Research Article
BibTex RIS Cite

p(NIPAM) Kriyojelinin Hazırlanışı, Karakterizasyonu ve Termal Özelliklerinin p(NIPAM) Hidrojeli ile Karşılaştırmalı Olarak İncelenmesi

Year 2020, , 1383 - 1393, 30.04.2020
https://doi.org/10.29130/dubited.659526

Abstract

Bu çalışmada ilk olarak, süper-gözenekli poli(N-izopropilakrilamit) (p(NIPAM)) kriyojeli, -16°C' de kriyojelasyon yöntemi ile sentezlenmiştir. Polimerizasyon işleminde, NIPAM monomer olarak kullanıldı ve çapraz bağlayıcı olarak N,N'-metilen-bis-akrilamid (MBAAm) tercih edildi. Reaksiyon koşullarının sağlanabilmesi açısından diğer reaktifler olarak ise reaksiyon redoks başlatıcı çifti N,N,N,N′-tetrametilen diamin (TEMED) ve amonyum persülfat (APS) varlığında polimerizasyon gerçekleştirildi. Hazırlanan p(NIPAM) kriyojellerinin şişme ve makrogözeneklilik testlerinin incelenmesinin yanı sıra, Fourier dönüşümlü kızılötesi (FTIR) spektroskopisi ve Yüzey Taramalı Elektron mikroskobu ile karakterize edildi. p(NIPAM) kriyojellerinin termal kararlılıklarının belirlenebilmesi amacıyla Termal Gravimetrik Analiz (TGA) yöntemlerine başvuruldu. NIPAM bazlı kriyojellerin karakterizasyon ölçümlerinin belirlenmesinden sonra ise kriyojellerin dahil olduğu sınıf olan hidrojellere ait bu kez NIPAM-bazlı hidrojel sentezlenerek aynı koşullar üzerinden karakterizasyon sonuçları karşılaştırıldı.

