum arc method,” Surface and Coatings Technology, c. 278, ss. 71–79, 2015.
  • [58] A. Liu, L. M. Jennings, E. Ingham, J. Fisher, “Tribology studies of the natural knee using an animal model in a new whole joint natural knee simulator,” Journal of Biomechanics, c. 48, s. 12, ss. 3004–3011, 2015.
  • [59] H. P. Saal ve S. J. Bensmaia, “Biomimetic approaches to bionic touch through a peripheral nerve interface,” Neuropsychologia, c. 79, ss. 344–353, 2015.
  • [60] M. L. Wang ve Z. X. Peng, “Wear in human knees,” Biosurface and Biotribology, c. 1, s. 2, ss. 98–112, 2015.
  • [61] S. Liza ve diğ., “Deposition of boron doped DLC films on TiNb and characterization of their mechanical properties and blood compatibility,” Science and Technology of Advanced Materials, c. 18, s. 1, ss. 76–87, 2017.
  • [62] J. R. Stokes, M. W. Boehm, S. K. Baier, “Oral processing, texture and mouthfeel: From rheology to tribology and beyond,” Current Opinion in Colloid and Interface Science, c. 18, s. 4, ss. 349–359, 2013.
  • [63] L. E. Bertassoni, J. P. R. Orgel, O. Antipova, M. V. Swain, “The dentin organic matrix - Limitations of restorative dentistry hidden on the nanometer scale,” Acta Biomaterialia, c. 8, s. 7, ss. 2419–2433, 2012.
  • [64] G. M. Lozito, M. Schmid, S. Conforto, F. Riganti Fulginei, D. Bibbo, “A neural network embedded system for real-time estimation of muscle forces,” Procedia Computer Science, c. 51, s. 1, ss. 60–69, 2015.
  • [65] Y. H. Li, N. Chen, H. L. Zhang, “Powder sintering and characterization of biomedical porous tinb alloy,” Digest Journal of Nanomaterials and Biostructures, c. 13, s. 2, ss. 491–498, 2018.
  • [66] T. Miyazaki, T. Nakamura, H. Matsumura, S. Ban, T. Kobayashi, “Current status of zirconia restoration,” Journal of Prosthodontic Research, c. 57, s. 4, ss. 236–261, 2013.
  • [67] S. Liza, A. S. M. A. Haseeb, A. A. Abbas, H. H. Masjuki, “Failure analysis of retrieved UHMWPE tibial insert in total knee replacement,” Engineering Failure Analysis, c. 18, s. 6, ss. 1415–1423, 2011.
  • [68] Y. Zhang, J. Zhu, Z. Wang, Y. Zhou, X. Zhang, “Constructing a 3D-printable, bioceramic sheathed articular spacer assembly for infected hip arthroplasty,” Journal of Medical Hypotheses and Ideas, c. 9, s. 1, ss. 13–19, 2015.
  • [69] T. Yamaguchi ve K. Masani, “Contribution of center of mass-center of pressure angle tangent to the required coefficient of friction in the sagittal plane during straight walking,” Biotribology, c. 5, ss. 16–22, 2016.
  • [70] S. Omata, Y. Sawae, T. Murakami, “Effect of poly(vinyl alcohol) (PVA) wear particles generated in water lubricant on immune response of macrophage,” Biosurface and Biotribology, c. 1, s. 1, ss. 71–79, 2015.
  • [71] S. Ghosh, D. Choudhury, T. Roy, A. Moradi, H. H. Masjuki, and B. Pingguan-Murphy, “Tribological performance of the biological components of synovial fluid in artificial joint implants,” Science and Technology of Advanced Materials, c. 16, s. 4, 2015.
  • [72] A. Ruggiero, R. D’Amato, L. Sbordone, F.B. Haro, A. Lanza, “On the Dental BioTribology: Comparison of Zirconia/Zirconia and Zirconia/Natural Tooth Friction Coefficients by Using a Reciprocating Tribometer,” TEEM 2018, Salamanca, Spain, 2018, ss. 444-446.
  • [73] D. Chen, Y. Liu, H. Chen, D. Zhang, “Bio-inspired drag reduction surface from sharkskin,” Biosurface and Biotribology, c. 4, s. 2, ss. 39–45, 2018.
