Research Article
BibTex RIS Cite
Year 2019, , 1658 - 1670, 31.07.2019
https://doi.org/10.29130/dubited.551227

Abstract

References

  • [1] S. Shiri, M.H. Abbasi, A. Monshi, F. Karimzadeh, Synthesis of the CaAl2O4 nanoceramic compound using high-energy ball milling with subsequent annealing, Advanced Powder Technology, vol. 25, pp. 338-341, 2014.
  • [2] A. Ranjbar, M. Rezaei, Low temperature synthesis of nanocrystalline calcium aluminate compounds with surfactant-assisted precipitation method, Advanced Powder Technology, vol. 25, pp. 467-471, 2014.
  • [3] A. Ranjbar, M. Rezaei, Dry reforming reaction over nickel catalysts supported on nanocrystalline calcium aluminates with different CaO/Al2O3 ratios, Journal of Natural Gas Chemistry, vol. 21, pp. 178-183, 2012.
  • [4] M.A. Rodríguez, C.L. Aguilar, M.A. Aghayan, Solution combustion synthesis and sintering behavior of CaAl2O4, Ceramics International, vol. 38, pp. 395-399, 2012.
  • [5] M.F. Zawrah, N.M. Khalil, Synthesis and characterization of calcium aluminate nanoceramics for new applications, Ceramics International, vol. 33, pp. 1419-1425, 2007.
  • [6] M.F. Zawrah, A.B. Shehata, E.A. Kishar, R.N. Yamani, Synthesis, hydration and sintering of calcium aluminate nanopowder for advanced applications, Comptes Rendus Chimie, vol. 14, pp. 611-618, 2011.
  • [7] K. Vishista, F.D. Gnanam, H. Awaji, Sol–Gel Synthesis and Characterization of Alumina–Calcium Hexaaluminate Composites, Journal of the American Ceramic Society, vol.88, pp. 1175-1179, 2005.
  • [8] J. Chandradass, D.S. Bae, K.H. Kim, Synthesis of calcium hexaaluminate (CaAl12O19) via reverse micelle process, Journal of Non-Crystalline Solids, vol. 355, pp. 2429-2432, 2009.
  • [9] H.C. Yi, J.Y. Guigné, J.J. Moore, F.D. Schowengerdt, L.A. Robinson, A.R. Manerbino, Preparation of calcium aluminate matrix composites by combustion synthesis, Journal of Materials Science, vol. 37, pp. 4537-4543, 2002.
  • [10] D.E. Burkes*, J.J. Moore, Auto-Ignition Combustion Synthesis of Calcium Aluminate Ceramic Powders, Combustion Science and Technology, vol. 180, pp. 143-155, 2007.
  • [11] J.M. Rivas Mercury, A.H. De Aza, P. Pena, Synthesis of CaAl2O4 from powders: Particle size effect, Journal of the European Ceramic Society, vol. 25, pp. 3269-3279, 2005.
  • [12] T. Mimani, K.C. Patil, Solutıon Combustıon Synthesıs Of Nanoscale Oxides And Their Composites, Mater.Physics Mech. , vol. 4, pp. 134-137, 2001.
  • [13] B.M. Abu-Zied, Preparation of cadmium chromite spinel: a combustion approach, Colloids and Surfaces A: Physicochem. Eng. Aspects, vol. 211, pp. 27-42, 2002.
  • [14] S.M. Zanetti, E.I. Santiago, L.O.S. Bulhões, J.A. Varela, E.R. Leite, E. Longo, Preparation and characterization of nanosized SrBi2Nb2O9 powder by the combustion synthesis, Materials Letters, vol. 57, pp. 2812-2816, 2003.
  • [15] X. Yu, C. Zhou, X. He, Z. Peng, S.-P. Yang, The influence of some processing conditions on luminescence of SrAl2O4:Eu2+ nanoparticles produced by combustion method, Materials Letters, vol. 58, pp. 1087-1091, 2004.
  • [16] N. Kasapoglu, B. Birsöz, A. Baykal, Y. Köseoglu, M.S. Toprak, Synthesis and magnetic properties of octahedral ferrite NiχCo1−χFe2O4 nanocrystals, Central European Journal of Chemistry, vol. 5, pp. 570-580, 2007.
  • [17] A.C.F.M. Costa, D.A. Vieira, V.J. Silva, V.C.S. Diniz, R.H.G.A. Kiminami, L. Gama, Synthesis of the Ni–Zn–Sm ferrites using microwaves energy, Journal of Alloys and Compounds, vol. 483, pp. 37-39, 2009.
  • [18] C.-C. Hwang, T.-Y. Wu, J. Wan, J.-S. Tsai, Development of a novel combustion synthesis method for synthesizing of ceramic oxide powders, Materials Science and Engineering: B, vol. 111, pp. 49-56, 2004.
  • [19] Y. Ma, E. Vileno, S.L. Suib, P.K. Dutta, Synthesis of Tetragonal BaTiO3 by Microwave Heating and Conventional Heating, Chem. Mater. , vol. 9, pp. 3023-3031, 1997.
  • [20] Z. Karcıoğlu Karakaş, R. Boncukcuoğlu, İ.H. Karakaş, M. Ertuğrul, The effects of heat treatment on the synthesis of nickel ferrite (NiFe2O4) nanoparticles using the microwave assisted combustion method, Journal of Magnetism and Magnetic Materials, vol. 374, pp. 298-306, 2015.
  • [21] M. Goodarz Naseri, E.B. Saion, H. Abbastabar Ahangar, A.H. Shaari, M. Hashim, Simple Synthesis and Characterization of Cobalt Ferrite Nanoparticles by a Thermal Treatment Method, Journal of Nanomaterials, vol. 2010, pp. 1-8, 2010.
  • [22] J.B. Silva, W.d. Brito, N.D.S. Mohallem, Influence of heat treatment on cobalt ferrite ceramic powders, Materials Science and Engineering: B, vol. 112, pp. 182-187, 2004.

