Research Article
BibTex RIS Cite

Gözenekli Esnek Malzemelerin Bernoulli Prensibi Kullanılarak Temassız Taşınması Üzerine Literatür Taraması

Year 2019, , 594 - 605, 31.01.2019
https://doi.org/10.29130/dubited.488726

Abstract



Yapılan bu çalışmada Bernoulli prensibi ile çalışan tutucular ve uygulama alanları hakkında geniş kapsamlı bir
araştırma yapılmıştır. Otomatik üretim süreçlerinde tutma aparatları ve yöntemleri bir çok ürünün taşınmasında
önemli bir rol oynamaktadır. Göreceli olarak esnek ürünlerin temassız kaldırılıp taşınması için otomasyon
uygulamaları, uygun tutucu eksikliğinden dolayı, sınırlıdır. Bu tür esnek malzemeler, esnekliğinin yanında
genellikle, narin, gözenekli ve üzerlerinde kolaylıkla iz kalabildiğinden dolayı robot tutucuların çoğunun
kullanılması mümkün değildir. Bu çalışmada değişken boyut, şekil ve ağırlıktaki esnek ürünlerin temassız
kaldırılıp-taşınması için tutucuların yenilikçi yaklaşımları sunulmuştur. Temassız tutucular, tutucu ile ürün
arasında Bernoulli prensibine uygun yüksek hızlı akış üretilmesi sonucunda oluşan vakum ile kaldırılması
ilkesiyle çalışmaktadırlar. Çalışmanın sonunda bu tutucularla ilgili ileride yapılabilecek çalışmalar hakkında
önerilerde bulunulmuştur.

