Review
BibTex RIS Cite

Powder Metallurgy Processing of Magnesium and Its Alloys

Year 2020, , 522 - 534, 31.01.2020
https://doi.org/10.29130/dubited.569098

Abstract

In this study, the usability of powder metal magnesium
alloys in industrial applications was investigated. It is well known that there
are difficulties in the plastic deformation of magnesium, due to its hexagonal
closed package crystal structure. So it is thought that powder metallurgy can
be used to overcome these aforementioned problems. Hence, the studies on the
powder metallurgy processing of magnesium alloys were compiled. The findings of
the studies on eliminating the surface oxide layer formed during the production
of magnesium particles are summarized.
As a result, when more sophisticated
methods or secondary processes are used rather than press-sinter methods, it is
possible to produce Mg alloys with higher strength than that of casted
counterparts. Also, it is expected that in the near future along with the
development of new kind of particulate material processing methods  (such as selective laser sintering, direct
energy deposition) Mg alloys will be used in much greater amounts.

References

  • [1] US Department of Energy, “Global Transportation Energy Consumption: Examination of Scenarios to 2040 using ITEDD,” 2017. [Online]. Erişim: https://www.eia.gov/analysis/studies/transportation/scenarios/pdf/globaltransportation.pdf
  • [2] M. Höök ve X. Tang, “Depletion of fossil fuels and anthropogenic climate change-A review,” Energy Policy, c. 52, ss. 797–809, 2013.
  • [3] J. C. Escobar, E. S. Lora, O. J. Venturini, E. E. Yáñez, E. F. Castillo, and O. Almazan, “Biofuels: Environment, technology and food security,” Renewable and Sustainable Energy Reviews, c. 13, s. 6–7, ss. 1275–1287, 2009.
  • [4] P. Morone ve L. Cottoni, “Biofuels,” in Handbook of Biofuels Production, 2. baskı, R. Luque, C. Lin, K. Wilson, and J. Clark, Eds. Cambridge: Elsevier, 2016, ss. 61–83.
  • [5] A. Jambor ve M. Beyer, “New cars — new materials,” Materials & Design, c. 18, s. 4–6, ss. 203–209, 1997.
  • [6] “Light-Duty Automotive Technology , Carbon Dioxide Emissions , and Fuel Economy Trends : 1975 Through 2011,” 2014.
  • [7] M. L. Anderson ve M. Auffhammer, “Pounds that kill: The external costs of vehicle weight,” Review of Economic Studies, c. 81, s. 2, ss. 535–571, 2013.
  • [8] W. L. Dalmijn ve T. P. R. De Jong, “The development of vehicle recycling in Europe: Sorting, shredding, and separation,” JOM, c. 59, s. 11, ss. 52–56, 2007.
  • [9] A. I. Taub ve A. A. Luo, “Advanced lightweight materials and manufacturing processes for automotive applications,” MRS Bulletin, c. 40, s. 12, ss. 1045–1054, 2015.
  • [10] P. Seyfried, E. J. M. Taiss, A. C. Calijorne, F.-P. Li, and Q.-F. Song, “Light weighting opportunities and material choice for commercial vehicle frame structures from a design point of view,” Advances in Manufacturing, c. 3, s. 1, ss. 19–26, 2015.
  • [11] A. H. Musfirah ve A. . Jaharah, “Magnesium and Aluminum Alloys in Automotive Industry,” Journal of Applied Science Research, c. 8, s. 9, ss. 4865–4875, 2012.
  • [12] G. S. Cole ve A. M. Sherman, “Light weight materials for automotive applications,” Materials Characterization, c. 35, s. 1, ss. 3–9, 1995.
  • [13] I. Polmear, D. StJohn, J. F. Nie, and M. Qian, “The Light Metals,” in Light Alloys, 5. baskı., Boston: Elsevier, 2017, ss. 1–29.
  • [14] M. K. Kulekci, “Magnesium and its alloys applications in automotive industry,” The International Journal of Advanced Manufacturing Technology, c. 39, s. 9, ss. 851–865, 2008.
  • [15] W. Miller ve diğ. “Recent development in aluminium alloys for the automotive industry,” Materials Science and Engineering: A, c. 280, s. 1, ss. 37–49, 2000.
  • [16] I. Polmear, “Aluminium Alloys--A Century of Age Hardening,” Materials forum, c. 28, ss. 1–14, 2004.
  • [17] M. Easton, W. Qian Song, ve T. Abbott, “A comparison of the deformation of magnesium alloys with aluminium and steel in tension, bending and buckling,” Materials & Design, c. 27, s. 10, ss. 935–946, 2006.