Mikrodalga Destekli Yakma Metoduyla Kalsiyum Aluminat (CaAl2O4) Spinel Seramiklerin Sentezi ve Karakterizasyonu

Year 2019, , 1658 - 1670, 31.07.2019
https://doi.org/10.29130/dubited.551227

Abstract

Bu deneysel çalışmada, spinel
seramiklerin önemli bir türü olan kalsiyum aluminat (CaAl2O4)
nanopartiküllerin basit, hızlı ve etkili bir sentez tekniği olan mikrodalga destekli
yakma metoduyla sentezlenebilirliği ve karakterizasyonu araştırılmıştır. Bu
amaçla yakıt olarak üre kullanılarak CaAl2O4
nanopartiküller mikrodalga destekli yakma metoduyla sentezlenmiştir. Elde
edilen ürünler TGA, XRD, FT-IR, SEM ve TEM teknikleri ile kapsamlı bir şekilde
analiz edilmiştir.  Bu üründe yapılan XRD
ve FT-IR analizleri uygulanan mikrodalga etkisinin ürünlerin tam dönüşümünde
tek başına yeterli olmadığı belirlenmiştir. Buna göre,  elde edilen nanopartiküllerin yapısal ve
morfolojik özelliklerini iyileştirmek ve ürüne dönüşüm oranını arttırmak için
300
°C ile 1000°C derece arasında değişen sıcaklıklarda ısıl işleme
tabi tutulmuştur. 800°C ve üzerindeki sıcaklıklarda uygulanan ısıl işlem
sonrasında elde edilen partiküllerin tamamen kalsiyum aluminat nanopartiküllere
dönüştükleri belirlenmiştir.