Supporting Institution

Düzce Üniversitesi Bilimsel Araştırma Projeleri

Project Number

2019.05.03.1024

References

  • 1 S. Dhanya, D. Bahadur, G.C. Kundu, R. Srivastava ''Maleic acid incorporated poly-(N-isopropylacrylamide) polymer nanogels for dual-responsive delivery of doxorubicin hydrochloride,'' Eur Polym J., vol: 49, pp. 22–32, 2013, doi: 10.1016/j.eurpolymj.2012.10.007.
  • 2 H.K. Kim, W.S. Shim, S.E. Kim, et al., ''Injectable in situ-forming pH/thermo-sensitive hydrogel for bone tissue engineering'', Tissue Eng - Part A, 2009, vol: 15, pp. 923–933, doi: 10.1089/ten.tea.2007.0407.
  • 3 J. Teichmann, S. Gramm, ''Electron beam immobilization of functionalized poly(vinyl methyl ether) thin films on polymer surfaces-Towards stimuli responsive coatings for biomedical purposes Copolymerisation kinetiks of NipAAm and DEGMA View project.'', 2016, doi: 10.3144/expresspolymlett.2011.95.
  • 4 P.S. Stayton, T. Shimoboji, C. Long, et al., ''Control of protein–ligand recognition using a stimuli-responsive polymer'', Nature, vol: 378, pp. 472–474, 2016, doi: 10.1038/378472a0.
  • 5 H. Wei, S.X. Cheng, X.Z. Zhang, R. X. Zhuo, ''Thermo-sensitive polymeric micelles based on poly(N-isopropylacrylamide) as drug carriers'', Prog. Polym. Sci., vol: 34, pp. 893–910, 2009.
  • 6 I. Perçin, N. Idil, A. Denizli, ''Molecularly imprinted poly(N-isopropylacrylamide) thermosensitive based cryogel for immunoglobulin G purification'', Process Biochem., vol: 80, pp.181–189, 2019, doi: 10.1016/j.procbio.2019.02.001.
  • 7 N. Sahiner , ''Super macroporous poly( N -isopropyl acrylamide) cryogel for separation purpose'', Polym Adv Technol, vol: 29, pp. 2184–2191, 2018, doi: 10.1002/pat.4326.
  • 8 S. Utku, E. Yılmaz, D. Türkmen, L. Uzun, B. Garipcan, R. Say, A. Denizli, ''Ion-Imprinted Thermosensitive Polymers for Fe3+ Removal from Human Plasma'', Hacettepe J. Biol. & Chem., vol. 36, no. 4, pp. 291-304, Dec. 2019.
  • 9 Y. Qiu, K. Park, ''Environment-sensitive hydrogels for drug delivery'', Adv. Drug Deliv. Rev., vol: 53, pp.321–339, 2001.
  • 10 R. Yoshida, K. Uchida, Y. Kaneko, et al., ''Comb-type grafted hydrogels with rapid deswelling response to temperature changes'', Nature, vol: 374, pp.240–242, 1995, doi: 10.1038/374240a0.
  • 11 E. Kokufuta, T. Tanaka, S. Ito, et al., ''Thermo-sensitive N-n-propylacrylamide gels,'' Phase Transitions, vol: 44, pp. 217–225, 1993, doi: 10.1080/01411599308207986.
  • 12 N.A. Peppas, Y. Huang, M. Torres-Lugo, et al., ''Physicochemical Foundations and Structural Design of Hydrogels in Medicine and Biolog'', Annu Rev Biomed Eng., vol: 2, pp.9–29, 2000, doi: 10.1146/annurev.bioeng.2.1.9.
  • 13 K. Şarkaya, A. Demir, ''The comparative investigation on synthesis, characterizations of silver ion-imprinting and non-imprinting cryogels, their impedance spectroscopies and relaxation mechanisms'', Polym Bull., pp.1–16, 2019, doi: 10.1007/s00289-018-2657-7.
  • 14 V.I. Lozinsky, E.S. Vainerman, E.F. Titova, et al., ''Study of cryostructurization of polymer systems'', Colloid Polym Sci., vol: 262, pp. 769–774, 1993, doi: 10.1007/BF01451705.
  • 15 V.I. Lozinsky, I.Y. Galaev, F.M. Plieva, et al., ''Polymeric cryogels as promising materials of biotechnological interest'', Trends Biotechnol., vol. 21, pp. 445–45, 2003, doi: 10.1016/j.tibtech.2003.08.002.
  • 16 M. Bakhshpour, H. Yavuz, A. Denizli, ''Controlled release of mitomycin C from PHEMAH–Cu(II) cryogel membranes'', Artif Cells, Nanomedicine, Biotechnol., vol: 46, pp. 946–954, 2018, doi: 10.1080/21691401.2018.1439840.