  • [18] G. Yarkadaş, L. C. Kumruoğlu, ve H. Şevik, “The effect of Cerium addition on microstructure and mechanical properties of high pressure die cast Mg-5Sn alloy,” Materials Characterization, c. 136, s. November 2017, ss. 152–156, 2018.
  • [19] G. Germen, G. Yarkadaş, ve H. Şevik, “Influence of strontium addition on the wear behavior of Mg-3Al-3Sn alloys produced by gravity casting,” Materials Testing, c. 57, s. 11–12, ss. 997–1000, 2015.
  • [20] A. Gökçe, “Metallurgical Assessment of Novel Mg–Sn–La Alloys Produced by High-Pressure Die Casting,” Metals and Materials International, 2019, DOI:10.1007/s12540-019-00539-1.
  • [21] S. Özarslan, H. Şevik, ve İ. Sorar, “Microstructure, mechanical and corrosion properties of novel Mg-Sn-Ce alloys produced by high pressure die casting,” Materials Science and Engineering: C, c. 105, p. 110064, 2019.
  • [22] F. Bonollo, N. Gramegna, ve G. Timelli, “High-pressure die-casting: Contradictions and challenges,” Jom, c. 67, s. 5, ss. 901–908, 2015.
  • [23] B. L. Mordike ve T. Ebert, “Magnesium,” Materials Science and Engineering: A, c. 302, s. 1, ss. 37–45, 2001.
  • [24] A. Gökçe, F. Fındık, ve A. O. Kurt, “Alüminyum ve Alaşımlarının Toz Metalurjisi İşlemleri - Powder Metallurgy Processing of Aluminum Alloys,” Engineer&Machinery, c. 58, s. 686, ss. 21–47, 2017.
  • [25] R. M. German, Sintering: from Empirical Observations to Scientific Principles, Del Mar, CA, USA: Elsevier, 2014.
  • [26] “Economic considerations for powder metallurgy structural parts,” Powder Metallurgy Review. [Online]. Erişim: https://www.pm-review.com/introduction-to-powder-metallurgy/economic-considerations-for-powder-metallurgy-structural-parts/.
  • [27] T. Schubert ve diğ, “P/M aluminium structural parts for automotive application,” in Euro PM 2004, 2004, ss. 627–632.
  • [28] H. . Yao, Y. Li, ve A. T. . Wee, “An XPS investigation of the oxidation/corrosion of melt-spun Mg,” Applied Surface Science, c. 158, s. 1–2, ss. 112–119, 2000.
  • [29] P. Burke, C. Petit, S. Yakoubi, ve G. J. Kipouros, “Thermal Effects of Calcium and Yttrium Additions on the Sintering of Magnesium Powder,” Magnesium Technology 2011, ss. 481–484, 2016.
  • [30] P. Burke, “Investigation of the Sintering Fundamentals of Magnesium,” MS Thesis, Dept. of Process Engineering, Dalhousie University, Halifax, Canada, 2011.
  • [31] R. Yılmaz, A. Gökçe, ve H. Kapdıbaş, “The Effect of Ferro-Molybdenum Addition on the Microstructure and Mechanical Properties of Sintered Steel,” Advanced Materials Research, c. 23, ss. 71–74, 2007.
  • [32] A. Gökçe, F. Findik, ve A. O. Kurt, “Effects of Sintering Temperature and Time on the Properties of Al-Cu PM Alloy,” Practical Metallography, c. 54, s. 8, ss. 533–551, 2017.
  • [33] R. N. Lumley, T. B. Sercombe, ve G. B. Schaffer, “Surface oxide and the role of magnesium during the sintering of aluminum,” Metallurgical and Materials Transactions A, c. 30, s. 2, ss. 457–463, 1999.
  • [34] P. Burke, J. Li, ve G. J. Kipouros, “DSC and FIB/TEM investigation of calcium and yttrium additions in the sintering of magnesium powder,” Canadian Metallurgical Quarterly, c. 55, s. 1, ss. 45–52, 2016.
  • [35] O. S. Gökçe, “Sıcak Pres ile Partikül Takviyeli Magnezyum Kompozitlerin Üretimi ve Kaplanması,” Yüksek lisans tezi, Metalurji ve Malzeme Mühendisliği. Ana bilim dalı, Kocaeli Üniversitesi, Kocaeli, Turkey, 2018.
  • [36] N. Taşkın, “Magnezyum Talaşlarından Malzeme Üretimi,” Yüksek lisans tezi, Metalurji ve Malzeme Mühendisliği. Ana bilim dalı, İstanbul Teknik Üniversitesi, İstanbul, Turkey, 2012.
  • [37] T. Iwaoka ve M. Nakamura, “Effect of Compaction Temperature on Sinterability of Magnesium and Aluminum Powder Mixtures by Warm Compaction Method,” Materials Transactions, c. 52, s. 5, ss. 943–947, 2011.
  • [38] M. Březina ve diğ., “Characterization of Powder Metallurgy Processed Pure Magnesium Materials for Biomedical Applications,” Metals, c. 7, s. 11, p. 461, 2017.
  • [39] P. Burke, G. J. Kipouros, D. Fancelli, ve V. Laverdiere, “Sintering Fundamentals of Magnesium Powders,” Canadian Metallurgical Quarterly, c. 48, s. 2, ss. 123–132, 2014.