  • [74] F. Di Puccio ve L. Mattei, “Biotribology of artificial hip joints,” World Journal of Orthopaedics, c. 6, s. 1, ss. 77–94, 2015.
  • [75] B. Öztürk, L. Uğur, F. Erzincanlı, Ö. Küçük, “Optimization of Polyethylene Inserts Design Geometry of Total Knee Prosthesis,” Internatıonal Scıentıfıc and Vocatıonal Journal, vol. 2, no. 2, pp. 31-39, 2018.
  • [76] O. F. Bilgen, S. Bilgen, C. Ermutlu, “Kalça protezlerinde malzeme ve tasarım özellikleri,” TOTBİD Dergisi, c. 10, s. 2, ss. 147–157, 2011.
  • [77] C. Myant and P. Cann, “On the matter of synovial fluid lubrication: Implications for Metal-on-Metal hip tribology,” Journal of the Mechanical Behavior of Biomedical Materials, c. 34, ss. 338–348, 2014.
  • [78] H. Ünal, S.H. Yetgin, “Katı yağlayıcı katkılı poliamid mühendislik polimerinin mekanik ve tribolojik performanslarının incelenmesi,” Düzce Üniversitesi Bilim ve Teknoloji Dergisi, c. 3, s. 3, ss. 117-124, 2015.

Biyomalzemeler ile İmplant Üretimi Sürecinin Biyotriboloji Yönünden Değerlendirilmesi

Year 2020, , 667 - 692, 31.01.2020
https://doi.org/10.29130/dubited.482400

Abstract

Triboloji, makinelerde, birbiri ile
çalışan parçalarda ve yüzeylerde sıklıkla karşılaşılan sürtünme, aşınma ve
yağlama konularını inceleyen araştırma alanları arasında yeralmaktadır.
Biyotriboloji ise, tribolojik etkilerin canlılar üzerindeki uygulamaları olarak
tanımlanabilir. Bu kavram, özellikle implant tasarımı, imalatı ve uygulamaları
sırasında göz önünde bulundurulması gereken en önemli etkenler arasında yer
almaktadır. Canlılar üzerinde uygulanması ve geliştirilmesi planlanan
implantların tasarımları çok iyi olsa bile, biyotriboloji konusundaki testler
ve analizler gerçekleştirilmeden başarı elde edilmesi mümkün olmamaktadır. Bu
nedenle, biyotriboloji konusunun daha iyi anlaşılması ve bu alanda çalışan
araştırmacılara ışık tutarak yol göstermesi amacıyla bu makale
hazırlanmıştır.  Makalede, son 20 yılda
biyotriboloji konusunda gerçekleştirilmiş teorik ve deneysel çalışmalar
incelenerek değerlendirilmiş ve geleceğe bakış sunulmuştur.

References

  • [1] I. Minami, “Ionic liquids in tribology.,” Molecules (Basel, Switzerland), c. 14, s. 6, ss. 2286–2305, 2009.
  • [2] Z. R. Zhou ve Z. M. Jin, “Biotribology: Recent progresses and future perspectives,” Biosurface and Biotribology, c. 1, s. 1, ss. 3–24, 2015.
  • [3] B. D. Ratner, A. S. Hoffman, F. J. Schoen, J. E. Lemons, “Introduction - Biomaterials Science: An Evolving, Multidisciplinary Endeavor,” Biomaterials Science: An Introduction to Materials: Third Edition, ss. 25–39, 2013.
  • [4] Ş. Y. Güven, “Biyouyumluluk ve Bi̇yomalzemeleri̇ Seçi̇mi̇,” Mühendislik Bilimleri ve Tasarım Dergisi, c. 2, s. 3, ss. 303-311, 2014.
  • [5] M. Sumita, T. Hanawa, S. H. Teoh, “Development of nitrogen-containing nickel-free austenitic stainless steels for metallic biomaterials - Review,” Materials Science and Engineering C, c. 24, s. 6-8, ss. 753–760, 2004.
  • [6] A. K. Gür ve M. Taşkın, “Metalik Biyomalzemeler ve Biyouyum,” Doğu Anadolu Bölgesi Araştırmaları, c. 2, s. 2. ss. 106–113, 2004.
  • [7] J. Breme, V. Biehl, “Handbook of Biomaterials Properties,” 1. baskı, Davon, England: Springer Science+Business Media Dordrecht, 1998, böl.2, ss. 135-143.