  • 17 K. Çetin, A. Denizli, ''Microcryogels as plastic antibodies for transferrin purification'', Process Biochem., vol: 79, pp.174–184, 2019, doi: 10.1016/j.procbio.2018.12.020.
  • 18 K. Şarkaya, M. Bakhshpour, A. Denizli, ''Ag + ions imprinted cryogels for selective removal of silver ions from aqueous solutions'', Sep Sci Technol., vol: 1–12, 2018, doi: 10.1080/01496395.2018.1556300.
  • 19 A. Jain, J. Bajpai, A.K. Bajpai, ''Structural, morphological and thermal characterization of poly (2-hydroxyethyl methacrylate-co-acrylonitrile) (P (HEMA-co-AN)) Cryogels: evaluation of water sorption potential and cytotoxicity'', J Polym Res., no. 24, 2017, doi: 10.1007/s10965-017-1276-6.
  • 20 S. Sun, Y. Tang, Q. Fu, et al., ''Monolithic cryogels made of agarose–chitosan composite and loaded with agarose beads for purification of immunoglobulin G'', Int J Biol Macromol., vol: 50, pp. 1002–1007, 2012, doi: 10.1016/J.IJBIOMAC.2012.02.028.
  • 21 N. Bereli, G. Şener, E.B. Altıntaş, et al., ''Poly(glycidyl methacrylate) beads embedded cryogels for pseudo-specific affinity depletion of albumin and immunoglobulin G'', Mater Sci Eng C., vol: 30, pp.323–329 , 2015, doi: 10.1016/J.MSEC.2009.11.013.
  • 22 F. Yılmaz, N. Bereli, H. Yavuz, A. Denizli ''Supermacroporous hydrophobic affinity cryogels for protein chromatography'', Biochem Eng J., vol: 43, pp. 272–279, 2009, doi: 10.1016/J.BEJ.2008.10.009.
  • 23 N. Sahiner, S. Demirci, K. Sel, ''Conductivity of p(AAc) Cryogel and Its Li+, Na+, and K+ Salts for NH3 Sensing'', J Electron Mater, vol: 45, pp. 3759–3765, 2016, doi: 10.1007/s11664-016-4507-4.
  • 24 N. Sahiner, S. Demirci, ''The use of p(4-VP) cryogel as template for in situ preparation of p(An), p(Py), and p(Th) conductive polymer and their potential sensor applications'', Synth Met., vol: 227, pp. 11–20, 2017, doi: 10.1016/J.SYNTHMET.2017.03.003.
  • 25 A. Srivastava, E. Jain, A. Kumar, ''The physical characterization of supermacroporous poly(N-isopropylacrylamide) cryogel: Mechanical strength and swelling/de-swelling kinetics'', Mater Sci Eng A., vol: 464, pp. 93–100, 2007, doi: 10.1016/j.msea.2007.03.057.
  • 26 F. M. Plieva, I. Y. Galaev, B. Mattiasson, ''Macroporous gels prepared at subzero temperatures as novel materials for chromatography of particulate-containing fluids and cell culture applications'', J Sep Sci., vol: 30, pp. 1657–1671, 2007, doi: 10.1002/jssc.200700127.
  • 27 S. P. Rwei, Y. Y. Chuang, T. F. Way, et al., ''Preparation of thermo- and pH-responsive star copolymers via ATRP and its use in drug release application'', Colloid Polym Sci., vol: 293, pp. 493–503, 2014, doi: 10.1007/s00396-014-3436-0.
  • 28 J. Hanlan, D. A. Skoog, D. M. West ''Principles of Instrumental Analysis.'', Stud Conserv., vol: 18, no: 45, 1973, doi: 10.2307/1505543.
  • 29 K. Tauer, D. Gau, SSchulze S, et al., ''Thermal property changes of poly(N-isopropylacrylamide) microgel particles and block copolymers'', Colloid Polym Sci., vol: 287, pp. 299–312, 2009, doi: 10.1007/s00396-008-1984-x.
  • 30 N. Sahiner, ''Super macroporous poly (N -isopropyl acrylamide) cryogel for separation purpose'', Polym Adv Technol., vol: 29, pp. 2184–2191, 2018, doi: 10.1002/pat.4326.
  • 31 M. Jalilzadeh, L. Uzun, S. Şenel, A. Denizli, ''Specific heavy metal ion recovery with ion-imprinted cryogels'', J. Appl. Polym. Sci., vol: 133, 2016, doi: 10.1002/app.43095.
Year 2020, , 1383 - 1393, 30.04.2020
https://doi.org/10.29130/dubited.659526

