Research Article
BibTex RIS Cite

Patolojik Görüntülerin Sıkıştırılmış Algılamasında Ölçüm Matrisi ve Geri Çatma Algoritmalarının Etkileri

Year 2020, , 880 - 890, 31.01.2020
https://doi.org/10.29130/dubited.626880

Abstract

Bu çalışmada, patolojik görüntülerin
sıkıştırılmış algılama tabanlı tek piksel mikroskop ile alınıp, görüntünün geri
çatılması ile ilgili benzetimler yapılmıştır. Sıkıştırılmış algılamada, ölçüm
matrisi olarak elemanları bağımsız ve aynı şekilde dağıtılan Gaussian
ve Bernoulli matrisler kullanılmıştır. Geri çatma algoritması olarak da konveks
optimizasyon tabanlı hem Toplam Varyasyon (TV) minimizasyonunun hem de L1 norm
minimizasyonunun performansları incelenmiştir. Yapılan benzetimler sonucunda,
1:8 sıkıştırma oranında dahi patolojik görüntülerin geri çatılabildiği
gösterilmiştir. Geri çatılan görüntülerin orijinal görüntü ile benzerlik
endeksleri karşılaştırıldığında, özellikle yüksek sıkıştırma oranında TV
minimizasyonu daha başarılı sonuçlar vermiştir. Hem Gaussian hem de Bernoulli rasgele
ölçüm matrisleri ile patolojik görüntülerin geri çatılabildiği gösterilmiştir. Sonuç
olarak sıkıştırılmış algılama tabanlı tek piksel mikroskop tasarımlarında
Bernoulli ölçüm matrisinin kullanılması önerilmiştir.

Supporting Institution

Ankara Yıldırım Beyazıt Üniversitesi

Project Number

4981

Thanks

TEŞEKKÜR: Bu çalışma Ankara Yıldırım Beyazıt Üniversitesi Bilimsel Araştırma Projeleri tarafından desteklenmiştir (Proje no: 4981).

