Research Article
BibTex RIS Cite

The Fracture Toughness and Brittleness of Au doped YBCO Superconductors

Year 2020, , 1562 - 1570, 30.04.2020
https://doi.org/10.29130/dubited.652403

Abstract

In this work, the effect of Au addition on some mechanical properties of YBCO superconductors are analyzed. Five different samples (undoped, 1%, 5%, 15% and 20%) were prepared using the conventional solid state reaction method. The experimental results of the microhardness measurements are used to obtain the yield strength, Young’s modules, fracture toughness and brittleness index. These mechanical properties mentioned above are extracted by using the proportional specimen resistance (PSR) model. The mechanical properties of the samples were found to be load dependent. The yield strength, Young’s modules, brittleness index and fracture toughness values increase with decreasing test load and decreases with increasing Au content. The possible reasons for the observed degradation in the mechanical properties due to Au addition are discussed.

References

  • [1] S. Hahn et al., “Design study on a 100-kA/20-K HTS cable for fusion magnets,” IEEE Trans. Appl. Supercond., vol. 25, no. 3, 2015.
  • [2] G. Celentano et al., “Design of an industrially feasible twisted-stack HTS cable-in-conduit conductor for fusion application,” IEEE Trans. Appl. Supercond., vol. 24, no. 3, 2014.
  • [3] W.H. Fietz, R. Heller, S.I. Schlachter and W. Goldacker, “Application of high temperature superconductors for fusion,” Fusion Engineering and Design, vol. 86, no. 6–8, pp. 1365-1368, 2011.
  • [4] W. Goldacker, F. Grilli, E. Pardo, A. Kario, S. Schlachter and M. Vojenčiak, “Roebel cables from REBCO coated conductors: a one-century-old concept for the superconductivity of the future,” Supercond. Sci. Technol., vol. 27, no. 9, 2014.
  • [5] S. B. Mohamed, S. A. Halim and H. Azhan, “Effect of doping Ba, Y, V, Zn and Sn on BSCCO superconducting ceramics,” IEEE Transactions on Applied Superconductivity, vol. 11, no. 1, 2001.
  • [6] B. P. Mikhailov, G. S. Burkhanov, P. E. Kazin, V. V. Lennikov, S. V. Shavkin, G. V. Laskova and A. A. Titov, “Microstructure and superconducting properties of TaC-doped Bi-2223 ceramics,” Inorganic Materials, vol. 37, no. 11, pp. 1199-1205, 2001.
  • [7] G. Yildirim, “Beginning point of metal to insulator transition for Bi-2223 superconducting matrix doped with Eu nanoparticles,” Journal of Alloys and Compounds, vol. 578, pp. 526-535, 2013.
  • [8] M. Dogruer, Y. Zalaoglu, A. Varilci, C. Terzioglu, G. Yildirim and O. Ozturk, “A study on magnetoresistivity, activation energy, irreversibility and upper critical field of slightly Mn added Bi-2223 superconductor seramics,” J. Supercond. Nov. Magn., vol. 25, pp. 961-968, 2012.
  • [9] G. Yildirim, S. Bal, E. Yucel, M. Dogruer, M. Akdogan, A. Varilci and C. Terzioglu, “Effect of Mn addition on structural and superconducting properties of (Bi, Pb)-2223 superconducting ceramics,” J. Supercond. Nov. Magn., vol. 25, pp. 381-390, 2012.
  • [10] N. Soylu, C.C. Yahsi, S.P. Altintas, S. Nezir and C. Terzioglu, “The structural and electrical study of Lu-doped YBCO system,” J. Supercond. Nov. Magn., vol. 25, pp. 1945-1949, 2013.
  • [11] M.B. Turkoz, S. Nezir, C. Terzioglu, A. Varilci and G. Yildirim, “Investigation of Lu effect on YBa2Cu3O7-delta superconducting compounds,” Journal of Materials Science-Materials in Electronics, vol. 24, no. 3, pp. 896-905, 2013.
  • [12] H. Sozeri, N. Ghazanfari, H. Ozkan and et al., “Enhancement in the high-Tc phase of BSCCO superconductors by Nb addition,” Supercond. Sci. Technol., vol.20, no. 6, pp. 522-528, 2007.
  • [13] M. M. A. Sekkina, H. A. El-Daly and K. M. Elsabawy, “Terbium-neodymium co-doping in Bi sites on the BPSCCO bismuth cuprate superconductor,” Supercond. Sci. Technol., vol. 17, no. 1, pp. 93-97, 2004.
  • [14] M. Dogruer, G. Yildirim, A. Varilci and C. Terzioglu, “MgB2 inclusions in Bi-2223 matrix: the evaluation of microstructural, mechanical and superconducting properties of new system, Bi-2223 + MgB2,” Journal of Alloys and Compounds, vol. 556, pp. 143-152, 2013.
  • [15] R. Terzioglu, G. Aydin, N. Soylu Koc and C. Terzioglu, “Investigation of the structural, magnetic and electrical properties of the Au doped YBCO superconductors,” Journal of Materials Science: Materials in Electronics, vol. 30, no. 3, pp. 2265-2277.
  • [16] H. Aydin, O. Cakiroglu, M. Nursoy, and C. Terzioglu, “Mechanical and superconducting properties of the Bi1.8Pb0.35Sr1.9Ca2.1Cu3GdxOy system,” Chinese Journal of Physics, vol. 47, no. 2, 2009.
  • [17] O. Ozturk, C. Terzioglu and I. Belenli, “Influence of diffusion-annealing temperature on the physico-mechanical properties of Au-doped Bi-2223 superconductors,” J Supercond Nov Magn, vol. 24, pp. 381–390, 2011.
  • [18] O. Ozturk, E. Asikuzun, M. Erdem, G. Yildirim, O. Yildiz and C. Terzioglu, “The effect of Pr addition on superconducting and mechanical properties of Bi-2212 superconductors,” J Mater Sci: Mater Electron, vol. 23, pp. 511–519, 2012.
  • [19] M. Yilmazlar, O. Ozturk, H. Aydin, M. Akdogan and C. Terzioglu, “The effect of Sm-Ca substitution on mechanical properties of BSCCO superconductors,” Chinese Journal of Physics, vol. 45, no. 2, 2007.
  • [20] Y. Yoshino, A. Iwabuchi, K. Noto, N. Sakai and M. Murakami, “Vickers hardness properties of YBCO bulk superconductor at cryogenic temperatures,” Physica C: Superconductivity, vol. 357–360, Part 1, pp. 796-798, 2001.
  • [21] R. Terzioglu, S. Polat Altintas, A. Varilci and C. Terzioglu, “Modeling of microhardness in the Au doped YBCO bulk superconductors,” Journal of Superconductivity and Novel Magnetism, vol. 32, no. 11, pp. 3377-3383, 2019.
  • [22] A. Leenders, M. Ullrich, and H. C. Freyhardt, “Influence of thermal cycling on the mechanical properties of VGF melt-textured YBCO,” Physica C: Superconductivity, vol. 279, no. 173, 1997.
  • [23] C. Veerender, V.R. Dumke and M. Nagabhooshanam, “Hardness and elastic moduli of Bi2−xPbxCa2Sr2Cu3Oy superconductors,” Phys. Status Solidi A, vol. 144, no. 199, 1994.
  • [24] F.A. McClintock, A.S. Argon and A. Frank, Mechanical behavior of materials, Sydney, Addison-Wesley Press, 1966, pp. 455.
  • [25] D. Tabor, The hardness of metals, Oxford, Clarendon Press, 1951.
  • [26] R.W. Davidge, Mechanical behavior of ceramics, Cambridge, Cambridge University Press, 1979, pp. 31–50.
  • [27] K. Hirao and M. Tomozawa, “Microhardness of SiO2 glass in various environments,” J. Am. Ceram. Soc., vol. 70, no. 497, 1987.
  • [28] F. Frohlich, P. Grau and W. Grellmann, “Performance and analysis of recording microhardness tests,” Phys. Status Solidi A, vol. 42, 1977.
  • [29] K. Nihara, R. Morena and D.P.H. Hasselman, “Evaluation of KIC of brittle solids by the indentation method with low crack-to-indent ratios,” J. Mater. Sci Letters., vol. 1, no. 13, 1982.