References

  • [1] F. Erzincanlı, “A non-contact end effector for roboting handling of non-rigid materials,” Ph.D. dissertation, Department of Manufacture and Marketing, Salford University, Salford, UK, 1995.
  • [2] B. R. Rawal, V. Pare and K. Tripathi, “Development of non-contact end effector for handling bakery products,” Internationaljournal of advanced manufacturing technology, vol. 38, pp. 524–528, 2008.
  • [3] R. Sam and S. Nefti, “Design and feasibility tests of multi-functional gripper for handling variable shape of food products,” In Published in systems man and cybernetics, IEEE International conference, Istanbul, Turkey, 2010, pp. 1267–1172.
  • [4] R. Sam and N. Buniyamin, “A Bernoulli principle based flexible handling device for automation of food manufacturing processes,” Int. Conf. Control. Autom. Inf. Sci. (ICCAIS), Ho Chi Minh City, Vietnam, 2012, pp. 214–219.
  • [5] E. Toklu and F. Erzincanlı, “Modeling of radial flow on a non-contact end effector for robotic handling of non-rigid material,” J. Appl. Res. Technol., vol. 10, no. 4, pp. 590–596, 2012.
  • [6] A. Petterson and T. Ohlsson, “A Bernoulli principle gripper for handling of planar and 3D (food) products,” Ind. Robot An Int. J., vol. 37, no. 6, pp. 518–526, 2010.
  • [7] X. Li, N. Li, G. Tao and H. Liu, “Experimental comparison of Bernoulli gripper and vortex gripper,” Int. J. Precis. Eng. Manuf., vol. 16, no. 10, pp. 518–526, 2015.
  • [8] M. Journee and X. Chen, “An investigation into improved non-contact adhesion mechanism suitable for wall climbing robot,” IEEE Int. Conf. Robot. Autom. Shanghai Int. Conf. Cent., Shanghai,Chine, 2011.
  • [9] S. Davis, J.O. Gray and D.G. Caldwell, “An end effector based on the Bernoulli principle for handling sliced fruit and vegetables,” Robot. Comput. Integr. Manuf. vol. 24, no. 2, pp. 249–257, 2008.
  • [10] G. Dini, G. Fantoni and F. Failli, “Grasping leather plies by Bernoulli grippers,” CIRP Ann. -Manuf. Technol., vol. 23, no. 4, pp. 21–24, 2009.
  • [11] M. Trommelen, “Development of a medical Bernoulli gripper,” M.S. thesis, Department of Biomedical Engineering, Delft University of Technology, Delft, Netherlands, 2011.
  • [12] J. A. Paivanas and J. K. Hassan, “Air film system for handling semiconductor wafers,” IBM Journal of Research and Development, vol. 47, no. 8, pp. 361–375, 1979.
  • [13] H. Grutzeck and L. Kiesewetter, “Downscaling of grippers for micro assembly,” Microsyst. Technol., vol. 8, no. 1, pp. 27–31, 2002.
  • [14] F. Erzincanlı, J.M. Sharp and A.M. Dore , “Grippers for handling of non-rigid food products,” Proc. EURISCON ’ 94 , Malaga, 3, pp. 798-806, 1994.
  • [15] B. Özçelik and F. Erzincanlı, “Examination of the movement of a woven fabric in the horizontal direction using a non- contact end effector,” Int. J. Adv. Manuf. Techno., vol. 25, no. 5, pp. 527–532, 2005.
  • [16] A. K. Jaiswal and B. Kumar, “ Design constraints of vacuum cup gripper an important material handling tool,’’ International Journal of Science and Technology, vol. 7, no. 1, pp. 1-8, 2017.
  • [17] R. Callies and S. Fronz, “ Recursive modelling and control of multi link manipulators with vacuum cup grippers,’’ Math. Comput. Simul., vol. 79, pp. 906–916, 2008.
  • [18] G. Mantriota, “Theoretical model of the grasp with vacuum cup gripper,’’ Mech. Mach. Theory, vol. 42, pp. 2–17, 2007.
  • [19] X.F. Brun and S.N. Melkote, “Analysis of stresses and breakage of crystalline silicon wafers during handling and transport’’, Solar Energy Materials and Solar Cells, vol. 93, no. 8, pp. 1238–1247, 2009.
  • [20] F.C. Possamai, R.T.S. Ferreira and A.T. Prata, “Pressure distribution in laminar radial flow through inclined disks’’, Int. J. Heat Fluid Flow, vol. 22, no. 4, pp. 440–449, 2001.
  • [21] A. Osyczka, “Evolutinory algorithms for single and multicriteria design optimization”, Structural and Multidisciplinary Optimization, vol. 24, no. 1, pp. 88-89, 2002.
  • [22] C. Lanni and M. Ceccarelli, “An optimization problem algorithm for kinematic design of mechanisms for two finger grippers’’, The Open Mech.Eng.J., vol. 3, no.2, pp.49-62, 2009.
  • [23] R. Datta and K. Deb, “Multi-objective design and analysis of robotic gripper configuration using an evolutionary classical approach’’, In pro 13th annual conference, genetic evolutionary comput. Dublin, irerland, 2011, pp. 1843-1850.
  • [24] J. M. Benjamin, “Pneumatic probe for handling flat objects,” U.S. Patent 3 425 736, Feb. 4, 1969.
  • [25] W. K. Mammel, “Pickup device for supporting work piece on a large of fluid,” U.S. Patent 3 431 009, March 4, 1969.
  • [26] T. Kuma, “Method of supporting and/or conveying a plate with fluid without physical contact,” U.S. Patent 4 735 449 Apr. 5, 1988.
  • [27] G. M Carlomagno, “Process for Applying Forces to Glass Sheets, in Particular at a High Temperature,” U.S. Patent 4 920 520 May 1, 1990.
  • [28] Y. Okugi, “Substrate transfer apparatus,” U.S. Patent 6 379 103 Apr. 30, 2002.
  • [29] Food Refrigeration and Process Engineering Research Center (2010). Airflow (Bernoulli) grippers for flat sheet foods. [Online]. Available: http://www.grimsby.ack.uk/documents/frperc/projects/airflow.pdf.

A Literature Review on Non-Contact Handling of Porous Flexible Materials using Bernoulli Principle

Year 2019, , 594 - 605, 31.01.2019
https://doi.org/10.29130/dubited.488726

Abstract

In this study, an extensive research has been done about grippers working with the Bernoulli principle and
applicationd fields. In automated production processes grasping devices and methods play a crucial role in the
handling of many products. The application of automation for handling of non-rigid products are relatively
limited due to lack of appropriate gripper. Most of the robot grippers are not easily applicable due to this type of
products are often non-rigid, delicate, porous and easily marked. In this study, robot grippers work with
principles of non-contact are introduced. These non-contact grippers are used to handle non-rigid products with
variable size, shape and weight. The non-contact gripper operate using Bernoulli principle of generating a highspeed flow between the end effector and object surface thereby creating a vacuum which lifted the product. At
the end of the study, suggestions were made about future studies on these grippers.