References

  • [1] D. L. Donoho, “Compressed sensing,” IEEE Trans. Inform. Theory, c.52, ss.1289–1306, 2006.
  • [2] E. Candès, J. Romberg ve T. Tao, “Robust uncertainty principles: Exact signal reconstruction from highly incomplete Fourier information,” IEEE Trans. Inform. Theory, c.52, ss.489-509, 2006.
  • [3] E. Candès, J. Romberg ve T. Tao, "Stable signal recovery from incomplete and inaccurate measurements," Comm. Pure Appl. Math., c. 59, s. 8, ss. 1207-1223, 2006.
  • [4] E. Candès ve T. Tao, "Decoding by linear programming," IEEE Trans. Inf. Theory, c. 51, s. 12, ss. 4203-4215, 2005.
  • [5] M. Lustig, D. Donoho ve J. M. Pauly, “Sparse MRI: The application of compressed sensing for rapid MR imaging”. Magnetic Resonance in Medicine, c.58, s. 6, ss. 1182–1195, 2007.
  • [6] M.F. Duarte ve Y. C. Eldar, “Structured Compressed Sensing: From Theory to Applications,” IEEE Transactions on Signal Processing, c.59, s.9, ss. 4053–4085, DOI: 10.1109/TSP.2011.2161982, 2011.
  • [7] FDA Clears Compressed Sensing MRI Acceleration Technology From Siemens Healthineers, (2017, 12 Şubat). [Online]. Erişim: https://www.healthimaging.com/topics/imaging/fda-clears-compressed-sensing-mri-acceleration-technology-siemens-healthineers .
  • [8] C.G. Graff ve E.Y. Sidky. “Compressive sensing in medical imaging,” Applied optics, c.54, s.8, ss. C23-C44, 2015.
  • [9] A. Malthe-Sørenssen, “Medical radiation may be reduced to one-sixth” Apollon Research Magazine, 2015.
  • [10] Compressive Sensing Could Dramatically Reduce Time to Process Complex Clinical Laboratory Tests Involving Huge Amounts of Data and Lower the Cost of Tests, (2015, 16 Eylül). [Online]. Erişim: https://www.darkdaily.com/compressive-sensing-could-dramatically-reduce-time-to-process-complex-clinical-laboratory-tests-involving-huge-amounts-of-data-and-lower-the-cost-of-tests-916/#ixzz3sRuYQJI4 .
  • [11] M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly ve R. G. Baraniuk, “Single-Pixel Imaging via Compressive Sampling,” IEEE Signal Processing Magazine, March 2008.
  • [12] N. Radwell, K. J. Mitchell, G. M. Gibson, M. P. Edgar, R. Bowman ve M. J. Padgett, “Single-pixel infrared and visible microscope,” Optica 1, ss.285-289, 2014.
  • [13] Y. Liu, J. Suo, Y. Zhang ve Q. Dai, “Single-pixel phase and fluorescence microscope,” Optics Express, c. 26, ss. 32451-32462, 2018.
  • [14] A.D. Rodríguez, P. Clemente, E. Tajahuerce ve J. Lancis, “Dual-mode optical microscope based on single-pixel imaging,” Optics and Lasers in Engineering, c. 82, ss. 87-94, ISSN 0143-8166, https://doi.org/10.1016/j.optlaseng.2016.02.004, 2016.
  • [15] B. Kashin, “The widths of certain finite dimensional sets and classes of smooth functions,” Izvestia, c. 41, ss. 334–351, 1977.
  • [16] A. Garnaev ve E. D. Gluskin, “The widths of Euclidean balls,” Doklady An. SSSR, c.277, ss. 1048–1052, 1984.
  • [17] C. Li, W. Yin , H. Jiang ve Y. Zhang. “An efficient augmented Lagrangian method with applications to total variation minimization,” Computational Optimization and Applications, c.56, s.3, ss. 507–530, ISSN:1573-2894,DOI:10.1007/s10589-013-9576-1, 2013.
  • [18] ℓ1-magic: Recovery of Sparse Signals via Convex Programming, (2005). [Online]. Erişim: https://statweb.stanford.edu/~candes/l1magic/ .
  • [19] E. van den Berg ve M. P. Friedlander, “Probing the Pareto frontier for basis pursuit solutions,” SIAM J. on Scientific Computing, c.31, s.2, ss.890-912, Kasım 2008.
  • [20] D. A. Gutman, J. Cobb, D. Somanna, Y. Park, F. Wang, T. Kurc, J. H. Saltz, D. J. Brat ve L. A. D. Cooper, “Cancer Digital Slide Archive: an informatics resource to support integrated in silico analysis of TCGA pathology data,” J Am Med Inform Assoc, c.20, ss.1091–1098, 2013.
  • [21] W. Zhou, A. C. Bovik, H. R. Sheikh ve E. P. Simoncelli. “Image Qualifty Assessment: From Error Visibility to Structural Similarity,” IEEE Transactions on Image Processing. c. 13, s. 4, ss. 600–612, Nisan 2004.
  • [22] R. Reisenhofer, S. Bosse, G. Kutyniok ve T. Wiegand, “A Haar Wavelet-Based Perceptual Similarity Index for Image Quality Assessment,” Signal Processing: Image Communication, c. 61, ss. 33-43, doi:10.1016/j.image.2017.11.001, 2018.
  • [23] B. Roman, A. C. Hansen ve B. Adcock, (2014). “On asymptotic structure in compressed sensing,” CoRR, abs/1406.4178, 2014.
Year 2020, , 880 - 890, 31.01.2020
https://doi.org/10.29130/dubited.626880