Au katkılı YBCO süperiletkenlerin kırılma tokluğu ve kırılganlıkları

Year 2020, , 1562 - 1570, 30.04.2020
https://doi.org/10.29130/dubited.652403

Abstract

Bu çalışmada, Au ilavesinin YBCO süper iletkenlerinin bazı mekanik özelliklerine etkisi incelenmiştir. Geleneksel katı hal reaksiyon metodu kullanılarak beş farklı numune (katkısız, % 1, % 5, % 15 ve % 20) hazırlanmıştır. Mikro sertlik ölçümlerinin deneysel sonuçları, akma dayanımı, Young modülleri, kırılma tokluğu ve kırılganlık indeksi elde etmek için kullanılmıştır. Yukarıda belirtilen bu mekanik özellikler PSR modeli kullanılarak elde edilmiştir. Numunelerin mekanik özelliklerinin yüke bağlı olduğu bulunmuştur. Akma dayanımı, Young’s modulus, kırılganlık indeksi ve kırılma tokluğu değerlerinin azalan test yükü ile arttığı ve artan Au içeriği ile azaldığı gözlemlenmiştir. Au ilavesi nedeniyle mekanik özelliklerde gözlenen bozulmanın olası nedenleri tartışılmıştır.

References

  • [1] S. Hahn et al., “Design study on a 100-kA/20-K HTS cable for fusion magnets,” IEEE Trans. Appl. Supercond., vol. 25, no. 3, 2015.
  • [2] G. Celentano et al., “Design of an industrially feasible twisted-stack HTS cable-in-conduit conductor for fusion application,” IEEE Trans. Appl. Supercond., vol. 24, no. 3, 2014.
  • [3] W.H. Fietz, R. Heller, S.I. Schlachter and W. Goldacker, “Application of high temperature superconductors for fusion,” Fusion Engineering and Design, vol. 86, no. 6–8, pp. 1365-1368, 2011.
  • [4] W. Goldacker, F. Grilli, E. Pardo, A. Kario, S. Schlachter and M. Vojenčiak, “Roebel cables from REBCO coated conductors: a one-century-old concept for the superconductivity of the future,” Supercond. Sci. Technol., vol. 27, no. 9, 2014.
  • [5] S. B. Mohamed, S. A. Halim and H. Azhan, “Effect of doping Ba, Y, V, Zn and Sn on BSCCO superconducting ceramics,” IEEE Transactions on Applied Superconductivity, vol. 11, no. 1, 2001.
  • [6] B. P. Mikhailov, G. S. Burkhanov, P. E. Kazin, V. V. Lennikov, S. V. Shavkin, G. V. Laskova and A. A. Titov, “Microstructure and superconducting properties of TaC-doped Bi-2223 ceramics,” Inorganic Materials, vol. 37, no. 11, pp. 1199-1205, 2001.
  • [7] G. Yildirim, “Beginning point of metal to insulator transition for Bi-2223 superconducting matrix doped with Eu nanoparticles,” Journal of Alloys and Compounds, vol. 578, pp. 526-535, 2013.
  • [8] M. Dogruer, Y. Zalaoglu, A. Varilci, C. Terzioglu, G. Yildirim and O. Ozturk, “A study on magnetoresistivity, activation energy, irreversibility and upper critical field of slightly Mn added Bi-2223 superconductor seramics,” J. Supercond. Nov. Magn., vol. 25, pp. 961-968, 2012.
  • [9] G. Yildirim, S. Bal, E. Yucel, M. Dogruer, M. Akdogan, A. Varilci and C. Terzioglu, “Effect of Mn addition on structural and superconducting properties of (Bi, Pb)-2223 superconducting ceramics,” J. Supercond. Nov. Magn., vol. 25, pp. 381-390, 2012.
  • [10] N. Soylu, C.C. Yahsi, S.P. Altintas, S. Nezir and C. Terzioglu, “The structural and electrical study of Lu-doped YBCO system,” J. Supercond. Nov. Magn., vol. 25, pp. 1945-1949, 2013.
  • [11] M.B. Turkoz, S. Nezir, C. Terzioglu, A. Varilci and G. Yildirim, “Investigation of Lu effect on YBa2Cu3O7-delta superconducting compounds,” Journal of Materials Science-Materials in Electronics, vol. 24, no. 3, pp. 896-905, 2013.