  • [8] E. Çap, H. Çelik, “Kobalt Esaslı Alaşımların Mikroyapı ve Mekanik Özelliklerine Ti ve Mn İlavesinin Etkisinin İncelenmesi,” Makine Teknolojileri Elektronik Dergisi, c. 9, s. 3, ss. 25-33, 2012.
  • [9] K. S. Katti, “Biomaterials in total joint replacement,” Colloids and Surfaces B: Biointerfaces, c. 39, s. 3, ss. 133–142, 2004.
  • [10] A. Kocijan, I. Milošev, and B. Pihlar, “Cobalt-based alloys for orthopaedic applications studied by electrochemical and XPS analysis,” Journal of Materials Science: Materials in Medicine, c. 15, s. 6, ss. 643–650, 2004.
  • [11] I. Milošev and H. H. Strehblow, “The composition of the surface passive film formed on CoCrMo alloy in simulated physiological solution,” Electrochimica Acta, c. 48, s. 19, ss. 2767–2774, 2003.
  • [12] Y. Okazaki and E. Gotoh, “Comparison of metal release from various metallic biomaterials in vitro,” Biomaterials, c. 26, s. 1, ss. 11–21, 2005.
  • [13] H. J. Rack ve J. I. Qazi, “Titanium alloys for biomedical applications,” Materials Science and Engineering C, c. 26, s. 8, ss. 1269–1277, 2006.
  • [14] J. zhi Chen, Y. long Shi, L. Wang, F. ying Yan, F. qiang Zhang, “Preparation and properties of hydroxyapatite-containing titania coating by micro-arc oxidation,” Materials Letters, c. 60, s. 20, ss. 2538–2543, 2006.
  • [15] G. Dearnaley ve J. H. Arps, “Biomedical applications of diamond-like carbon (DLC) coatings: A review,” Surface and Coatings Technology, c. 200, s. 7, ss. 2518–2524, 2005.
  • [16] N. Hallab, K. Merritt, J. J. Jacobs, “Metal sensitivity in patients with orthopaedic implants,” Journal of Bone and Joint Surgery - Series A, c. 83, s. 3, ss. 428–436, 2001.
  • [17] J. D. Bobyn, G. J. Stackpool, S. A. Hacking, M. Tanzer, J. J. Krygier, “Characteristics of bone ingrowth and interface mechanics of a new porous tantalum biomaterial,” Journal of Bone and Joint Surgery - Series B, c. 81, s. 5, ss. 907–914, 1999.
  • [18] B. R. Levine, S. Sporer, R. A. Poggie, C. J. Della Valle, J. J. Jacobs, “Experimental and clinical performance of porous tantalum in orthopedic surgery,” Biomaterials, c. 27, s. 27, ss. 4671–4681, 2006.
  • [19] H. Kato ve diğ, “Bonding of alkali- and heat-treated tantalum implants to bone,” Journal of Biomedical Materials Research, c. 53, s. 1, ss. 28–35, 2000.
  • [20] M. D. Ries, A. Salehi, K. Widding, and G. Hunter, “Polyethylene wear performance of oxidized zirconium and cobalt-chromium knee components under abrasive conditions,” Journal of Bone and Joint Surgery - Series A, c. 84, s. 2, ss. 129–135, 2002.
  • [21] V. Benezra, S. Mangin, M. Treska, M. Spector, G. Hunter, L.W. Hobbs, “Microstructural Investigation of the Oxide Scale on Zr-2.5Nb and its Interface with the Alloy Substrate,” Materials Research Society Symposium Proceedings, c. 550, 1999, ss. 337-342.
  • [22] A. Gulsen, G. Merve, P. Meltem, “Biotribology of Cartilage Wear in Knee and Hip Joints Review of Recent Developments,” IOP Conference Series: Materials Science and Engineering, c. 295, s. 1, 2018.
  • [23] Y. Cai, C. Liang, S. Zhu, Z. Cui, X. Yang, “Formation of bonelike apatite-collagen composite coating on the surface of NiTi shape memory alloy,” Scripta Materialia, c. 54, s. 1, ss. 89–92, 2006.
  • [24] T. W. Duerig, D. E. Tolomeo, M. Wholey, “An overview of superelastic stent design An overview of superelastic stent design,” Minimally Invasive Therapy & Allied Technologies, c. 9, s. 3-4, 2000.