Abstract

Project Number

4981

References

  • [1] D. L. Donoho, “Compressed sensing,” IEEE Trans. Inform. Theory, c.52, ss.1289–1306, 2006.
  • [2] E. Candès, J. Romberg ve T. Tao, “Robust uncertainty principles: Exact signal reconstruction from highly incomplete Fourier information,” IEEE Trans. Inform. Theory, c.52, ss.489-509, 2006.
  • [3] E. Candès, J. Romberg ve T. Tao, "Stable signal recovery from incomplete and inaccurate measurements," Comm. Pure Appl. Math., c. 59, s. 8, ss. 1207-1223, 2006.
  • [4] E. Candès ve T. Tao, "Decoding by linear programming," IEEE Trans. Inf. Theory, c. 51, s. 12, ss. 4203-4215, 2005.
  • [5] M. Lustig, D. Donoho ve J. M. Pauly, “Sparse MRI: The application of compressed sensing for rapid MR imaging”. Magnetic Resonance in Medicine, c.58, s. 6, ss. 1182–1195, 2007.
  • [6] M.F. Duarte ve Y. C. Eldar, “Structured Compressed Sensing: From Theory to Applications,” IEEE Transactions on Signal Processing, c.59, s.9, ss. 4053–4085, DOI: 10.1109/TSP.2011.2161982, 2011.
  • [7] FDA Clears Compressed Sensing MRI Acceleration Technology From Siemens Healthineers, (2017, 12 Şubat). [Online]. Erişim: https://www.healthimaging.com/topics/imaging/fda-clears-compressed-sensing-mri-acceleration-technology-siemens-healthineers .
  • [8] C.G. Graff ve E.Y. Sidky. “Compressive sensing in medical imaging,” Applied optics, c.54, s.8, ss. C23-C44, 2015.
  • [9] A. Malthe-Sørenssen, “Medical radiation may be reduced to one-sixth” Apollon Research Magazine, 2015.
  • [10] Compressive Sensing Could Dramatically Reduce Time to Process Complex Clinical Laboratory Tests Involving Huge Amounts of Data and Lower the Cost of Tests, (2015, 16 Eylül). [Online]. Erişim: https://www.darkdaily.com/compressive-sensing-could-dramatically-reduce-time-to-process-complex-clinical-laboratory-tests-involving-huge-amounts-of-data-and-lower-the-cost-of-tests-916/#ixzz3sRuYQJI4 .
  • [11] M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly ve R. G. Baraniuk, “Single-Pixel Imaging via Compressive Sampling,” IEEE Signal Processing Magazine, March 2008.
  • [12] N. Radwell, K. J. Mitchell, G. M. Gibson, M. P. Edgar, R. Bowman ve M. J. Padgett, “Single-pixel infrared and visible microscope,” Optica 1, ss.285-289, 2014.
  • [13] Y. Liu, J. Suo, Y. Zhang ve Q. Dai, “Single-pixel phase and fluorescence microscope,” Optics Express, c. 26, ss. 32451-32462, 2018.
  • [14] A.D. Rodríguez, P. Clemente, E. Tajahuerce ve J. Lancis, “Dual-mode optical microscope based on single-pixel imaging,” Optics and Lasers in Engineering, c. 82, ss. 87-94, ISSN 0143-8166, https://doi.org/10.1016/j.optlaseng.2016.02.004, 2016.
  • [15] B. Kashin, “The widths of certain finite dimensional sets and classes of smooth functions,” Izvestia, c. 41, ss. 334–351, 1977.
  • [16] A. Garnaev ve E. D. Gluskin, “The widths of Euclidean balls,” Doklady An. SSSR, c.277, ss. 1048–1052, 1984.
  • [17] C. Li, W. Yin , H. Jiang ve Y. Zhang. “An efficient augmented Lagrangian method with applications to total variation minimization,” Computational Optimization and Applications, c.56, s.3, ss. 507–530, ISSN:1573-2894,DOI:10.1007/s10589-013-9576-1, 2013.
  • [18] ℓ1-magic: Recovery of Sparse Signals via Convex Programming, (2005). [Online]. Erişim: https://statweb.stanford.edu/~candes/l1magic/ .
  • [19] E. van den Berg ve M. P. Friedlander, “Probing the Pareto frontier for basis pursuit solutions,” SIAM J. on Scientific Computing, c.31, s.2, ss.890-912, Kasım 2008.
  • [20] D. A. Gutman, J. Cobb, D. Somanna, Y. Park, F. Wang, T. Kurc, J. H. Saltz, D. J. Brat ve L. A. D. Cooper, “Cancer Digital Slide Archive: an informatics resource to support integrated in silico analysis of TCGA pathology data,” J Am Med Inform Assoc, c.20, ss.1091–1098, 2013.
  • [21] W. Zhou, A. C. Bovik, H. R. Sheikh ve E. P. Simoncelli. “Image Qualifty Assessment: From Error Visibility to Structural Similarity,” IEEE Transactions on Image Processing. c. 13, s. 4, ss. 600–612, Nisan 2004.
  • [22] R. Reisenhofer, S. Bosse, G. Kutyniok ve T. Wiegand, “A Haar Wavelet-Based Perceptual Similarity Index for Image Quality Assessment,” Signal Processing: Image Communication, c. 61, ss. 33-43, doi:10.1016/j.image.2017.11.001, 2018.
  • [23] B. Roman, A. C. Hansen ve B. Adcock, (2014). “On asymptotic structure in compressed sensing,” CoRR, abs/1406.4178, 2014.
There are 23 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Esra Şengün Ermeydan 0000-0002-5953-4301

