Research Article
BibTex RIS Cite

Investigation of Microstructure, Hardness and Acidic Corrosion Properties of TIG Welded Ti6Al4V Titanium Alloy

Year 2021, , 802 - 811, 25.04.2021
https://doi.org/10.29130/dubited.799862

Abstract

Titanium alloys are used in many areas due to their superior properties. Welding can be done in the manufacturing processes made of these alloys or afterwards. In this study, microstructure, hardness and acidic corrosion properties of Ti6Al4V titanium alloy joined by welding were investigated. Since the titanium alloys parts can be used in chemical, petrochemical and similar fields in acidic environments, the corrosion properties have been examined in acidic environment. In the study Ti6Al4V titanium alloy parts were joined by Tungsten Inert Gas (TIG) welding method. The microstructures were examined by optical microscope, and hardness tests were performed using the Vickers method. Electrochemical corrosion experiments were performed by using potentiodynamic method to determine the corrosion behavior in acidic environment. According to the results of the microstructure, it was observed that a good combination was achieved between Ti6Al4V titanium alloy parts by TIG welding and the weld metal consisted of both thin and long morphology α phase grains and very large sized β phase grains. The hardness increased in the heat affected zone and weld metal than base metal. The corrosion rate of TIG welded titanium alloy in acidic environment was higher than the unwelded titanium alloy.

References

  • [1] Q. Yunlian, D. Ju, H. Quan, Z. Liying, “Electron Beam Welding, Laser Beam Welding and Gas Tungsten Arc Welding of Titanium Sheet,” Mater. Sci. Eng. A, c. 280, ss. 177–181, 2000.
  • [2] Z. Xu, Z. Dong, Z. Yu, W. Wang, J. Zhang, “Relationships Between Microhardness, Microstructure, and Grain Orientation in Laser-Welded Joints with Different Welding Speeds for Ti6Al4V Titanium Alloy”, Trans. Nonferrous Met. Soc. China, c. 30, ss. 1277−1289, 2020.
  • [3] C. Xu, G. Sheng, H. Feng, X. Yuan, “Tungsten Inert Gas Welding Brazing of AZ31B Magnesium Alloy to TC4 Titanium Alloy”, J. Mater. Sci. Technol., c. 32, ss. 167–171, 2016.
  • [4] Y. Zhang, J. Huang, Z. Ye, Z. Cheng, “An Investigation on Butt Joints of Ti6Al4V and 5A06 Using MIG/TIG Double-Side Arc Welding-Brazing”, J. Manuf. Process., c. 27, ss. 221–225, 2017.
  • [5] R. Bendikiene, S. Baskutis, J. Baskutiene, A. Ciuplys, T. Kacinskas, “Comparative Study of TIG Welded Commercially Pure Titanium”, J. Manuf. Process., c. 36, ss. 155–163, 2018.
  • [6] A. Karpagaraj, N.S. Shanmugam, K. Sankaranarayanasamy, “Some Studies on Mechanical Properties and Microstructural Characterization of Automated TIG Welding of Thin Commercially Pure Titanium Sheets”, Mater. Sci. Eng. A, c. 640, ss. 180–189, 2015.
  • [7] L. Shixiong, Q. Cui, Y. Huang, X. Jing, “Influence of Zr Addition on TIG Welding–Brazing of Ti–6Al–4V to Al5A06”, Mater. Sci. Eng. A, c. 568, ss. 150–154, 2013.
  • [8] B.H. Choi, B.K. Choi, “The Effect of Welding Conditions According to Mechanical Properties of Pure Titanium”, J. Mater. Process. Technol., c. 201, ss. 526–530, 2008.
  • [9] M. Junaid, M.N. Baig, M. Shamir, F.N. Khan, K. Rehman, J. Haider, “A Comparative Study of Pulsed Laser and Pulsed TIG Welding of Ti-5Al-2.5Sn Titanium Alloy Sheet”, J. Mater. Process. Technol., c. 242, ss. 24–38, 2017.
  • [10] Q. Chu, M. Zhang, J. Li, C. Yan, Z. Qin, “Influence of Vanadium Filler on the Properties of Titanium and Steel TIG Welded Joints”, J. Mater. Process. Technol., c. 240, ss. 293–304, 2017.
  • [11] X.L. Gao, L.J. Zhang, J. Liu, J.X. Zhang, “A Comparative Study of Pulsed Nd:YAG Laser Welding and TIG Welding of Thin Ti6Al4V Titanium Alloy Plate”, Mater. Sci. Eng. A, c. 559, ss. 14–21, 2013.
  • [12] J. Xiong, S. Li, F. Gao, J. Zhang, “Microstructure and Mechanical Properties of Ti6321 Alloy Welded Joint by GTAW”, Mater. Sci. Eng. A, c. 640, ss. 419–423, 2015.
  • [13] E.B. Tamarit, A.I. Munoz, J.G. Anton, D.G. Garcia, “Corrosion Behaviour and Galvanic Coupling of Titanium and Welded Titanium in Libr Solutions”, Corros. Sci., c. 49, ss. 1000–1026, 2007.
  • [14] M. Balasubramanian, V. Jayabalan, V. Balasubramanian, “Effect of Pulsed Gas Tungsten Arc Welding on Corrosion Behavior of Ti–6Al–4V Titanium Alloy”, Mater. Design, c. 29, ss. 1359–1363, 2008.
  • [15] E.B. Tamarit, A.I. Munoz, J.G. Anton, D.M. Garcia, “Galvanic Corrosion of Titanium Coupled to Welded Titanium in Libr Solutions at Different Temperatures”, Corros. Sci., c. 51, ss. 1095–1102, 2009.
  • [16] M. Balasubramanian, V. Jayabalan, V. Balaubramanian, “Modeling Corrosion Behavior of Gas Tungsten Arc Welded Titanium Alloy”, Trans. Nonferrous Met. Soc. China, c. 17, ss. 676–680, 2007.
  • [17] P. Ferro, F. Berto, F. Bonollo, L. Romanin, G. Salemi, “Post Welding Heat Treatment Improving Mechanical Properties on Ti-6Al-4V”, Procedia Struct. Integrity, c. 26, ss. 11–19, 2020.
  • [18] J. Shi, G. Song, J. Chi, “Effect of Active Gas on Weld Appearance and Performance in Laser-TIG Hybrid Welded Titanium Alloy”, Int. J. Lightweight Mater. Manuf., c. 1, ss. 47–53, 2018.
  • [19] Z.B. Wang, H.X. Hu, Y.G. Zheng, W. Ke, Y.X. Qiao, “Comparison of the Corrosion Behavior of Pure Titanium and Its Alloys in Fluoride-Containing Sulfuric Acid”, Corros. Sci., c. 103, ss. 50–65, 2016.
  • [20] S. Ningshen, M. Sakairi, K. Suzuki, T. Okuno, “Corrosion Performance and Surface Analysis of Ti–Ni–Pd–Ru–Cr Alloy in Nitric Acid Solution”, Corros. Sci., c. 91, ss. 120–128, 2015.
  • [21] A. Robin, H.R.Z. Sandim, J. Rosa, “Corrosion Behavior of the Ti-%4Al-%4V Alloy in Boiling Nitric Acid Solutions”, Corros. Sci., c. 41, ss. 1333–1346, 1999.
  • [22] A.M. Fekry, “The Influence of Chloride and Sulphate Ions on the Corrosion Behavior of Ti and Ti-6Al-4V Alloy in Oxalic Acid”, Electrochim. Acta, c. 54, ss. 3480–3489, 2009.
  • [23] Z.B. Wang, H.X. Hua, C.B. Liu, Y.G. Zheng, “The Effect of Fluoride Ions on the Corrosion Behavior of Pure Titanium in 0.05 M Sulfuric Acid”, Electrochim. Acta, c. 135, ss. 526–535, 2014.
  • [24] M. Koike, H. Fujii, “The Corrosion Resistance of Pure Titanium in Organic Acids”, Biomater., c. 22, ss. 2931–2936, 2001.
  • [25] Z. Jiang, X. Dai, H. Middleton, “Investigation on Passivity of Titanium under Steady-State Conditions in Acidic Solutions”, Mater. Chem. Phys., c. 126, ss. 859–865, 2011.
  • [26] I. Gurrappa, D.V. Reddy, “Characterisation of Titanium Alloy, IMI-834 for Corrosion Resistance under Different Environmental Conditions”, J. Alloy Compd., c. 390, ss. 270–274, 2005.
  • [27] J.S. Lu, “Corrosion of Titanium in Phosphoric Acid at 250 °C”, Trans. Nonferrous Met. Soc. China, c. 19, ss. 552–556, 2009.
  • [28] G. Mabilleau, S. Bourdon, M.L.J. Guillou, R. Filmon, M.F. Basle, D. Chappard, “Influence of Fluoride, Hydrogen Peroxide and Lactic Acid on the Corrosion Resistance of Commercially Pure Titanium, Acta Biomater., c. 2, ss. 121–129, 2006.