Abstract

Project Number

2019.05.03.1024

References

  • 1 S. Dhanya, D. Bahadur, G.C. Kundu, R. Srivastava ''Maleic acid incorporated poly-(N-isopropylacrylamide) polymer nanogels for dual-responsive delivery of doxorubicin hydrochloride,'' Eur Polym J., vol: 49, pp. 22–32, 2013, doi: 10.1016/j.eurpolymj.2012.10.007.
  • 2 H.K. Kim, W.S. Shim, S.E. Kim, et al., ''Injectable in situ-forming pH/thermo-sensitive hydrogel for bone tissue engineering'', Tissue Eng - Part A, 2009, vol: 15, pp. 923–933, doi: 10.1089/ten.tea.2007.0407.
  • 3 J. Teichmann, S. Gramm, ''Electron beam immobilization of functionalized poly(vinyl methyl ether) thin films on polymer surfaces-Towards stimuli responsive coatings for biomedical purposes Copolymerisation kinetiks of NipAAm and DEGMA View project.'', 2016, doi: 10.3144/expresspolymlett.2011.95.
  • 4 P.S. Stayton, T. Shimoboji, C. Long, et al., ''Control of protein–ligand recognition using a stimuli-responsive polymer'', Nature, vol: 378, pp. 472–474, 2016, doi: 10.1038/378472a0.
  • 5 H. Wei, S.X. Cheng, X.Z. Zhang, R. X. Zhuo, ''Thermo-sensitive polymeric micelles based on poly(N-isopropylacrylamide) as drug carriers'', Prog. Polym. Sci., vol: 34, pp. 893–910, 2009.
  • 6 I. Perçin, N. Idil, A. Denizli, ''Molecularly imprinted poly(N-isopropylacrylamide) thermosensitive based cryogel for immunoglobulin G purification'', Process Biochem., vol: 80, pp.181–189, 2019, doi: 10.1016/j.procbio.2019.02.001.
  • 7 N. Sahiner , ''Super macroporous poly( N -isopropyl acrylamide) cryogel for separation purpose'', Polym Adv Technol, vol: 29, pp. 2184–2191, 2018, doi: 10.1002/pat.4326.
  • 8 S. Utku, E. Yılmaz, D. Türkmen, L. Uzun, B. Garipcan, R. Say, A. Denizli, ''Ion-Imprinted Thermosensitive Polymers for Fe3+ Removal from Human Plasma'', Hacettepe J. Biol. & Chem., vol. 36, no. 4, pp. 291-304, Dec. 2019.
  • 9 Y. Qiu, K. Park, ''Environment-sensitive hydrogels for drug delivery'', Adv. Drug Deliv. Rev., vol: 53, pp.321–339, 2001.
  • 10 R. Yoshida, K. Uchida, Y. Kaneko, et al., ''Comb-type grafted hydrogels with rapid deswelling response to temperature changes'', Nature, vol: 374, pp.240–242, 1995, doi: 10.1038/374240a0.
  • 11 E. Kokufuta, T. Tanaka, S. Ito, et al., ''Thermo-sensitive N-n-propylacrylamide gels,'' Phase Transitions, vol: 44, pp. 217–225, 1993, doi: 10.1080/01411599308207986.
  • 12 N.A. Peppas, Y. Huang, M. Torres-Lugo, et al., ''Physicochemical Foundations and Structural Design of Hydrogels in Medicine and Biolog'', Annu Rev Biomed Eng., vol: 2, pp.9–29, 2000, doi: 10.1146/annurev.bioeng.2.1.9.
  • 13 K. Şarkaya, A. Demir, ''The comparative investigation on synthesis, characterizations of silver ion-imprinting and non-imprinting cryogels, their impedance spectroscopies and relaxation mechanisms'', Polym Bull., pp.1–16, 2019, doi: 10.1007/s00289-018-2657-7.
  • 14 V.I. Lozinsky, E.S. Vainerman, E.F. Titova, et al., ''Study of cryostructurization of polymer systems'', Colloid Polym Sci., vol: 262, pp. 769–774, 1993, doi: 10.1007/BF01451705.
  • 15 V.I. Lozinsky, I.Y. Galaev, F.M. Plieva, et al., ''Polymeric cryogels as promising materials of biotechnological interest'', Trends Biotechnol., vol. 21, pp. 445–45, 2003, doi: 10.1016/j.tibtech.2003.08.002.
  • 16 M. Bakhshpour, H. Yavuz, A. Denizli, ''Controlled release of mitomycin C from PHEMAH–Cu(II) cryogel membranes'', Artif Cells, Nanomedicine, Biotechnol., vol: 46, pp. 946–954, 2018, doi: 10.1080/21691401.2018.1439840.