  • [40] A. A. Nayeb-Hashemi ve J. B. Clark, “The Ca−Mg (Calcium-Magnesium) system,” Bulletin of Alloy Phase Diagrams, c. 8, s. 1, ss. 58–65, 1987.
  • [41] M. Wolff, T. Ebel, ve M. Dahms, “Sintering of magnesium,” Advanced Engineering Materials, c. 12, s. 9, ss. 829–836, 2010.
  • [42] Z. Li, X. Gu, S. Lou, ve Y. Zheng, “The development of binary Mg-Ca alloys for use as biodegradable materials within bone,” Biomaterials, c. 29, s. 10, ss. 1329–1344, 2008.
  • [43] T. B. Abbott, M. A. Easton, ve C. H. Caceres, “Designing with Magnesium,” in Handbook of Mechanical Alloy Design, s. September, G. E. Totten, L. Xie, and K. Funatani, Eds. CRC Press, 2004, ss. 487–538.
  • [44] H. Westengen, “Magnesium alloys for structural applications ; recent advances,” Le Journal de Physique IV, c. 03, s. C7, ss. C7-491-C7-501, 1993.
  • [45] L. Lu, C. Y. H. Lim, ve W. M. Yeong, “Effect of reinforcements on strength of Mg9%Al composites,” Composite Structures, c. 66, s. 1–4, ss. 41–45, 2004.
  • [46] C. Moosbrugger, Ed., Engineering Properties of Magnesium Alloys, 1. baskı, Ohio, USA: ASM International, 2017.
  • [47] A. Gökçe, F. Findik, ve A. O. Kurt, “Sintering and aging behaviours of Al4CuXMg PM alloy,” Canadian Metallurgical Quarterly, c. 55, s. 4, ss. 391–401, 2016.
  • [48] D. Singh, C. Suryanarayana, L. Mertus, ve R.-H. Chen, “Extended homogeneity range of intermetallic phases in mechanically alloyed Mg–Al alloys,” Intermetallics, c. 11, s. 4, ss. 373–376, 2003.
  • [49] W. Xie, Y. Liu, D. S. Li, J. Zhang, Z. W. Zhang, ve J. Bi, “Influence of sintering routes to the mechanical properties of magnesium alloy and its composites produced by PM technique,” Journal of Alloys and Compounds, c. 431, s. 1–2, ss. 162–166, 2007.
  • [50] J. Chen, C.-G. Bao, Y. Wang, J.-L. Liu, ve C. Suryanarayana, “Microstructure and Lattice Parameters of AlN Particle-Reinforced Magnesium Matrix Composites Fabricated by Powder Metallurgy,” Acta Metallurgica Sinica (English Letters), c. 28, s. 11, ss. 1354–1363, 2015.
  • [51] X. Niu, H. Shen, ve J. Fu, “Microstructure and mechanical properties of selective laser melted Mg-9 wt%Al powder mixture,” Materials Letters, c. 221, ss. 4–7, 2018.
  • [52] X. Niu, H. Shen, G. Xu, L. Zhang, J. Fu, ve X. Deng, “Effect of aluminium content and processing parameters on the microstructure and mechanical properties of laser powder-bed fused magnesium-aluminium (0, 3, 6, 9wt%) powder mixture,” Rapid Prototyping Journal, p. RPJ-08-2018-0213, 2019.
  • [53] E. A. Nyberg, S. R. Agnew, N. R. Neelameggham, ve M. O. Pekguleryuz, Magnesium Technology 2009. Wiley, 2009.
  • [54] K. Kondoh, E.-S. A. Hamada, H. Imai, J. Umeda, ve T. Jones, “Microstructures and mechanical responses of powder metallurgy non-combustive magnesium extruded alloy by rapid solidification process in mass production,” Materials & Design, c. 31, s. 3, ss. 1540–1546, 2010.
  • [55] L. Hou et al., “Microstructure and mechanical properties at elevated temperature of Mg-Al-Ni alloys prepared through powder metallurgy,” Journal of Materials Science & Technology, c. 33, s. 9, ss. 947–953, 2017.
  • [56] M. Razavi, M. H. Fathi, ve M. Meratian, “Microstructure, mechanical properties and bio-corrosion evaluation of biodegradable AZ91-FA nanocomposites for biomedical applications,” Materials Science and Engineering: A, c. 527, s. 26, ss. 6938–6944, 2010.
  • [57] M. Mondet, E. Barraud, S. Lemonnier, J. Guyon, N. Allain, ve T. Grosdidier, “Microstructure and mechanical properties of AZ91 magnesium alloy developed by Spark Plasma Sintering,” Acta Materialia, c. 119, ss. 55–67, 2016.
  • [58] M. Rashad, F. Pan, M. Asif, ve A. Tang, “Powder metallurgy of Mg–1%Al–1%Sn alloy reinforced with low content of graphene nanoplatelets (GNPs),” Journal of Industrial and Engineering Chemistry, c. 20, s. 6, ss. 4250–4255, 2014.
  • [59] P. Minárik, J. Stráský, J. Veselý, F. Lukáč, B. Hadzima, ve R. Král, “AE42 magnesium alloy prepared by spark plasma sintering,” Journal of Alloys and Compounds, c. 742, ss. 172–179, 2018.