References

  • [1] S. Shiri, M.H. Abbasi, A. Monshi, F. Karimzadeh, Synthesis of the CaAl2O4 nanoceramic compound using high-energy ball milling with subsequent annealing, Advanced Powder Technology, vol. 25, pp. 338-341, 2014.
  • [2] A. Ranjbar, M. Rezaei, Low temperature synthesis of nanocrystalline calcium aluminate compounds with surfactant-assisted precipitation method, Advanced Powder Technology, vol. 25, pp. 467-471, 2014.
  • [3] A. Ranjbar, M. Rezaei, Dry reforming reaction over nickel catalysts supported on nanocrystalline calcium aluminates with different CaO/Al2O3 ratios, Journal of Natural Gas Chemistry, vol. 21, pp. 178-183, 2012.
  • [4] M.A. Rodríguez, C.L. Aguilar, M.A. Aghayan, Solution combustion synthesis and sintering behavior of CaAl2O4, Ceramics International, vol. 38, pp. 395-399, 2012.
  • [5] M.F. Zawrah, N.M. Khalil, Synthesis and characterization of calcium aluminate nanoceramics for new applications, Ceramics International, vol. 33, pp. 1419-1425, 2007.
  • [6] M.F. Zawrah, A.B. Shehata, E.A. Kishar, R.N. Yamani, Synthesis, hydration and sintering of calcium aluminate nanopowder for advanced applications, Comptes Rendus Chimie, vol. 14, pp. 611-618, 2011.
  • [7] K. Vishista, F.D. Gnanam, H. Awaji, Sol–Gel Synthesis and Characterization of Alumina–Calcium Hexaaluminate Composites, Journal of the American Ceramic Society, vol.88, pp. 1175-1179, 2005.
  • [8] J. Chandradass, D.S. Bae, K.H. Kim, Synthesis of calcium hexaaluminate (CaAl12O19) via reverse micelle process, Journal of Non-Crystalline Solids, vol. 355, pp. 2429-2432, 2009.
  • [9] H.C. Yi, J.Y. Guigné, J.J. Moore, F.D. Schowengerdt, L.A. Robinson, A.R. Manerbino, Preparation of calcium aluminate matrix composites by combustion synthesis, Journal of Materials Science, vol. 37, pp. 4537-4543, 2002.
  • [10] D.E. Burkes*, J.J. Moore, Auto-Ignition Combustion Synthesis of Calcium Aluminate Ceramic Powders, Combustion Science and Technology, vol. 180, pp. 143-155, 2007.
  • [11] J.M. Rivas Mercury, A.H. De Aza, P. Pena, Synthesis of CaAl2O4 from powders: Particle size effect, Journal of the European Ceramic Society, vol. 25, pp. 3269-3279, 2005.
  • [12] T. Mimani, K.C. Patil, Solutıon Combustıon Synthesıs Of Nanoscale Oxides And Their Composites, Mater.Physics Mech. , vol. 4, pp. 134-137, 2001.
  • [13] B.M. Abu-Zied, Preparation of cadmium chromite spinel: a combustion approach, Colloids and Surfaces A: Physicochem. Eng. Aspects, vol. 211, pp. 27-42, 2002.
  • [14] S.M. Zanetti, E.I. Santiago, L.O.S. Bulhões, J.A. Varela, E.R. Leite, E. Longo, Preparation and characterization of nanosized SrBi2Nb2O9 powder by the combustion synthesis, Materials Letters, vol. 57, pp. 2812-2816, 2003.
  • [15] X. Yu, C. Zhou, X. He, Z. Peng, S.-P. Yang, The influence of some processing conditions on luminescence of SrAl2O4:Eu2+ nanoparticles produced by combustion method, Materials Letters, vol. 58, pp. 1087-1091, 2004.
  • [16] N. Kasapoglu, B. Birsöz, A. Baykal, Y. Köseoglu, M.S. Toprak, Synthesis and magnetic properties of octahedral ferrite NiχCo1−χFe2O4 nanocrystals, Central European Journal of Chemistry, vol. 5, pp. 570-580, 2007.
  • [17] A.C.F.M. Costa, D.A. Vieira, V.J. Silva, V.C.S. Diniz, R.H.G.A. Kiminami, L. Gama, Synthesis of the Ni–Zn–Sm ferrites using microwaves energy, Journal of Alloys and Compounds, vol. 483, pp. 37-39, 2009.
  • [18] C.-C. Hwang, T.-Y. Wu, J. Wan, J.-S. Tsai, Development of a novel combustion synthesis method for synthesizing of ceramic oxide powders, Materials Science and Engineering: B, vol. 111, pp. 49-56, 2004.
  • [19] Y. Ma, E. Vileno, S.L. Suib, P.K. Dutta, Synthesis of Tetragonal BaTiO3 by Microwave Heating and Conventional Heating, Chem. Mater. , vol. 9, pp. 3023-3031, 1997.
  • [20] Z. Karcıoğlu Karakaş, R. Boncukcuoğlu, İ.H. Karakaş, M. Ertuğrul, The effects of heat treatment on the synthesis of nickel ferrite (NiFe2O4) nanoparticles using the microwave assisted combustion method, Journal of Magnetism and Magnetic Materials, vol. 374, pp. 298-306, 2015.
  • [21] M. Goodarz Naseri, E.B. Saion, H. Abbastabar Ahangar, A.H. Shaari, M. Hashim, Simple Synthesis and Characterization of Cobalt Ferrite Nanoparticles by a Thermal Treatment Method, Journal of Nanomaterials, vol. 2010, pp. 1-8, 2010.
  • [22] J.B. Silva, W.d. Brito, N.D.S. Mohallem, Influence of heat treatment on cobalt ferrite ceramic powders, Materials Science and Engineering: B, vol. 112, pp. 182-187, 2004.
There are 22 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