  • [12] H. Sozeri, N. Ghazanfari, H. Ozkan and et al., “Enhancement in the high-Tc phase of BSCCO superconductors by Nb addition,” Supercond. Sci. Technol., vol.20, no. 6, pp. 522-528, 2007.
  • [13] M. M. A. Sekkina, H. A. El-Daly and K. M. Elsabawy, “Terbium-neodymium co-doping in Bi sites on the BPSCCO bismuth cuprate superconductor,” Supercond. Sci. Technol., vol. 17, no. 1, pp. 93-97, 2004.
  • [14] M. Dogruer, G. Yildirim, A. Varilci and C. Terzioglu, “MgB2 inclusions in Bi-2223 matrix: the evaluation of microstructural, mechanical and superconducting properties of new system, Bi-2223 + MgB2,” Journal of Alloys and Compounds, vol. 556, pp. 143-152, 2013.
  • [15] R. Terzioglu, G. Aydin, N. Soylu Koc and C. Terzioglu, “Investigation of the structural, magnetic and electrical properties of the Au doped YBCO superconductors,” Journal of Materials Science: Materials in Electronics, vol. 30, no. 3, pp. 2265-2277.
  • [16] H. Aydin, O. Cakiroglu, M. Nursoy, and C. Terzioglu, “Mechanical and superconducting properties of the Bi1.8Pb0.35Sr1.9Ca2.1Cu3GdxOy system,” Chinese Journal of Physics, vol. 47, no. 2, 2009.
  • [17] O. Ozturk, C. Terzioglu and I. Belenli, “Influence of diffusion-annealing temperature on the physico-mechanical properties of Au-doped Bi-2223 superconductors,” J Supercond Nov Magn, vol. 24, pp. 381–390, 2011.
  • [18] O. Ozturk, E. Asikuzun, M. Erdem, G. Yildirim, O. Yildiz and C. Terzioglu, “The effect of Pr addition on superconducting and mechanical properties of Bi-2212 superconductors,” J Mater Sci: Mater Electron, vol. 23, pp. 511–519, 2012.
  • [19] M. Yilmazlar, O. Ozturk, H. Aydin, M. Akdogan and C. Terzioglu, “The effect of Sm-Ca substitution on mechanical properties of BSCCO superconductors,” Chinese Journal of Physics, vol. 45, no. 2, 2007.
  • [20] Y. Yoshino, A. Iwabuchi, K. Noto, N. Sakai and M. Murakami, “Vickers hardness properties of YBCO bulk superconductor at cryogenic temperatures,” Physica C: Superconductivity, vol. 357–360, Part 1, pp. 796-798, 2001.
  • [21] R. Terzioglu, S. Polat Altintas, A. Varilci and C. Terzioglu, “Modeling of microhardness in the Au doped YBCO bulk superconductors,” Journal of Superconductivity and Novel Magnetism, vol. 32, no. 11, pp. 3377-3383, 2019.
  • [22] A. Leenders, M. Ullrich, and H. C. Freyhardt, “Influence of thermal cycling on the mechanical properties of VGF melt-textured YBCO,” Physica C: Superconductivity, vol. 279, no. 173, 1997.
  • [23] C. Veerender, V.R. Dumke and M. Nagabhooshanam, “Hardness and elastic moduli of Bi2−xPbxCa2Sr2Cu3Oy superconductors,” Phys. Status Solidi A, vol. 144, no. 199, 1994.
  • [24] F.A. McClintock, A.S. Argon and A. Frank, Mechanical behavior of materials, Sydney, Addison-Wesley Press, 1966, pp. 455.
  • [25] D. Tabor, The hardness of metals, Oxford, Clarendon Press, 1951.
  • [26] R.W. Davidge, Mechanical behavior of ceramics, Cambridge, Cambridge University Press, 1979, pp. 31–50.
  • [27] K. Hirao and M. Tomozawa, “Microhardness of SiO2 glass in various environments,” J. Am. Ceram. Soc., vol. 70, no. 497, 1987.
  • [28] F. Frohlich, P. Grau and W. Grellmann, “Performance and analysis of recording microhardness tests,” Phys. Status Solidi A, vol. 42, 1977.
  • [29] K. Nihara, R. Morena and D.P.H. Hasselman, “Evaluation of KIC of brittle solids by the indentation method with low crack-to-indent ratios,” J. Mater. Sci Letters., vol. 1, no. 13, 1982.
There are 29 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Rıfkı Terzioğlu 0000-0001-6305-5349