Magnezyum ve Alaşımlarının Toz Metalurjisi İşlemleri

Year 2020, , 522 - 534, 31.01.2020
https://doi.org/10.29130/dubited.569098

Abstract

Bu çalışmada, günden güne daha geniş alanlarda kullanılan magnezyum tozmetal
alaşımların endüstriyel uygulamalarda kullanılabilirliği incelenmiştir. Bu
malzemenin hegzagonal sıkı paket kafes yapısından dolayı plastik deformasyonunda
yaşanan zorlukları aşmak için geleneksel plastik deformasyon yöntemleri yerine
toz metalurjisi yöntemi ile şekillendirilebilirliği hakkında literatürde
bulunan çalışmalar derlenmiştir. Özellikle magnezyum partiküllerinin üretimi
sürecinde oluşan yüzey oksidi tabakasının elimine edilmesi için
kullanılabilecek yöntemlerle ilgili çalışmaların bulguları özetlenmiştir. Sonuç
olarak press-sinter yöntemine göre daha sofistike yöntemler veya ikincil
işlemler kullanılması durumunda döküm alaşımlarına göre daha yüksek dayanım
gösteren Mg alaşımlarının üretiminin mümkün olduğu ve gelişen partikül malzeme
üretim yöntemleri (Seçici lazer sinterleme, direkt enerji biriktirme gibi) ile
birlikte yakın gelecekte tozmetal magnezyum alaşımlarının daha geniş alanlarda
kullanılacağı öngörülmektedir. 