  • 17 K. Çetin, A. Denizli, ''Microcryogels as plastic antibodies for transferrin purification'', Process Biochem., vol: 79, pp.174–184, 2019, doi: 10.1016/j.procbio.2018.12.020.
  • 18 K. Şarkaya, M. Bakhshpour, A. Denizli, ''Ag + ions imprinted cryogels for selective removal of silver ions from aqueous solutions'', Sep Sci Technol., vol: 1–12, 2018, doi: 10.1080/01496395.2018.1556300.
  • 19 A. Jain, J. Bajpai, A.K. Bajpai, ''Structural, morphological and thermal characterization of poly (2-hydroxyethyl methacrylate-co-acrylonitrile) (P (HEMA-co-AN)) Cryogels: evaluation of water sorption potential and cytotoxicity'', J Polym Res., no. 24, 2017, doi: 10.1007/s10965-017-1276-6.
  • 20 S. Sun, Y. Tang, Q. Fu, et al., ''Monolithic cryogels made of agarose–chitosan composite and loaded with agarose beads for purification of immunoglobulin G'', Int J Biol Macromol., vol: 50, pp. 1002–1007, 2012, doi: 10.1016/J.IJBIOMAC.2012.02.028.
  • 21 N. Bereli, G. Şener, E.B. Altıntaş, et al., ''Poly(glycidyl methacrylate) beads embedded cryogels for pseudo-specific affinity depletion of albumin and immunoglobulin G'', Mater Sci Eng C., vol: 30, pp.323–329 , 2015, doi: 10.1016/J.MSEC.2009.11.013.
  • 22 F. Yılmaz, N. Bereli, H. Yavuz, A. Denizli ''Supermacroporous hydrophobic affinity cryogels for protein chromatography'', Biochem Eng J., vol: 43, pp. 272–279, 2009, doi: 10.1016/J.BEJ.2008.10.009.
  • 23 N. Sahiner, S. Demirci, K. Sel, ''Conductivity of p(AAc) Cryogel and Its Li+, Na+, and K+ Salts for NH3 Sensing'', J Electron Mater, vol: 45, pp. 3759–3765, 2016, doi: 10.1007/s11664-016-4507-4.
  • 24 N. Sahiner, S. Demirci, ''The use of p(4-VP) cryogel as template for in situ preparation of p(An), p(Py), and p(Th) conductive polymer and their potential sensor applications'', Synth Met., vol: 227, pp. 11–20, 2017, doi: 10.1016/J.SYNTHMET.2017.03.003.
  • 25 A. Srivastava, E. Jain, A. Kumar, ''The physical characterization of supermacroporous poly(N-isopropylacrylamide) cryogel: Mechanical strength and swelling/de-swelling kinetics'', Mater Sci Eng A., vol: 464, pp. 93–100, 2007, doi: 10.1016/j.msea.2007.03.057.
  • 26 F. M. Plieva, I. Y. Galaev, B. Mattiasson, ''Macroporous gels prepared at subzero temperatures as novel materials for chromatography of particulate-containing fluids and cell culture applications'', J Sep Sci., vol: 30, pp. 1657–1671, 2007, doi: 10.1002/jssc.200700127.
  • 27 S. P. Rwei, Y. Y. Chuang, T. F. Way, et al., ''Preparation of thermo- and pH-responsive star copolymers via ATRP and its use in drug release application'', Colloid Polym Sci., vol: 293, pp. 493–503, 2014, doi: 10.1007/s00396-014-3436-0.
  • 28 J. Hanlan, D. A. Skoog, D. M. West ''Principles of Instrumental Analysis.'', Stud Conserv., vol: 18, no: 45, 1973, doi: 10.2307/1505543.
  • 29 K. Tauer, D. Gau, SSchulze S, et al., ''Thermal property changes of poly(N-isopropylacrylamide) microgel particles and block copolymers'', Colloid Polym Sci., vol: 287, pp. 299–312, 2009, doi: 10.1007/s00396-008-1984-x.
  • 30 N. Sahiner, ''Super macroporous poly (N -isopropyl acrylamide) cryogel for separation purpose'', Polym Adv Technol., vol: 29, pp. 2184–2191, 2018, doi: 10.1002/pat.4326.
  • 31 M. Jalilzadeh, L. Uzun, S. Şenel, A. Denizli, ''Specific heavy metal ion recovery with ion-imprinted cryogels'', J. Appl. Polym. Sci., vol: 133, 2016, doi: 10.1002/app.43095.
There are 31 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Koray Şarkaya 0000-0003-0177-5134