References

  • [1] F. Erzincanlı, “A non-contact end effector for roboting handling of non-rigid materials,” Ph.D. dissertation, Department of Manufacture and Marketing, Salford University, Salford, UK, 1995.
  • [2] B. R. Rawal, V. Pare and K. Tripathi, “Development of non-contact end effector for handling bakery products,” Internationaljournal of advanced manufacturing technology, vol. 38, pp. 524–528, 2008.
  • [3] R. Sam and S. Nefti, “Design and feasibility tests of multi-functional gripper for handling variable shape of food products,” In Published in systems man and cybernetics, IEEE International conference, Istanbul, Turkey, 2010, pp. 1267–1172.
  • [4] R. Sam and N. Buniyamin, “A Bernoulli principle based flexible handling device for automation of food manufacturing processes,” Int. Conf. Control. Autom. Inf. Sci. (ICCAIS), Ho Chi Minh City, Vietnam, 2012, pp. 214–219.
  • [5] E. Toklu and F. Erzincanlı, “Modeling of radial flow on a non-contact end effector for robotic handling of non-rigid material,” J. Appl. Res. Technol., vol. 10, no. 4, pp. 590–596, 2012.
  • [6] A. Petterson and T. Ohlsson, “A Bernoulli principle gripper for handling of planar and 3D (food) products,” Ind. Robot An Int. J., vol. 37, no. 6, pp. 518–526, 2010.
  • [7] X. Li, N. Li, G. Tao and H. Liu, “Experimental comparison of Bernoulli gripper and vortex gripper,” Int. J. Precis. Eng. Manuf., vol. 16, no. 10, pp. 518–526, 2015.
  • [8] M. Journee and X. Chen, “An investigation into improved non-contact adhesion mechanism suitable for wall climbing robot,” IEEE Int. Conf. Robot. Autom. Shanghai Int. Conf. Cent., Shanghai,Chine, 2011.
  • [9] S. Davis, J.O. Gray and D.G. Caldwell, “An end effector based on the Bernoulli principle for handling sliced fruit and vegetables,” Robot. Comput. Integr. Manuf. vol. 24, no. 2, pp. 249–257, 2008.
  • [10] G. Dini, G. Fantoni and F. Failli, “Grasping leather plies by Bernoulli grippers,” CIRP Ann. -Manuf. Technol., vol. 23, no. 4, pp. 21–24, 2009.
  • [11] M. Trommelen, “Development of a medical Bernoulli gripper,” M.S. thesis, Department of Biomedical Engineering, Delft University of Technology, Delft, Netherlands, 2011.
  • [12] J. A. Paivanas and J. K. Hassan, “Air film system for handling semiconductor wafers,” IBM Journal of Research and Development, vol. 47, no. 8, pp. 361–375, 1979.
  • [13] H. Grutzeck and L. Kiesewetter, “Downscaling of grippers for micro assembly,” Microsyst. Technol., vol. 8, no. 1, pp. 27–31, 2002.
  • [14] F. Erzincanlı, J.M. Sharp and A.M. Dore , “Grippers for handling of non-rigid food products,” Proc. EURISCON ’ 94 , Malaga, 3, pp. 798-806, 1994.
  • [15] B. Özçelik and F. Erzincanlı, “Examination of the movement of a woven fabric in the horizontal direction using a non- contact end effector,” Int. J. Adv. Manuf. Techno., vol. 25, no. 5, pp. 527–532, 2005.
  • [16] A. K. Jaiswal and B. Kumar, “ Design constraints of vacuum cup gripper an important material handling tool,’’ International Journal of Science and Technology, vol. 7, no. 1, pp. 1-8, 2017.
  • [17] R. Callies and S. Fronz, “ Recursive modelling and control of multi link manipulators with vacuum cup grippers,’’ Math. Comput. Simul., vol. 79, pp. 906–916, 2008.
  • [18] G. Mantriota, “Theoretical model of the grasp with vacuum cup gripper,’’ Mech. Mach. Theory, vol. 42, pp. 2–17, 2007.
  • [19] X.F. Brun and S.N. Melkote, “Analysis of stresses and breakage of crystalline silicon wafers during handling and transport’’, Solar Energy Materials and Solar Cells, vol. 93, no. 8, pp. 1238–1247, 2009.
  • [20] F.C. Possamai, R.T.S. Ferreira and A.T. Prata, “Pressure distribution in laminar radial flow through inclined disks’’, Int. J. Heat Fluid Flow, vol. 22, no. 4, pp. 440–449, 2001.
  • [21] A. Osyczka, “Evolutinory algorithms for single and multicriteria design optimization”, Structural and Multidisciplinary Optimization, vol. 24, no. 1, pp. 88-89, 2002.
  • [22] C. Lanni and M. Ceccarelli, “An optimization problem algorithm for kinematic design of mechanisms for two finger grippers’’, The Open Mech.Eng.J., vol. 3, no.2, pp.49-62, 2009.
  • [23] R. Datta and K. Deb, “Multi-objective design and analysis of robotic gripper configuration using an evolutionary classical approach’’, In pro 13th annual conference, genetic evolutionary comput. Dublin, irerland, 2011, pp. 1843-1850.
  • [24] J. M. Benjamin, “Pneumatic probe for handling flat objects,” U.S. Patent 3 425 736, Feb. 4, 1969.
  • [25] W. K. Mammel, “Pickup device for supporting work piece on a large of fluid,” U.S. Patent 3 431 009, March 4, 1969.
  • [26] T. Kuma, “Method of supporting and/or conveying a plate with fluid without physical contact,” U.S. Patent 4 735 449 Apr. 5, 1988.
  • [27] G. M Carlomagno, “Process for Applying Forces to Glass Sheets, in Particular at a High Temperature,” U.S. Patent 4 920 520 May 1, 1990.
  • [28] Y. Okugi, “Substrate transfer apparatus,” U.S. Patent 6 379 103 Apr. 30, 2002.
  • [29] Food Refrigeration and Process Engineering Research Center (2010). Airflow (Bernoulli) grippers for flat sheet foods. [Online]. Available: http://www.grimsby.ack.uk/documents/frperc/projects/airflow.pdf.
There are 29 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Şenol Ertürk 0000-0002-1029-9400