References

  • [1] US Department of Energy, “Global Transportation Energy Consumption: Examination of Scenarios to 2040 using ITEDD,” 2017. [Online]. Erişim: https://www.eia.gov/analysis/studies/transportation/scenarios/pdf/globaltransportation.pdf
  • [2] M. Höök ve X. Tang, “Depletion of fossil fuels and anthropogenic climate change-A review,” Energy Policy, c. 52, ss. 797–809, 2013.
  • [3] J. C. Escobar, E. S. Lora, O. J. Venturini, E. E. Yáñez, E. F. Castillo, and O. Almazan, “Biofuels: Environment, technology and food security,” Renewable and Sustainable Energy Reviews, c. 13, s. 6–7, ss. 1275–1287, 2009.
  • [4] P. Morone ve L. Cottoni, “Biofuels,” in Handbook of Biofuels Production, 2. baskı, R. Luque, C. Lin, K. Wilson, and J. Clark, Eds. Cambridge: Elsevier, 2016, ss. 61–83.
  • [5] A. Jambor ve M. Beyer, “New cars — new materials,” Materials & Design, c. 18, s. 4–6, ss. 203–209, 1997.
  • [6] “Light-Duty Automotive Technology , Carbon Dioxide Emissions , and Fuel Economy Trends : 1975 Through 2011,” 2014.
  • [7] M. L. Anderson ve M. Auffhammer, “Pounds that kill: The external costs of vehicle weight,” Review of Economic Studies, c. 81, s. 2, ss. 535–571, 2013.
  • [8] W. L. Dalmijn ve T. P. R. De Jong, “The development of vehicle recycling in Europe: Sorting, shredding, and separation,” JOM, c. 59, s. 11, ss. 52–56, 2007.
  • [9] A. I. Taub ve A. A. Luo, “Advanced lightweight materials and manufacturing processes for automotive applications,” MRS Bulletin, c. 40, s. 12, ss. 1045–1054, 2015.
  • [10] P. Seyfried, E. J. M. Taiss, A. C. Calijorne, F.-P. Li, and Q.-F. Song, “Light weighting opportunities and material choice for commercial vehicle frame structures from a design point of view,” Advances in Manufacturing, c. 3, s. 1, ss. 19–26, 2015.
  • [11] A. H. Musfirah ve A. . Jaharah, “Magnesium and Aluminum Alloys in Automotive Industry,” Journal of Applied Science Research, c. 8, s. 9, ss. 4865–4875, 2012.
  • [12] G. S. Cole ve A. M. Sherman, “Light weight materials for automotive applications,” Materials Characterization, c. 35, s. 1, ss. 3–9, 1995.
  • [13] I. Polmear, D. StJohn, J. F. Nie, and M. Qian, “The Light Metals,” in Light Alloys, 5. baskı., Boston: Elsevier, 2017, ss. 1–29.
  • [14] M. K. Kulekci, “Magnesium and its alloys applications in automotive industry,” The International Journal of Advanced Manufacturing Technology, c. 39, s. 9, ss. 851–865, 2008.
  • [15] W. Miller ve diğ. “Recent development in aluminium alloys for the automotive industry,” Materials Science and Engineering: A, c. 280, s. 1, ss. 37–49, 2000.
  • [16] I. Polmear, “Aluminium Alloys--A Century of Age Hardening,” Materials forum, c. 28, ss. 1–14, 2004.
  • [17] M. Easton, W. Qian Song, ve T. Abbott, “A comparison of the deformation of magnesium alloys with aluminium and steel in tension, bending and buckling,” Materials & Design, c. 27, s. 10, ss. 935–946, 2006.
  • [18] G. Yarkadaş, L. C. Kumruoğlu, ve H. Şevik, “The effect of Cerium addition on microstructure and mechanical properties of high pressure die cast Mg-5Sn alloy,” Materials Characterization, c. 136, s. November 2017, ss. 152–156, 2018.
  • [19] G. Germen, G. Yarkadaş, ve H. Şevik, “Influence of strontium addition on the wear behavior of Mg-3Al-3Sn alloys produced by gravity casting,” Materials Testing, c. 57, s. 11–12, ss. 997–1000, 2015.
  • [20] A. Gökçe, “Metallurgical Assessment of Novel Mg–Sn–La Alloys Produced by High-Pressure Die Casting,” Metals and Materials International, 2019, DOI:10.1007/s12540-019-00539-1.
  • [21] S. Özarslan, H. Şevik, ve İ. Sorar, “Microstructure, mechanical and corrosion properties of novel Mg-Sn-Ce alloys produced by high pressure die casting,” Materials Science and Engineering: C, c. 105, p. 110064, 2019.