Project Number 2019.05.03.1024
Publication Date April 30, 2020
Published in Issue Year 2020

Cite

APA Şarkaya, K. (2020). p(NIPAM) Kriyojelinin Hazırlanışı, Karakterizasyonu ve Termal Özelliklerinin p(NIPAM) Hidrojeli ile Karşılaştırmalı Olarak İncelenmesi. Duzce University Journal of Science and Technology, 8(2), 1383-1393. https://doi.org/10.29130/dubited.659526
AMA Şarkaya K. p(NIPAM) Kriyojelinin Hazırlanışı, Karakterizasyonu ve Termal Özelliklerinin p(NIPAM) Hidrojeli ile Karşılaştırmalı Olarak İncelenmesi. DÜBİTED. April 2020;8(2):1383-1393. doi:10.29130/dubited.659526
Chicago Şarkaya, Koray. “p(NIPAM) Kriyojelinin Hazırlanışı, Karakterizasyonu Ve Termal Özelliklerinin p(NIPAM) Hidrojeli Ile Karşılaştırmalı Olarak İncelenmesi”. Duzce University Journal of Science and Technology 8, no. 2 (April 2020): 1383-93. https://doi.org/10.29130/dubited.659526.
EndNote Şarkaya K (April 1, 2020) p(NIPAM) Kriyojelinin Hazırlanışı, Karakterizasyonu ve Termal Özelliklerinin p(NIPAM) Hidrojeli ile Karşılaştırmalı Olarak İncelenmesi. Duzce University Journal of Science and Technology 8 2 1383–1393.
IEEE K. Şarkaya, “p(NIPAM) Kriyojelinin Hazırlanışı, Karakterizasyonu ve Termal Özelliklerinin p(NIPAM) Hidrojeli ile Karşılaştırmalı Olarak İncelenmesi”, DÜBİTED, vol. 8, no. 2, pp. 1383–1393, 2020, doi: 10.29130/dubited.659526.
ISNAD Şarkaya, Koray. “p(NIPAM) Kriyojelinin Hazırlanışı, Karakterizasyonu Ve Termal Özelliklerinin p(NIPAM) Hidrojeli Ile Karşılaştırmalı Olarak İncelenmesi”. Duzce University Journal of Science and Technology 8/2 (April 2020), 1383-1393. https://doi.org/10.29130/dubited.659526.
JAMA Şarkaya K. p(NIPAM) Kriyojelinin Hazırlanışı, Karakterizasyonu ve Termal Özelliklerinin p(NIPAM) Hidrojeli ile Karşılaştırmalı Olarak İncelenmesi. DÜBİTED. 2020;8:1383–1393.
MLA Şarkaya, Koray. “p(NIPAM) Kriyojelinin Hazırlanışı, Karakterizasyonu Ve Termal Özelliklerinin p(NIPAM) Hidrojeli Ile Karşılaştırmalı Olarak İncelenmesi”. Duzce University Journal of Science and Technology, vol. 8, no. 2, 2020, pp. 1383-9, doi:10.29130/dubited.659526.
Vancouver Şarkaya K. p(NIPAM) Kriyojelinin Hazırlanışı, Karakterizasyonu ve Termal Özelliklerinin p(NIPAM) Hidrojeli ile Karşılaştırmalı Olarak İncelenmesi. DÜBİTED. 2020;8(2):1383-9.