Research Article
BibTex RIS Cite

Exergoeconomic Analysis of an Industrial Cogeneration Cooling System Powered By Natural Gas Fueled Diesel Engine

Year 2020, , 437 - 452, 31.01.2020
https://doi.org/10.29130/dubited.619923

Abstract

This study
presents the exergy and exergoeconomic analysis of a natural gas-powered diesel
cogeneration system. The cogeneration system is designed for a sports complex
with 1000 m2 closed area in Afyonkarahisar city. Natural gas is used as the
fuel in the cogeneration system of the sports complex, which includes a
swimming pool and ice rink. The natural gas diesel engine is used as the
primary energy source for the cogeneration system. In the system, the
electricity required for the cooling cycle is produced from the natural gas
diesel engine. At the same time, the engine exhaust gases are used in the
process of heat generation for swimming pool water heating. Finally, the waste
heat discharged from the system is used to produce electricity in the
thermoelectric power unit. The cogeneration system was modeled thermodynamically
by the EES program on a computer and then economically analyzed by using the
Aspen Plus program.  The operation of the
cogeneration system is described in detail, and a methodology based on
exergoeconomic relations and SPECO method is provided to allocate cost flows
through subcomponents of the system. The results were compared by using
thermodynamic and exergoeconomic performance parameters.  The exergetic efficiency of the cogeneration
system is found to be 28.74%, which indicates that 71.26% of the total exergy
input to the system, mainly by natural gas, is destroyed. As a result of the
economic analysis of the cogeneration system, the investment cost was
calculated as 62,000 $. The exergetic cost rate and the specific unit exergetic
cost of the power produced in the cogeneration system are calculated to be 0.75
$/h and 10.93 $/GJ (0.039 $/kWh), respectively. The specific unit exergetic
cost of the energy produced in the cogeneration system for cooling the ice rink
and heating the swimming pool in the sports complex are calculated to be 6.152
$/GJ (0.022 $/kWh) and 4.221 $/GJ (0.0152 $ /kWh), respectively.

References

  • [1] O. Al-Oquili, R. Kouhy, "Future environmental regulation issues to promote energy efficiency," Journal of Energy Engineering, vol. 132 no. 2, pp. 67-73, 2006.
  • [2] A. Abusoglu, and M. Kanoglu, "First and second law analysis of diesel engine powered cogeneration systems," Energy Conversion and Management, vol. 49, no. 8, pp. 2026-2031, 2008.
  • [3] G. Tsatsaronis, and J. Pisa, “Exergoeconomic evaluation and optimization of energy systems—application to the CGAM problem,” Energy, vol. 19, no. 3, pp. 287-321, 1994.
  • [4] A. Valero et al., “Application of the exergetic cost theory to the CGAM problem,” Energy, vol. 19, no. 3, pp. 365–381, 1994.
  • [5] M.E. Kuyumcu, H. Tutumlu, and R. Yumrutaş, “Performance of a swimming pool heating system by utilizing waste energy rejected from an ice rink with an energy storage tank,” Energy Conversion and Management, no. 121, pp. 349-357, 2016.
  • [6] F. Yüksel, and M. Goza, “Kojenerasyon sistemleri ve uygulamalı ekonomik analizi: hastane örneği,” Engineer and the Machinery Magazine, vol. 10, no. 5, pp. 651-659, 2014.
  • [7] A. Abusoglu, S. Demir, and M. Kanoglu, “Thermoeconomic analysis of a biogas engine powered cogeneration system,” Journal of Thermal Science and Technology, vol. 33, no. 2, pp. 9-21, 2013.
  • [8] A. Abusoglu, and M. Kanoglu, “Emission Characteristics Analysis of Diesel Engine Powered Cogeneration,” Journal of Thermal Science and Technology, vol. 29, no. 1, pp. 45-53, 2009.
  • [9] A.E. Teksan, G. Koçar, A.Eryaşar, E. Aytav, (2019, August 10). Hastanelerde Kojenerasyon ve Trijenerasyon Uygulamalarının Sağladığı Faydanın Vaka Analizi Üzerinden İncelenmesi [Online] Access: www.emo.org.tr/ekler/661b2c3bc72f4b5_ek.pdf.
  • [10] C.O. Colpan, “Exergy analysis of combined cycle cogeneration systems,” PhD Thesis, Department of Mechanical Engineering, Middle East Technical University, Ankara, Turkey, 2005.
  • [11] C. Yilmaz, “Thermodynamic and economic investigation of geothermal powered absorption cooling system for buildings,” Geothermics, no. 70, pp. 239-248, 2017.
  • [12] O. Boydak et al., “Thermodynamic investigation of Organic Rankine Cycle (ORC) energy recovery system and recent studies,” Thermal Science, vol. 22, no. 6, pp. 2679-2690, 2018.
  • [13] F. Ünal, G. Temir, H. Köten, “Energy, exergy and exergoeconomic analysis of solar-assisted vertical ground source heat pump system for heating season,” Journal of Mechanical Science and Technology, vol. 32, no. 8, pp. 3929-3942, 2018.
  • [14] Y.A. Cengel, and M.A. Boles, “Thermodynamics: An Engineering Approach, 9th Ed. New York, USA, McGraw-Hill,” 2018.
  • [15] A. Abusoglu, M. Kanoglu, “Exergoeconomic analysis and optimization of combined heat and power production: A review,” Renewable and Sustainable Energy Reviews, vol. 13, no. 9, pp. 2295-2308, 2009.
  • [16] A. Bejan, G. Tsatsaronis, M.J. Moran, Thermal Design and Optimization, New York, USA: John Wiley & Sons, 1996.
  • [17] F-Chart Software. “EES, engineering equation solver. In: F-Chart Software 2015”. www.fchart.com/ees/ees.shtml.
  • [18] Aspen PlusV8.4. “Engineering Economic Analysis Library 2015”. https://www.aspentech.com/en/products/engineering/aspen-plus.