  • [22] F. Bonollo, N. Gramegna, ve G. Timelli, “High-pressure die-casting: Contradictions and challenges,” Jom, c. 67, s. 5, ss. 901–908, 2015.
  • [23] B. L. Mordike ve T. Ebert, “Magnesium,” Materials Science and Engineering: A, c. 302, s. 1, ss. 37–45, 2001.
  • [24] A. Gökçe, F. Fındık, ve A. O. Kurt, “Alüminyum ve Alaşımlarının Toz Metalurjisi İşlemleri - Powder Metallurgy Processing of Aluminum Alloys,” Engineer&Machinery, c. 58, s. 686, ss. 21–47, 2017.
  • [25] R. M. German, Sintering: from Empirical Observations to Scientific Principles, Del Mar, CA, USA: Elsevier, 2014.
  • [26] “Economic considerations for powder metallurgy structural parts,” Powder Metallurgy Review. [Online]. Erişim: https://www.pm-review.com/introduction-to-powder-metallurgy/economic-considerations-for-powder-metallurgy-structural-parts/.
  • [27] T. Schubert ve diğ, “P/M aluminium structural parts for automotive application,” in Euro PM 2004, 2004, ss. 627–632.
  • [28] H. . Yao, Y. Li, ve A. T. . Wee, “An XPS investigation of the oxidation/corrosion of melt-spun Mg,” Applied Surface Science, c. 158, s. 1–2, ss. 112–119, 2000.
  • [29] P. Burke, C. Petit, S. Yakoubi, ve G. J. Kipouros, “Thermal Effects of Calcium and Yttrium Additions on the Sintering of Magnesium Powder,” Magnesium Technology 2011, ss. 481–484, 2016.
  • [30] P. Burke, “Investigation of the Sintering Fundamentals of Magnesium,” MS Thesis, Dept. of Process Engineering, Dalhousie University, Halifax, Canada, 2011.
  • [31] R. Yılmaz, A. Gökçe, ve H. Kapdıbaş, “The Effect of Ferro-Molybdenum Addition on the Microstructure and Mechanical Properties of Sintered Steel,” Advanced Materials Research, c. 23, ss. 71–74, 2007.
  • [32] A. Gökçe, F. Findik, ve A. O. Kurt, “Effects of Sintering Temperature and Time on the Properties of Al-Cu PM Alloy,” Practical Metallography, c. 54, s. 8, ss. 533–551, 2017.
  • [33] R. N. Lumley, T. B. Sercombe, ve G. B. Schaffer, “Surface oxide and the role of magnesium during the sintering of aluminum,” Metallurgical and Materials Transactions A, c. 30, s. 2, ss. 457–463, 1999.
  • [34] P. Burke, J. Li, ve G. J. Kipouros, “DSC and FIB/TEM investigation of calcium and yttrium additions in the sintering of magnesium powder,” Canadian Metallurgical Quarterly, c. 55, s. 1, ss. 45–52, 2016.
  • [35] O. S. Gökçe, “Sıcak Pres ile Partikül Takviyeli Magnezyum Kompozitlerin Üretimi ve Kaplanması,” Yüksek lisans tezi, Metalurji ve Malzeme Mühendisliği. Ana bilim dalı, Kocaeli Üniversitesi, Kocaeli, Turkey, 2018.
  • [36] N. Taşkın, “Magnezyum Talaşlarından Malzeme Üretimi,” Yüksek lisans tezi, Metalurji ve Malzeme Mühendisliği. Ana bilim dalı, İstanbul Teknik Üniversitesi, İstanbul, Turkey, 2012.
  • [37] T. Iwaoka ve M. Nakamura, “Effect of Compaction Temperature on Sinterability of Magnesium and Aluminum Powder Mixtures by Warm Compaction Method,” Materials Transactions, c. 52, s. 5, ss. 943–947, 2011.
  • [38] M. Březina ve diğ., “Characterization of Powder Metallurgy Processed Pure Magnesium Materials for Biomedical Applications,” Metals, c. 7, s. 11, p. 461, 2017.
  • [39] P. Burke, G. J. Kipouros, D. Fancelli, ve V. Laverdiere, “Sintering Fundamentals of Magnesium Powders,” Canadian Metallurgical Quarterly, c. 48, s. 2, ss. 123–132, 2014.
  • [40] A. A. Nayeb-Hashemi ve J. B. Clark, “The Ca−Mg (Calcium-Magnesium) system,” Bulletin of Alloy Phase Diagrams, c. 8, s. 1, ss. 58–65, 1987.
  • [41] M. Wolff, T. Ebel, ve M. Dahms, “Sintering of magnesium,” Advanced Engineering Materials, c. 12, s. 9, ss. 829–836, 2010.
  • [42] Z. Li, X. Gu, S. Lou, ve Y. Zheng, “The development of binary Mg-Ca alloys for use as biodegradable materials within bone,” Biomaterials, c. 29, s. 10, ss. 1329–1344, 2008.