Ali Değirmenci 0000-0001-9727-8559

İlyas Çankaya 0000-0002-6072-3097

Fazlı Erdoğan This is me 0000-0002-9414-2178

Project Number 4981
Publication Date January 31, 2020
Published in Issue Year 2020

Cite

APA Şengün Ermeydan, E., Değirmenci, A., Çankaya, İ., Erdoğan, F. (2020). Patolojik Görüntülerin Sıkıştırılmış Algılamasında Ölçüm Matrisi ve Geri Çatma Algoritmalarının Etkileri. Duzce University Journal of Science and Technology, 8(1), 880-890. https://doi.org/10.29130/dubited.626880
AMA Şengün Ermeydan E, Değirmenci A, Çankaya İ, Erdoğan F. Patolojik Görüntülerin Sıkıştırılmış Algılamasında Ölçüm Matrisi ve Geri Çatma Algoritmalarının Etkileri. DÜBİTED. January 2020;8(1):880-890. doi:10.29130/dubited.626880
Chicago Şengün Ermeydan, Esra, Ali Değirmenci, İlyas Çankaya, and Fazlı Erdoğan. “Patolojik Görüntülerin Sıkıştırılmış Algılamasında Ölçüm Matrisi Ve Geri Çatma Algoritmalarının Etkileri”. Duzce University Journal of Science and Technology 8, no. 1 (January 2020): 880-90. https://doi.org/10.29130/dubited.626880.
EndNote Şengün Ermeydan E, Değirmenci A, Çankaya İ, Erdoğan F (January 1, 2020) Patolojik Görüntülerin Sıkıştırılmış Algılamasında Ölçüm Matrisi ve Geri Çatma Algoritmalarının Etkileri. Duzce University Journal of Science and Technology 8 1 880–890.
IEEE E. Şengün Ermeydan, A. Değirmenci, İ. Çankaya, and F. Erdoğan, “Patolojik Görüntülerin Sıkıştırılmış Algılamasında Ölçüm Matrisi ve Geri Çatma Algoritmalarının Etkileri”, DÜBİTED, vol. 8, no. 1, pp. 880–890, 2020, doi: 10.29130/dubited.626880.
ISNAD Şengün Ermeydan, Esra et al. “Patolojik Görüntülerin Sıkıştırılmış Algılamasında Ölçüm Matrisi Ve Geri Çatma Algoritmalarının Etkileri”. Duzce University Journal of Science and Technology 8/1 (January 2020), 880-890. https://doi.org/10.29130/dubited.626880.
JAMA Şengün Ermeydan E, Değirmenci A, Çankaya İ, Erdoğan F. Patolojik Görüntülerin Sıkıştırılmış Algılamasında Ölçüm Matrisi ve Geri Çatma Algoritmalarının Etkileri. DÜBİTED. 2020;8:880–890.
MLA Şengün Ermeydan, Esra et al. “Patolojik Görüntülerin Sıkıştırılmış Algılamasında Ölçüm Matrisi Ve Geri Çatma Algoritmalarının Etkileri”. Duzce University Journal of Science and Technology, vol. 8, no. 1, 2020, pp. 880-9, doi:10.29130/dubited.626880.
Vancouver Şengün Ermeydan E, Değirmenci A, Çankaya İ, Erdoğan F. Patolojik Görüntülerin Sıkıştırılmış Algılamasında Ölçüm Matrisi ve Geri Çatma Algoritmalarının Etkileri. DÜBİTED. 2020;8(1):880-9.