Research Article
BibTex RIS Cite

ÇBAG Tabanlı Rüzgar Santralinde DGİY için Simetrik ve Asimetrik Arızaların Analizi

Year 2019, , 1431 - 1443, 31.07.2019
https://doi.org/10.29130/dubited.528531

Abstract

Şebeke bağlantılı rüzgar santrali
güç sistemi tarafında oluşan çeşitli gerilim düşmelerinden etkilenmektedir.
Özellikle simetrik ve asimetrik arızalarda rüzgar santralinin şebeke bağlantı
kriterlerinin belirlenmesi önemli bir konudur. Bu çalışmada, 2.3 MVA gücündeki
ÇBAG tabanlı rüzgar santralinin Düşük Gerilim İyileştirme Yeteneği (DGİY) için
simetrik ve asimetrik arızalar karşısındaki durumları incelenmiştir. Simetrik
arıza olarak 3 faz arıza ve 3 faz toprak arızası kullanılırken, Asimetrik
arızalar için 2 faz arızası ve 2 faz toprak arızası kullanılmıştır. Şebeke
tarafında meydana gelen arızalar esnasında 34.5 kV bara gerilimi ÇBAG çıkış
gerilimi, açısal hızı, elektriksel momenti, d-q eksen akım değişimleri
incelenmiştir. 3 faz arıza, 3 faz toprak, 2 faz arıza ve 2 faz toprak
arızasında elde edilen sonuçlar karşılaştırılmış ve yorumlanmıştır. Elde edilen
sonuçlarda 3 faz arıza analizinde 34.5 kV’luk bara gerilimi ve ÇBAG
parametrelerinin diğer arızalara nazaran daha çok etkilenmiştir.

References

  • [1] M. B. Salles, K. Hameyer, J. R. Cardoso, A. P. Grilo, C. Rahmann, “Crowbar system in doubly fed induction wind generators,” Energies, vol. 3, no. 4, pp. 738-753, 2010.
  • [2] G. Pannell, D. J. Atkinson, B. Zahawi, “Minimum-Threshold Crowbar for a Fault-Ride-Through Grid-Code-Compliant DFIG Wind Turbine,” IEEE Transactions on Energy Conversion, vol. 25, no. 3, pp. 750-759, 2010.
  • [3] M. K. Döşoğlu, A. B. Arsoy, “Modeling and Simulation of Static Loads for Wind Power Applications,” Neural Computing and Applications, vol. 25, no. 5, pp. 997-1006, 2014.
  • [4] M. K. Döşoğlu, A. B. Arsoy, “Rüzgar Santralinde Geçici Durumun İncelenmesi,” Enerji Verimliliği Kongresi, Kocaeli, Türkiye, 2011, ss. 43-47.
  • [5] M. K. Döşoğlu, M. Dursun, “Investigation with ZIP load Model of Voltage Stability Analysis in Wind Turbine integrated Power System,’’ 2018 2nd International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT), Ankara, Türkiye, 2018, ss. 1-5.
  • [6] G. Xu, L. Zhu, Z. Pan, “Virtual Synchronous Control Using SOGI for Standalone DFIG-Based Wind Turbines with Unbalanced and Nonlinear Loads,” 21st International Conference on Electrical Machines and Systems (ICEMS) Jeju, South Korea, 2018, pp. 1133-1138.
  • [7] A. Mishra, P. M. Tripathi, K. Chatterjee, “A review of Harmonic Elimination Techniques in Grid Connected Doubly Fed İnduction Generator Based Wind Energy System,” Renewable and Sustainable Energy Reviews, vol. 89, pp. 1-15, 2018.
  • [8] M. Liu, W. Pan, R. Quan, H. Li, T. Liu, G. Yang, “A Short-Circuit Calculation Method for DFIG-Based Wind Farms,” IEEE Access, vol. 6, pp. 52793-52800, 2018.
  • [9] L. Holdsworth, I. Charalambous, J. B. Ekanayake, N. Jenkins, “Power System Fault Ride Through Capabilities of Induction Generator Based Wind Turbines,” Wind Engineering, vol. 28, no. 4, pp. 399-409, 2004.
  • [10] L. R. Chang-Chien, C. M. Hung, Y. C. Yin, “Dynamic Reserve Allocation for System Contingency by DFIG Wind Farms,” IEEE Transactions on Power Systems, vol. 23, no. 2, pp. 729-736, 2008.
  • [11] N. G. Khani, M. Abedi, G. B. Gharehpetian, G. H. Riahy, “Analyzing The Effect of Wind Farm to Improve Transmission Line Stability in Contingencies,” Indian Journal of Science and Technology, vol. 8, no. 11, pp. 1-6, 2015.
  • [12] M. Mohseni, S. M. Islam, M. A. Masoum, “Impacts of Symmetrical and asymmetrical Voltage Sags on DFIG-Based Wind Turbines Considering Phase-Angle Jump, Voltage Recovery, and Sag Parameters,” IEEE Transactions on Power Electronics, vol. 26, no. 5, pp. 1587-1598, 2011.
  • [13] S. Xiao, H. Geng, H. Zhou, G. Yang, “Analysis of the control limit for rotor-side converter of doubly fed induction generator-based wind energy conversion system under various voltage dips.” IET Renewable Power Generation, vol.7, no. 1, pp. 71-81, 2013.
  • [14] F. Wu, X. P. Zhang, K. Godfrey, P. Ju, “Small signal stability analysis and optimal control of a wind turbine with doubly fed induction generator,” IET Generation Transmission and Distribution, vol. 1, no. 5, pp. 751-760, 2007.
  • [15] P. C. Krause, Analysis of Electric Machinery, 2th ed., New York, USA: McGraw-Hill, 2002.
  • [16] J. B. Ekanayake, L. Holdsworth, N. Jenkins, “Comparison of 5th Order and 3rd Order Machine Models for Double Fed Induction Generators (DFIG) Wind Turbines,” Electric Power Systems Research, vol. 67, no. 3, pp. 207-215, 2003.
  • [17] J. G. Slootweg, H. Polinder, W. L. Kling, “Dynamic Modelling of A Wind Turbine with Doubly Fed Induction Generator,” 2001 Power Engineering Society Summer Meeting, Canada, 2001.
Year 2019, , 1431 - 1443, 31.07.2019
https://doi.org/10.29130/dubited.528531