Publication Date April 30, 2020
Published in Issue Year 2020

Cite

APA Terzioğlu, R. (2020). The Fracture Toughness and Brittleness of Au doped YBCO Superconductors. Duzce University Journal of Science and Technology, 8(2), 1562-1570. https://doi.org/10.29130/dubited.652403
AMA Terzioğlu R. The Fracture Toughness and Brittleness of Au doped YBCO Superconductors. DÜBİTED. April 2020;8(2):1562-1570. doi:10.29130/dubited.652403
Chicago Terzioğlu, Rıfkı. “The Fracture Toughness and Brittleness of Au Doped YBCO Superconductors”. Duzce University Journal of Science and Technology 8, no. 2 (April 2020): 1562-70. https://doi.org/10.29130/dubited.652403.
EndNote Terzioğlu R (April 1, 2020) The Fracture Toughness and Brittleness of Au doped YBCO Superconductors. Duzce University Journal of Science and Technology 8 2 1562–1570.
IEEE R. Terzioğlu, “The Fracture Toughness and Brittleness of Au doped YBCO Superconductors”, DÜBİTED, vol. 8, no. 2, pp. 1562–1570, 2020, doi: 10.29130/dubited.652403.
ISNAD Terzioğlu, Rıfkı. “The Fracture Toughness and Brittleness of Au Doped YBCO Superconductors”. Duzce University Journal of Science and Technology 8/2 (April 2020), 1562-1570. https://doi.org/10.29130/dubited.652403.
JAMA Terzioğlu R. The Fracture Toughness and Brittleness of Au doped YBCO Superconductors. DÜBİTED. 2020;8:1562–1570.
MLA Terzioğlu, Rıfkı. “The Fracture Toughness and Brittleness of Au Doped YBCO Superconductors”. Duzce University Journal of Science and Technology, vol. 8, no. 2, 2020, pp. 1562-70, doi:10.29130/dubited.652403.
Vancouver Terzioğlu R. The Fracture Toughness and Brittleness of Au doped YBCO Superconductors. DÜBİTED. 2020;8(2):1562-70.