Doğal Gaz Yakıtı Kullanan Dizel Motorlu Endüstriyel Kojenerasyon Soğutma Sisteminin Eksergoekonomik Analizi

Year 2020, , 437 - 452, 31.01.2020
https://doi.org/10.29130/dubited.619923

Abstract

Bu
çalışmada doğal gaz beslemeli bir dizel kojenrasyon sisteminin ekserji ve
exergoeconomic analiz sunulmaktadır. Bu kojenerasyon sistemi uygulaması
Afyonkarahisar'da 1000 m2 kapalı alana sahip bir spor kompleksi için
planlanmaktadır. Yüzme havuzu ve buz pisti içeren bu spor kompleksinin
kojenerasyon sisteminde yakıt olarak doğal gaz kullanılmaktadır. Kojenerasyon
sistemine enerji saylamak için doğal gazlı dizel motoru kullanılmıştır.
Sistemde soğutma çevrimi için gerekli elektrik doğalgaz motorundan
üretilmektedir. Aynı zamanda egzoz gazları yüzme havuzu su ısıtması için proses
ısı üretiminde kullanılmaktadır. Son olarak, çevrimlerden atılan atık ısılar
termoelektrik devreye gönderilerek elektrik üretilmektedir. Kojenerasyon
sistemi bilgisayar ortamında EES programı ile termodinamik olarak
modellenmiştir ve daha sonra Aspen Plus programı kullanılarak ekonomik analizi
yapılmıştır. Kojenerasyon sistemi detaylı bir şekilde tanıtılmış ve özgül
ekserji maliyetlendirme (SPECO) yöntemi temelinde, sistem bileşenlerinin
maliyet akışlarını ifade eden ilişkiler 
geliştirilmiştir. Elde edilen sonuçlar termodinamik ve
eksergoekonomik performans parametreleri kullanılarak karşılaştırılmıştır.
Kojenerasyon sisteminin ekserji verimi %28.74 olarak bulunmuştur, bu da sisteme
doğalgazla giren ekserjinin %71.26’sının yıkıma uğradığını göstermektedir.
Kojenerasyon sisteminin ekonomik analizi sonucunda yatırım maliyeti 62,000 $
olarak hesaplanmıştır. Doğalgaz motorlu kojenerasyon sisteminde üretilen
elektriğin ekserjiye bağlı maliyet oranı ve birim ekserji maliyeti sırasıyla,
0.75 $/h ve 10.93 $/GJ (0.039 $/kWh) olarak hesaplanmıştır. Buz pistinin
soğutulması ve spor kompleksi içindeki yüzme havuzunun ısıtılması için
kojenerasyon sisteminde üretilen enerjinin maliyeti, sırasıyla 6.152 $/GJ
(0.022 $/kWh) ve 4.221 $/GJ (0.0152 $/kWh) olarak hesaplanmıştır.