Abstract

References

  • [1] M. B. Salles, K. Hameyer, J. R. Cardoso, A. P. Grilo, C. Rahmann, “Crowbar system in doubly fed induction wind generators,” Energies, vol. 3, no. 4, pp. 738-753, 2010.
  • [2] G. Pannell, D. J. Atkinson, B. Zahawi, “Minimum-Threshold Crowbar for a Fault-Ride-Through Grid-Code-Compliant DFIG Wind Turbine,” IEEE Transactions on Energy Conversion, vol. 25, no. 3, pp. 750-759, 2010.
  • [3] M. K. Döşoğlu, A. B. Arsoy, “Modeling and Simulation of Static Loads for Wind Power Applications,” Neural Computing and Applications, vol. 25, no. 5, pp. 997-1006, 2014.
  • [4] M. K. Döşoğlu, A. B. Arsoy, “Rüzgar Santralinde Geçici Durumun İncelenmesi,” Enerji Verimliliği Kongresi, Kocaeli, Türkiye, 2011, ss. 43-47.
  • [5] M. K. Döşoğlu, M. Dursun, “Investigation with ZIP load Model of Voltage Stability Analysis in Wind Turbine integrated Power System,’’ 2018 2nd International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT), Ankara, Türkiye, 2018, ss. 1-5.
  • [6] G. Xu, L. Zhu, Z. Pan, “Virtual Synchronous Control Using SOGI for Standalone DFIG-Based Wind Turbines with Unbalanced and Nonlinear Loads,” 21st International Conference on Electrical Machines and Systems (ICEMS) Jeju, South Korea, 2018, pp. 1133-1138.
  • [7] A. Mishra, P. M. Tripathi, K. Chatterjee, “A review of Harmonic Elimination Techniques in Grid Connected Doubly Fed İnduction Generator Based Wind Energy System,” Renewable and Sustainable Energy Reviews, vol. 89, pp. 1-15, 2018.
  • [8] M. Liu, W. Pan, R. Quan, H. Li, T. Liu, G. Yang, “A Short-Circuit Calculation Method for DFIG-Based Wind Farms,” IEEE Access, vol. 6, pp. 52793-52800, 2018.
  • [9] L. Holdsworth, I. Charalambous, J. B. Ekanayake, N. Jenkins, “Power System Fault Ride Through Capabilities of Induction Generator Based Wind Turbines,” Wind Engineering, vol. 28, no. 4, pp. 399-409, 2004.
  • [10] L. R. Chang-Chien, C. M. Hung, Y. C. Yin, “Dynamic Reserve Allocation for System Contingency by DFIG Wind Farms,” IEEE Transactions on Power Systems, vol. 23, no. 2, pp. 729-736, 2008.
  • [11] N. G. Khani, M. Abedi, G. B. Gharehpetian, G. H. Riahy, “Analyzing The Effect of Wind Farm to Improve Transmission Line Stability in Contingencies,” Indian Journal of Science and Technology, vol. 8, no. 11, pp. 1-6, 2015.
  • [12] M. Mohseni, S. M. Islam, M. A. Masoum, “Impacts of Symmetrical and asymmetrical Voltage Sags on DFIG-Based Wind Turbines Considering Phase-Angle Jump, Voltage Recovery, and Sag Parameters,” IEEE Transactions on Power Electronics, vol. 26, no. 5, pp. 1587-1598, 2011.
  • [13] S. Xiao, H. Geng, H. Zhou, G. Yang, “Analysis of the control limit for rotor-side converter of doubly fed induction generator-based wind energy conversion system under various voltage dips.” IET Renewable Power Generation, vol.7, no. 1, pp. 71-81, 2013.
  • [14] F. Wu, X. P. Zhang, K. Godfrey, P. Ju, “Small signal stability analysis and optimal control of a wind turbine with doubly fed induction generator,” IET Generation Transmission and Distribution, vol. 1, no. 5, pp. 751-760, 2007.
  • [15] P. C. Krause, Analysis of Electric Machinery, 2th ed., New York, USA: McGraw-Hill, 2002.
  • [16] J. B. Ekanayake, L. Holdsworth, N. Jenkins, “Comparison of 5th Order and 3rd Order Machine Models for Double Fed Induction Generators (DFIG) Wind Turbines,” Electric Power Systems Research, vol. 67, no. 3, pp. 207-215, 2003.
  • [17] J. G. Slootweg, H. Polinder, W. L. Kling, “Dynamic Modelling of A Wind Turbine with Doubly Fed Induction Generator,” 2001 Power Engineering Society Summer Meeting, Canada, 2001.
There are 17 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Kenan Döşoğlu 0000-0001-8804-7070