  • [43] T. B. Abbott, M. A. Easton, ve C. H. Caceres, “Designing with Magnesium,” in Handbook of Mechanical Alloy Design, s. September, G. E. Totten, L. Xie, and K. Funatani, Eds. CRC Press, 2004, ss. 487–538.
  • [44] H. Westengen, “Magnesium alloys for structural applications ; recent advances,” Le Journal de Physique IV, c. 03, s. C7, ss. C7-491-C7-501, 1993.
  • [45] L. Lu, C. Y. H. Lim, ve W. M. Yeong, “Effect of reinforcements on strength of Mg9%Al composites,” Composite Structures, c. 66, s. 1–4, ss. 41–45, 2004.
  • [46] C. Moosbrugger, Ed., Engineering Properties of Magnesium Alloys, 1. baskı, Ohio, USA: ASM International, 2017.
  • [47] A. Gökçe, F. Findik, ve A. O. Kurt, “Sintering and aging behaviours of Al4CuXMg PM alloy,” Canadian Metallurgical Quarterly, c. 55, s. 4, ss. 391–401, 2016.
  • [48] D. Singh, C. Suryanarayana, L. Mertus, ve R.-H. Chen, “Extended homogeneity range of intermetallic phases in mechanically alloyed Mg–Al alloys,” Intermetallics, c. 11, s. 4, ss. 373–376, 2003.
  • [49] W. Xie, Y. Liu, D. S. Li, J. Zhang, Z. W. Zhang, ve J. Bi, “Influence of sintering routes to the mechanical properties of magnesium alloy and its composites produced by PM technique,” Journal of Alloys and Compounds, c. 431, s. 1–2, ss. 162–166, 2007.
  • [50] J. Chen, C.-G. Bao, Y. Wang, J.-L. Liu, ve C. Suryanarayana, “Microstructure and Lattice Parameters of AlN Particle-Reinforced Magnesium Matrix Composites Fabricated by Powder Metallurgy,” Acta Metallurgica Sinica (English Letters), c. 28, s. 11, ss. 1354–1363, 2015.
  • [51] X. Niu, H. Shen, ve J. Fu, “Microstructure and mechanical properties of selective laser melted Mg-9 wt%Al powder mixture,” Materials Letters, c. 221, ss. 4–7, 2018.
  • [52] X. Niu, H. Shen, G. Xu, L. Zhang, J. Fu, ve X. Deng, “Effect of aluminium content and processing parameters on the microstructure and mechanical properties of laser powder-bed fused magnesium-aluminium (0, 3, 6, 9wt%) powder mixture,” Rapid Prototyping Journal, p. RPJ-08-2018-0213, 2019.
  • [53] E. A. Nyberg, S. R. Agnew, N. R. Neelameggham, ve M. O. Pekguleryuz, Magnesium Technology 2009. Wiley, 2009.
  • [54] K. Kondoh, E.-S. A. Hamada, H. Imai, J. Umeda, ve T. Jones, “Microstructures and mechanical responses of powder metallurgy non-combustive magnesium extruded alloy by rapid solidification process in mass production,” Materials & Design, c. 31, s. 3, ss. 1540–1546, 2010.
  • [55] L. Hou et al., “Microstructure and mechanical properties at elevated temperature of Mg-Al-Ni alloys prepared through powder metallurgy,” Journal of Materials Science & Technology, c. 33, s. 9, ss. 947–953, 2017.
  • [56] M. Razavi, M. H. Fathi, ve M. Meratian, “Microstructure, mechanical properties and bio-corrosion evaluation of biodegradable AZ91-FA nanocomposites for biomedical applications,” Materials Science and Engineering: A, c. 527, s. 26, ss. 6938–6944, 2010.
  • [57] M. Mondet, E. Barraud, S. Lemonnier, J. Guyon, N. Allain, ve T. Grosdidier, “Microstructure and mechanical properties of AZ91 magnesium alloy developed by Spark Plasma Sintering,” Acta Materialia, c. 119, ss. 55–67, 2016.
  • [58] M. Rashad, F. Pan, M. Asif, ve A. Tang, “Powder metallurgy of Mg–1%Al–1%Sn alloy reinforced with low content of graphene nanoplatelets (GNPs),” Journal of Industrial and Engineering Chemistry, c. 20, s. 6, ss. 4250–4255, 2014.
  • [59] P. Minárik, J. Stráský, J. Veselý, F. Lukáč, B. Hadzima, ve R. Král, “AE42 magnesium alloy prepared by spark plasma sintering,” Journal of Alloys and Compounds, c. 742, ss. 172–179, 2018.
There are 59 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Azim Gökçe 0000-0002-2286-3259