  • [25] H. Evlen, M. A. Özdemir, A. Çalışkan, “Doluluk Oranlarının PLA ve PET Malzemelerin Mekanik Özellikleri Üzerine Etkileri,” Journal of Polytechnic, s. Şubat, 2019.
  • [26] M. Jäger ve A. Wilke, “Comprehensive biocompatibility testing of a new PMMA-HA bone cement versus conventional PMMA cement in vitro,” Journal of Biomaterials Science, Polymer Edition, c. 14, s. 11, ss. 1283–1298, 2003.
  • [27] O. Findl, W. Buehl, R. Menapace, S. Sacu, M. Georgopoulos, G. Rainer, “Long-term effect of sharp optic edges of a polymethyl methacrylate intraocular lens on posterior capsule opacification: A randomized trial,” Ophthalmology, c. 112, s. 11, ss. 2004–2008, 2005.
  • [28] A. J. Kruger, J. Schauersberger, C. Abela, G. Schild, M. Amon, “Two year results: Sharp versus rounded optic edges on silicone lenses,” Journal of Cataract and Refractive Surgery, c. 26, s. 4, ss. 566–570, 2000.
  • [29] T. Oshika ve diğ., “Three year prospective, randomized evaluation of intraocular lens implantation through 3.2 and 5.5 mm incisions,” Journal of Cataract and Refractive Surgery, c. 24, s. 4, ss. 509–514, 1998.
  • [30] S. M. Kurtz ve J. N. Devine, “Peek biomaterials in trauma, orthopedic, and spinal implants,” Biomaterials, c. 28, s. 32, ss. 4845–4869, 2007.
  • [31] J. M. Toth, M. Wang, B. T. Estes, J. L. Scifert, H. B. Seim, and A. S. Turner, “Polyetheretherketone as a biomaterial for spinal applications,” Biomaterials, c. 27, s. 3, ss. 324–334, 2006.
  • [32] S. Akhavan et al., “Clinical and histologic results related to a low-modulus composite total hip replacement stem,” Journal of Bone and Joint Surgery - Series A, c. 88, s. 6, ss. 1308–1314, 2006.
  • [33] J. W. Brantigan, A. Neidre, and J. S. Toohey, “The Lumbar I/F Cage for posterior lumbar interbody fusion with the Variable Screw Placement System: 10-year results of a Food and Drug Administration clinical trial,” Spine Journal, c. 4, s. 6, ss. 681–688, 2004.
  • [34] J. Kärrholm et al., “Evaluation of a Femoral Stem With Reduced Stiffness,” The Journal of Bone and Joint Surgery-American Volume, c. 84, s. 9, ss. 1651–1658, 2002.
  • [35] A. H. Glassman, R. D. Crowninshield, R. Schenck, P. Herberts, “A low stiffness composite biologically fixed prosthesis,” Clinical Orthopaedics and Related Research, s. 393, ss. 128–136, 2001.
  • [36] J. W. Brantigan, A. D. Steffee, M. L. Lewis, L. M. Quinn, J. M. Persenaire, “Lumbar interbody fusion using the Brantigan I/F Cage for posterior lumbar interbody fusion and the Variable Pedicle Screw Placement System: Two- year results from a Food and Drug Administration investigational device exemption clinical trial,” Spine, c. 25, s. 11, ss. 1437–1446, 2000.
  • [37] S. Yu, K. P. Hariram, R. Kumar, P. Cheang, K. K. Aik, “In vitro apatite formation and its growth kinetics on hydroxyapatite/ polyetheretherketone biocomposites,” Biomaterials, c. 26, s. 15, ss. 2343–2352, 2005.
  • [38] J. P. Fan, C. P. Tsui, C. Y. Tang, C. L. Chow, “Influence of interphase layer on the overall elasto-plastic behaviors of HA/PEEK biocomposite,” Biomaterials, c. 25, s. 23, ss. 5363–5373, 2004.
  • [39] K. H. Tan ve diğ.., “Scaffold development using selective laser sintering of polyetheretherketone-hydroxyapatite biocomposite blends,” Biomaterials, c. 24, s. 18, ss. 3115–3123, 2003.
  • [40] M. S. Abu Bakar ve diğ.., “Tensile properties, tension-tension fatigue and biological response of polyetheretherketone-hydroxyapatite composites for load-bearing orthopedic implants,” Biomaterials, c. 24, s. 13, ss. 2245–2250, 2003.