İbrahim Hakki Karakaş 0000-0001-6876-7871

Publication Date July 31, 2019
Published in Issue Year 2019

Cite

APA Karakaş, İ. H. (2019). Mikrodalga Destekli Yakma Metoduyla Kalsiyum Aluminat (CaAl2O4) Spinel Seramiklerin Sentezi ve Karakterizasyonu. Duzce University Journal of Science and Technology, 7(3), 1658-1670. https://doi.org/10.29130/dubited.551227
AMA Karakaş İH. Mikrodalga Destekli Yakma Metoduyla Kalsiyum Aluminat (CaAl2O4) Spinel Seramiklerin Sentezi ve Karakterizasyonu. DÜBİTED. July 2019;7(3):1658-1670. doi:10.29130/dubited.551227
Chicago Karakaş, İbrahim Hakki. “Mikrodalga Destekli Yakma Metoduyla Kalsiyum Aluminat (CaAl2O4) Spinel Seramiklerin Sentezi Ve Karakterizasyonu”. Duzce University Journal of Science and Technology 7, no. 3 (July 2019): 1658-70. https://doi.org/10.29130/dubited.551227.
EndNote Karakaş İH (July 1, 2019) Mikrodalga Destekli Yakma Metoduyla Kalsiyum Aluminat (CaAl2O4) Spinel Seramiklerin Sentezi ve Karakterizasyonu. Duzce University Journal of Science and Technology 7 3 1658–1670.
IEEE İ. H. Karakaş, “Mikrodalga Destekli Yakma Metoduyla Kalsiyum Aluminat (CaAl2O4) Spinel Seramiklerin Sentezi ve Karakterizasyonu”, DÜBİTED, vol. 7, no. 3, pp. 1658–1670, 2019, doi: 10.29130/dubited.551227.
ISNAD Karakaş, İbrahim Hakki. “Mikrodalga Destekli Yakma Metoduyla Kalsiyum Aluminat (CaAl2O4) Spinel Seramiklerin Sentezi Ve Karakterizasyonu”. Duzce University Journal of Science and Technology 7/3 (July 2019), 1658-1670. https://doi.org/10.29130/dubited.551227.
JAMA Karakaş İH. Mikrodalga Destekli Yakma Metoduyla Kalsiyum Aluminat (CaAl2O4) Spinel Seramiklerin Sentezi ve Karakterizasyonu. DÜBİTED. 2019;7:1658–1670.
MLA Karakaş, İbrahim Hakki. “Mikrodalga Destekli Yakma Metoduyla Kalsiyum Aluminat (CaAl2O4) Spinel Seramiklerin Sentezi Ve Karakterizasyonu”. Duzce University Journal of Science and Technology, vol. 7, no. 3, 2019, pp. 1658-70, doi:10.29130/dubited.551227.
Vancouver Karakaş İH. Mikrodalga Destekli Yakma Metoduyla Kalsiyum Aluminat (CaAl2O4) Spinel Seramiklerin Sentezi ve Karakterizasyonu. DÜBİTED. 2019;7(3):1658-70.