Publication Date January 31, 2020
Published in Issue Year 2020

Cite

APA Gökçe, A. (2020). Magnezyum ve Alaşımlarının Toz Metalurjisi İşlemleri. Duzce University Journal of Science and Technology, 8(1), 522-534. https://doi.org/10.29130/dubited.569098
AMA Gökçe A. Magnezyum ve Alaşımlarının Toz Metalurjisi İşlemleri. DÜBİTED. January 2020;8(1):522-534. doi:10.29130/dubited.569098
Chicago Gökçe, Azim. “Magnezyum Ve Alaşımlarının Toz Metalurjisi İşlemleri”. Duzce University Journal of Science and Technology 8, no. 1 (January 2020): 522-34. https://doi.org/10.29130/dubited.569098.
EndNote Gökçe A (January 1, 2020) Magnezyum ve Alaşımlarının Toz Metalurjisi İşlemleri. Duzce University Journal of Science and Technology 8 1 522–534.
IEEE A. Gökçe, “Magnezyum ve Alaşımlarının Toz Metalurjisi İşlemleri”, DÜBİTED, vol. 8, no. 1, pp. 522–534, 2020, doi: 10.29130/dubited.569098.
ISNAD Gökçe, Azim. “Magnezyum Ve Alaşımlarının Toz Metalurjisi İşlemleri”. Duzce University Journal of Science and Technology 8/1 (January 2020), 522-534. https://doi.org/10.29130/dubited.569098.
JAMA Gökçe A. Magnezyum ve Alaşımlarının Toz Metalurjisi İşlemleri. DÜBİTED. 2020;8:522–534.
MLA Gökçe, Azim. “Magnezyum Ve Alaşımlarının Toz Metalurjisi İşlemleri”. Duzce University Journal of Science and Technology, vol. 8, no. 1, 2020, pp. 522-34, doi:10.29130/dubited.569098.
Vancouver Gökçe A. Magnezyum ve Alaşımlarının Toz Metalurjisi İşlemleri. DÜBİTED. 2020;8(1):522-34.