Fehmi Erzincanlı

Publication Date January 31, 2019
Published in Issue Year 2019

Cite

APA Ertürk, Ş., & Erzincanlı, F. (2019). Gözenekli Esnek Malzemelerin Bernoulli Prensibi Kullanılarak Temassız Taşınması Üzerine Literatür Taraması. Duzce University Journal of Science and Technology, 7(1), 594-605. https://doi.org/10.29130/dubited.488726
AMA Ertürk Ş, Erzincanlı F. Gözenekli Esnek Malzemelerin Bernoulli Prensibi Kullanılarak Temassız Taşınması Üzerine Literatür Taraması. DÜBİTED. January 2019;7(1):594-605. doi:10.29130/dubited.488726
Chicago Ertürk, Şenol, and Fehmi Erzincanlı. “Gözenekli Esnek Malzemelerin Bernoulli Prensibi Kullanılarak Temassız Taşınması Üzerine Literatür Taraması”. Duzce University Journal of Science and Technology 7, no. 1 (January 2019): 594-605. https://doi.org/10.29130/dubited.488726.
EndNote Ertürk Ş, Erzincanlı F (January 1, 2019) Gözenekli Esnek Malzemelerin Bernoulli Prensibi Kullanılarak Temassız Taşınması Üzerine Literatür Taraması. Duzce University Journal of Science and Technology 7 1 594–605.
IEEE Ş. Ertürk and F. Erzincanlı, “Gözenekli Esnek Malzemelerin Bernoulli Prensibi Kullanılarak Temassız Taşınması Üzerine Literatür Taraması”, DÜBİTED, vol. 7, no. 1, pp. 594–605, 2019, doi: 10.29130/dubited.488726.
ISNAD Ertürk, Şenol - Erzincanlı, Fehmi. “Gözenekli Esnek Malzemelerin Bernoulli Prensibi Kullanılarak Temassız Taşınması Üzerine Literatür Taraması”. Duzce University Journal of Science and Technology 7/1 (January 2019), 594-605. https://doi.org/10.29130/dubited.488726.
JAMA Ertürk Ş, Erzincanlı F. Gözenekli Esnek Malzemelerin Bernoulli Prensibi Kullanılarak Temassız Taşınması Üzerine Literatür Taraması. DÜBİTED. 2019;7:594–605.
MLA Ertürk, Şenol and Fehmi Erzincanlı. “Gözenekli Esnek Malzemelerin Bernoulli Prensibi Kullanılarak Temassız Taşınması Üzerine Literatür Taraması”. Duzce University Journal of Science and Technology, vol. 7, no. 1, 2019, pp. 594-05, doi:10.29130/dubited.488726.
Vancouver Ertürk Ş, Erzincanlı F. Gözenekli Esnek Malzemelerin Bernoulli Prensibi Kullanılarak Temassız Taşınması Üzerine Literatür Taraması. DÜBİTED. 2019;7(1):594-605.