Publication Date July 31, 2019
Published in Issue Year 2019

Cite

APA Döşoğlu, K. (2019). ÇBAG Tabanlı Rüzgar Santralinde DGİY için Simetrik ve Asimetrik Arızaların Analizi. Duzce University Journal of Science and Technology, 7(3), 1431-1443. https://doi.org/10.29130/dubited.528531
AMA Döşoğlu K. ÇBAG Tabanlı Rüzgar Santralinde DGİY için Simetrik ve Asimetrik Arızaların Analizi. DÜBİTED. July 2019;7(3):1431-1443. doi:10.29130/dubited.528531
Chicago Döşoğlu, Kenan. “ÇBAG Tabanlı Rüzgar Santralinde DGİY için Simetrik Ve Asimetrik Arızaların Analizi”. Duzce University Journal of Science and Technology 7, no. 3 (July 2019): 1431-43. https://doi.org/10.29130/dubited.528531.
EndNote Döşoğlu K (July 1, 2019) ÇBAG Tabanlı Rüzgar Santralinde DGİY için Simetrik ve Asimetrik Arızaların Analizi. Duzce University Journal of Science and Technology 7 3 1431–1443.
IEEE K. Döşoğlu, “ÇBAG Tabanlı Rüzgar Santralinde DGİY için Simetrik ve Asimetrik Arızaların Analizi”, DÜBİTED, vol. 7, no. 3, pp. 1431–1443, 2019, doi: 10.29130/dubited.528531.
ISNAD Döşoğlu, Kenan. “ÇBAG Tabanlı Rüzgar Santralinde DGİY için Simetrik Ve Asimetrik Arızaların Analizi”. Duzce University Journal of Science and Technology 7/3 (July 2019), 1431-1443. https://doi.org/10.29130/dubited.528531.
JAMA Döşoğlu K. ÇBAG Tabanlı Rüzgar Santralinde DGİY için Simetrik ve Asimetrik Arızaların Analizi. DÜBİTED. 2019;7:1431–1443.
MLA Döşoğlu, Kenan. “ÇBAG Tabanlı Rüzgar Santralinde DGİY için Simetrik Ve Asimetrik Arızaların Analizi”. Duzce University Journal of Science and Technology, vol. 7, no. 3, 2019, pp. 1431-43, doi:10.29130/dubited.528531.
Vancouver Döşoğlu K. ÇBAG Tabanlı Rüzgar Santralinde DGİY için Simetrik ve Asimetrik Arızaların Analizi. DÜBİTED. 2019;7(3):1431-43.