  • [41] J. C. Middleton ve A. J. Tipton, “Synthetic biodegradable polymers as orthopedic devices,” Biomaterials, c. 21, s. 23, ss. 2335–2346, 2000.
  • [42] S. Langstaff, M. Sayer, T. J. Smith, S. M. Pugh, “Resorbable bioceramics based on stabilized calcium phosphates. Part II: evaluation of biological response.,” Biomaterials, c. 22, s. 2, ss. 135–50, 2001.
  • [43] A. Pasinli, “Biyomedikal Uygulamalarda Kullanılan Biyomalzemeler,” Makine Teknolojileri Elektronik Dergisi, c. 4, ss. 25-34, 2004.
  • [44] C. Piconi ve G. Maccauro, “Zirconia as a ceramic biomaterial,” Biomaterials, c. 20, s. 1, ss. 1–25, 1999.
  • [45] R. Glauser, I. Sailer, A. Wohlwend, S. Studer, M. Schibli, P. Schärer, “Experimental zirconia abutments for implant-supported single-tooth restorations in esthetically demanding regions: 4-year results of a prospective clinical study.,” The International journal of prosthodontics, c. 17, s. 3, ss. 285–90, 2004.
  • [46] I. Ahmad, “Yttrium-Partially Stabilized Zirconium Dioxide Posts: An Approach to Restoring Coronally Compromised Nonvital Teeth,” International Journal of Periodontics and Restorative Dentistry, c. 18, s. 5, ss. 455–465, 1998.
  • [47] Y. Akagawa, R. Hosokawa, Y. Sato, K. Kamayama, “Comparison between freestanding and tooth-connected partially stabilized zirconia implants after two years’ function in monkeys: a clinical and histologic study.,” The Journal of prosthetic dentistry, c. 80, s. 5, ss. 551–558, 1998.
  • [48] A. Scarano, F. Di Carlo, M. Quaranta, A. Piattelli, “Bone response to zirconia ceramic implants: an experimental study in rabbits.,” The Journal of oral implantology, c. 29, s. 1, ss. 8–12, 2003.
  • [49] S. A. Catledge, M. Cook, Y. K. Vohra, E. M. Santos, M. D. Mcclenny, K. D. Moore, “Surface crystalline phases and nanoindentation hardness of explanted zirconia femoral heads,” Journal of Materials Science: Materials in Medicine, c. 14, s. 10, ss. 863–867, 2003.
  • [50] K. Haraguchi, N. Sugano, T. Nishii, H. Miki, K. Oka, H. Yoshikawa, “Phase transformation of a zirconia ceramic head after total hip arthroplasty,” Journal of Bone and Joint Surgery - Series B, c. 83, s. 7, ss. 996–1000, 2001.
  • [51] D. Munz, T. Fett, Ceramics: Mechanical Properties, Failure Behaviour, Materials Selection, 1. baskı, Berlin, Heidelberg, Germany: Springer-Verlag, 1999, böl. 1, ss. 1-9.
  • [52] G. Willmann, “Ceramic femoral heads for total hip arthroplasty,” Advanced Engineering Materials, c. 2, s. 3, ss. 114–122, 2000.
  • [53] K. E. McCracken ve J. Y. Yoon, “Recent approaches for optical smartphone sensing in resource-limited settings: A brief review,” Analytical Methods, c. 8, s. 36, ss. 6591–6601, 2016.
  • [54] K. Güleryüz, “Deformasyon yaşlanmasının Al7075 alaşımının mekanik özelliklerine ve aşınma davranışına etkisi,” Yüksek lisans Tezi, İmalat Mühendisliği Bölümü, Karabük Üniversitesi, Zonguldak, Türkiye, 2011.
  • [55] R. Koç, “Bilgisayar kontrollü aşınma test cihazı tasarımı ve imalatı,” 2. Ulusal Tasarım İmalat ve Analiz Kongresi (TİMAK-2010), Balıkesir, Türkiye, 2010, ss. 129-137.
  • [56] S.M. Kurtz, The UHMWPE Handbook: Ultra-High Molecular Weight Polyethylene in Total Joint Replacement, 1. baskı, New York, USA: Elsevier Academic Press, böl. 1, 2004, ss. 1-12.
