It is an undeniable fact that environmental pollution reaches dangerous levels as long as the use of petroleum-based fuels in vehicle engines. In addition, the decrease in fossil fuel resources has made it necessary to search for different fuels. Therefore, efforts to develop alternative fuels and the use of these fuels in vehicle engines are becoming widespread today. In addition, in accordance with the restrictive laws in the exhaust emission standards, emission reduction methods should be used together with renewable alternative fuels. For this purpose, in this study, changes in engine performance and NO emissions were investigated by applying different rates of biodiesel (B10, B20 and B50) and exhaust gas recirculation (EGR) (10%, 15% and 20%) to a single cylinder direct injection diesel engine operating at full load. The L16 orthogonal sequence was used in the study where the experimental design was made with Taguchi optimization method, thus optimization of engine performance and NO emission was performed by saving time and cost during the experiments. Biodiesel, EGR and speed were selected as factors affecting engine performance and NO emission, and different levels of these factors were used. As a result of Signal/Noise (S/N) analysis, the best combinations in terms of engine parameters were determined. Then, the effect degrees of the factors were tested by ANOVA (variance) analysis. Finally, validation experiments were conducted and improvements obtained as a result of Taguchi optimization were given in comparison with standard engine results. Optimum results in terms of engine torque and brake specific fuel consumption (BSFC) were obtained in B20 fuel, when EGR is not applied (EGR0) and at 1600 rpm. As a result of Taguchi optimization, an improvement of 1.11% in moment and 0.67% in BSFC was recorded. An improvement of 92.3% was achieved in NO emission as a result of Taguchi optimization. As a result of ANOVA analysis, factors were found to be effective between 99% and 99.99% on performance parameters.
Primary Language | Turkish |
---|---|
Subjects | Engineering |
Journal Section | Articles |
Authors | |
Publication Date | October 31, 2021 |
Published in Issue | Year 2021 |