References

  • [1] O. Al-Oquili, R. Kouhy, "Future environmental regulation issues to promote energy efficiency," Journal of Energy Engineering, vol. 132 no. 2, pp. 67-73, 2006.
  • [2] A. Abusoglu, and M. Kanoglu, "First and second law analysis of diesel engine powered cogeneration systems," Energy Conversion and Management, vol. 49, no. 8, pp. 2026-2031, 2008.
  • [3] G. Tsatsaronis, and J. Pisa, “Exergoeconomic evaluation and optimization of energy systems—application to the CGAM problem,” Energy, vol. 19, no. 3, pp. 287-321, 1994.
  • [4] A. Valero et al., “Application of the exergetic cost theory to the CGAM problem,” Energy, vol. 19, no. 3, pp. 365–381, 1994.
  • [5] M.E. Kuyumcu, H. Tutumlu, and R. Yumrutaş, “Performance of a swimming pool heating system by utilizing waste energy rejected from an ice rink with an energy storage tank,” Energy Conversion and Management, no. 121, pp. 349-357, 2016.
  • [6] F. Yüksel, and M. Goza, “Kojenerasyon sistemleri ve uygulamalı ekonomik analizi: hastane örneği,” Engineer and the Machinery Magazine, vol. 10, no. 5, pp. 651-659, 2014.
  • [7] A. Abusoglu, S. Demir, and M. Kanoglu, “Thermoeconomic analysis of a biogas engine powered cogeneration system,” Journal of Thermal Science and Technology, vol. 33, no. 2, pp. 9-21, 2013.
  • [8] A. Abusoglu, and M. Kanoglu, “Emission Characteristics Analysis of Diesel Engine Powered Cogeneration,” Journal of Thermal Science and Technology, vol. 29, no. 1, pp. 45-53, 2009.
  • [9] A.E. Teksan, G. Koçar, A.Eryaşar, E. Aytav, (2019, August 10). Hastanelerde Kojenerasyon ve Trijenerasyon Uygulamalarının Sağladığı Faydanın Vaka Analizi Üzerinden İncelenmesi [Online] Access: www.emo.org.tr/ekler/661b2c3bc72f4b5_ek.pdf.
  • [10] C.O. Colpan, “Exergy analysis of combined cycle cogeneration systems,” PhD Thesis, Department of Mechanical Engineering, Middle East Technical University, Ankara, Turkey, 2005.
  • [11] C. Yilmaz, “Thermodynamic and economic investigation of geothermal powered absorption cooling system for buildings,” Geothermics, no. 70, pp. 239-248, 2017.
  • [12] O. Boydak et al., “Thermodynamic investigation of Organic Rankine Cycle (ORC) energy recovery system and recent studies,” Thermal Science, vol. 22, no. 6, pp. 2679-2690, 2018.
  • [13] F. Ünal, G. Temir, H. Köten, “Energy, exergy and exergoeconomic analysis of solar-assisted vertical ground source heat pump system for heating season,” Journal of Mechanical Science and Technology, vol. 32, no. 8, pp. 3929-3942, 2018.
  • [14] Y.A. Cengel, and M.A. Boles, “Thermodynamics: An Engineering Approach, 9th Ed. New York, USA, McGraw-Hill,” 2018.
  • [15] A. Abusoglu, M. Kanoglu, “Exergoeconomic analysis and optimization of combined heat and power production: A review,” Renewable and Sustainable Energy Reviews, vol. 13, no. 9, pp. 2295-2308, 2009.
  • [16] A. Bejan, G. Tsatsaronis, M.J. Moran, Thermal Design and Optimization, New York, USA: John Wiley & Sons, 1996.
  • [17] F-Chart Software. “EES, engineering equation solver. In: F-Chart Software 2015”. www.fchart.com/ees/ees.shtml.
  • [18] Aspen PlusV8.4. “Engineering Economic Analysis Library 2015”. https://www.aspentech.com/en/products/engineering/aspen-plus.
There are 18 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Ceyhun Yılmaz 0000-0002-8827-692X

Publication Date January 31, 2020
Published in Issue Year 2020

Cite

APA Yılmaz, C. (2020). Exergoeconomic Analysis of an Industrial Cogeneration Cooling System Powered By Natural Gas Fueled Diesel Engine. Duzce University Journal of Science and Technology, 8(1), 437-452. https://doi.org/10.29130/dubited.619923
AMA Yılmaz C. Exergoeconomic Analysis of an Industrial Cogeneration Cooling System Powered By Natural Gas Fueled Diesel Engine. DÜBİTED. January 2020;8(1):437-452. doi:10.29130/dubited.619923
Chicago Yılmaz, Ceyhun. “Exergoeconomic Analysis of an Industrial Cogeneration Cooling System Powered By Natural Gas Fueled Diesel Engine”. Duzce University Journal of Science and Technology 8, no. 1 (January 2020): 437-52. https://doi.org/10.29130/dubited.619923.
EndNote Yılmaz C (January 1, 2020) Exergoeconomic Analysis of an Industrial Cogeneration Cooling System Powered By Natural Gas Fueled Diesel Engine. Duzce University Journal of Science and Technology 8 1 437–452.
IEEE C. Yılmaz, “Exergoeconomic Analysis of an Industrial Cogeneration Cooling System Powered By Natural Gas Fueled Diesel Engine”, DÜBİTED, vol. 8, no. 1, pp. 437–452, 2020, doi: 10.29130/dubited.619923.
ISNAD Yılmaz, Ceyhun. “Exergoeconomic Analysis of an Industrial Cogeneration Cooling System Powered By Natural Gas Fueled Diesel Engine”. Duzce University Journal of Science and Technology 8/1 (January 2020), 437-452. https://doi.org/10.29130/dubited.619923.
JAMA Yılmaz C. Exergoeconomic Analysis of an Industrial Cogeneration Cooling System Powered By Natural Gas Fueled Diesel Engine. DÜBİTED. 2020;8:437–452.
MLA Yılmaz, Ceyhun. “Exergoeconomic Analysis of an Industrial Cogeneration Cooling System Powered By Natural Gas Fueled Diesel Engine”. Duzce University Journal of Science and Technology, vol. 8, no. 1, 2020, pp. 437-52, doi:10.29130/dubited.619923.
Vancouver Yılmaz C. Exergoeconomic Analysis of an Industrial Cogeneration Cooling System Powered By Natural Gas Fueled Diesel Engine. DÜBİTED. 2020;8(1):437-52.