  • [57] S. Kondo, S. Liza, N. Ohtake, H. Akasaka, M. Matsuo, Y. Iwamoto, “Mechanical characterization of segment-structured hydrogen-free a-C films fabricated by filtered cathodic vacuum arc method,” Surface and Coatings Technology, c. 278, ss. 71–79, 2015.
  • [58] A. Liu, L. M. Jennings, E. Ingham, J. Fisher, “Tribology studies of the natural knee using an animal model in a new whole joint natural knee simulator,” Journal of Biomechanics, c. 48, s. 12, ss. 3004–3011, 2015.
  • [59] H. P. Saal ve S. J. Bensmaia, “Biomimetic approaches to bionic touch through a peripheral nerve interface,” Neuropsychologia, c. 79, ss. 344–353, 2015.
  • [60] M. L. Wang ve Z. X. Peng, “Wear in human knees,” Biosurface and Biotribology, c. 1, s. 2, ss. 98–112, 2015.
  • [61] S. Liza ve diğ., “Deposition of boron doped DLC films on TiNb and characterization of their mechanical properties and blood compatibility,” Science and Technology of Advanced Materials, c. 18, s. 1, ss. 76–87, 2017.
  • [62] J. R. Stokes, M. W. Boehm, S. K. Baier, “Oral processing, texture and mouthfeel: From rheology to tribology and beyond,” Current Opinion in Colloid and Interface Science, c. 18, s. 4, ss. 349–359, 2013.
  • [63] L. E. Bertassoni, J. P. R. Orgel, O. Antipova, M. V. Swain, “The dentin organic matrix - Limitations of restorative dentistry hidden on the nanometer scale,” Acta Biomaterialia, c. 8, s. 7, ss. 2419–2433, 2012.
  • [64] G. M. Lozito, M. Schmid, S. Conforto, F. Riganti Fulginei, D. Bibbo, “A neural network embedded system for real-time estimation of muscle forces,” Procedia Computer Science, c. 51, s. 1, ss. 60–69, 2015.
  • [65] Y. H. Li, N. Chen, H. L. Zhang, “Powder sintering and characterization of biomedical porous tinb alloy,” Digest Journal of Nanomaterials and Biostructures, c. 13, s. 2, ss. 491–498, 2018.
  • [66] T. Miyazaki, T. Nakamura, H. Matsumura, S. Ban, T. Kobayashi, “Current status of zirconia restoration,” Journal of Prosthodontic Research, c. 57, s. 4, ss. 236–261, 2013.
  • [67] S. Liza, A. S. M. A. Haseeb, A. A. Abbas, H. H. Masjuki, “Failure analysis of retrieved UHMWPE tibial insert in total knee replacement,” Engineering Failure Analysis, c. 18, s. 6, ss. 1415–1423, 2011.
  • [68] Y. Zhang, J. Zhu, Z. Wang, Y. Zhou, X. Zhang, “Constructing a 3D-printable, bioceramic sheathed articular spacer assembly for infected hip arthroplasty,” Journal of Medical Hypotheses and Ideas, c. 9, s. 1, ss. 13–19, 2015.
  • [69] T. Yamaguchi ve K. Masani, “Contribution of center of mass-center of pressure angle tangent to the required coefficient of friction in the sagittal plane during straight walking,” Biotribology, c. 5, ss. 16–22, 2016.
  • [70] S. Omata, Y. Sawae, T. Murakami, “Effect of poly(vinyl alcohol) (PVA) wear particles generated in water lubricant on immune response of macrophage,” Biosurface and Biotribology, c. 1, s. 1, ss. 71–79, 2015.
  • [71] S. Ghosh, D. Choudhury, T. Roy, A. Moradi, H. H. Masjuki, and B. Pingguan-Murphy, “Tribological performance of the biological components of synovial fluid in artificial joint implants,” Science and Technology of Advanced Materials, c. 16, s. 4, 2015.
  • [72] A. Ruggiero, R. D’Amato, L. Sbordone, F.B. Haro, A. Lanza, “On the Dental BioTribology: Comparison of Zirconia/Zirconia and Zirconia/Natural Tooth Friction Coefficients by Using a Reciprocating Tribometer,” TEEM 2018, Salamanca, Spain, 2018, ss. 444-446.
  • [73] D. Chen, Y. Liu, H. Chen, D. Zhang, “Bio-inspired drag reduction surface from sharkskin,” Biosurface and Biotribology, c. 4, s. 2, ss. 39–45, 2018.
  • [74] F. Di Puccio ve L. Mattei, “Biotribology of artificial hip joints,” World Journal of Orthopaedics, c. 6, s. 1, ss. 77–94, 2015.
  • [75] B. Öztürk, L. Uğur, F. Erzincanlı, Ö. Küçük, “Optimization of Polyethylene Inserts Design Geometry of Total Knee Prosthesis,” Internatıonal Scıentıfıc and Vocatıonal Journal, vol. 2, no. 2, pp. 31-39, 2018.
  • [76] O. F. Bilgen, S. Bilgen, C. Ermutlu, “Kalça protezlerinde malzeme ve tasarım özellikleri,” TOTBİD Dergisi, c. 10, s. 2, ss. 147–157, 2011.
  • [77] C. Myant and P. Cann, “On the matter of synovial fluid lubrication: Implications for Metal-on-Metal hip tribology,” Journal of the Mechanical Behavior of Biomedical Materials, c. 34, ss. 338–348, 2014.
  • [78] H. Ünal, S.H. Yetgin, “Katı yağlayıcı katkılı poliamid mühendislik polimerinin mekanik ve tribolojik performanslarının incelenmesi,” Düzce Üniversitesi Bilim ve Teknoloji Dergisi, c. 3, s. 3, ss. 117-124, 2015.
There are 78 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Hatice Akça This is me

Osman İyibilgin 0000-0002-1288-1920

Engin Gepek This is me 0000-0001-7340-8363

Publication Date January 31, 2020
Published in Issue Year 2020

Cite

APA Akça, H., İyibilgin, O., & Gepek, E. (2020). Biyomalzemeler ile İmplant Üretimi Sürecinin Biyotriboloji Yönünden Değerlendirilmesi. Duzce University Journal of Science and Technology, 8(1), 667-692. https://doi.org/10.29130/dubited.482400
AMA Akça H, İyibilgin O, Gepek E. Biyomalzemeler ile İmplant Üretimi Sürecinin Biyotriboloji Yönünden Değerlendirilmesi. DÜBİTED. January 2020;8(1):667-692. doi:10.29130/dubited.482400
Chicago Akça, Hatice, Osman İyibilgin, and Engin Gepek. “Biyomalzemeler Ile İmplant Üretimi Sürecinin Biyotriboloji Yönünden Değerlendirilmesi”. Duzce University Journal of Science and Technology 8, no. 1 (January 2020): 667-92. https://doi.org/10.29130/dubited.482400.
EndNote Akça H, İyibilgin O, Gepek E (January 1, 2020) Biyomalzemeler ile İmplant Üretimi Sürecinin Biyotriboloji Yönünden Değerlendirilmesi. Duzce University Journal of Science and Technology 8 1 667–692.
IEEE H. Akça, O. İyibilgin, and E. Gepek, “Biyomalzemeler ile İmplant Üretimi Sürecinin Biyotriboloji Yönünden Değerlendirilmesi”, DÜBİTED, vol. 8, no. 1, pp. 667–692, 2020, doi: 10.29130/dubited.482400.
ISNAD Akça, Hatice et al. “Biyomalzemeler Ile İmplant Üretimi Sürecinin Biyotriboloji Yönünden Değerlendirilmesi”. Duzce University Journal of Science and Technology 8/1 (January 2020), 667-692. https://doi.org/10.29130/dubited.482400.
JAMA Akça H, İyibilgin O, Gepek E. Biyomalzemeler ile İmplant Üretimi Sürecinin Biyotriboloji Yönünden Değerlendirilmesi. DÜBİTED. 2020;8:667–692.
MLA Akça, Hatice et al. “Biyomalzemeler Ile İmplant Üretimi Sürecinin Biyotriboloji Yönünden Değerlendirilmesi”. Duzce University Journal of Science and Technology, vol. 8, no. 1, 2020, pp. 667-92, doi:10.29130/dubited.482400.
Vancouver Akça H, İyibilgin O, Gepek E. Biyomalzemeler ile İmplant Üretimi Sürecinin Biyotriboloji Yönünden Değerlendirilmesi. DÜBİTED. 2020;8(1):667-92.