TIG Kaynak Yöntemi ile Birleştirilen Ti6Al4V Titanyum Alaşımının Mikroyapı, Sertlik ve Asidik Ortamdaki Korozyon Özelliklerinin İncelenmesi

Year 2021, , 802 - 811, 25.04.2021
https://doi.org/10.29130/dubited.799862

Abstract

Titanyum alaşımları, üstün özellikleri nedeni ile birçok alanda kullanılmaktadır. Bu alaşımlardan yapılan imalat işlemlerinde veya sonrasında kaynak ile birleştirme yapılmaktadır. Bu çalışmada kaynak ile birleştirilen Ti6Al4V titanyum alaşımının mikroyapı, sertlik ve asidik ortamdaki korozyon özellikleri incelenmiştir. Asidik ortamdaki korozyon özelliğinin incelenmesinin amacı, kaynaklı titanyum alaşımlarından yapılan imalatların kimya, petrokimya ve benzeri alanlarda asidik ortamlarda kullanılmasıdır. Ti6Al4V titanyum alaşımının kullanıldığı çalışmada Tungsten İnert Gaz (TIG) kaynak yöntemi ile birleştirme yapılmıştır. Optik mikroskop ile mikroyapılar incelenmiş, Vickers yöntemi ile sertlik testleri yapılmıştır. Asidik ortamdaki korozyon davranışının belirlenmesinde potansiyodinamik yöntem ile elektrokimyasal korozyon deneyleri uygulanmıştır. Mikroyapı sonuçlarına göre TIG kaynağı ile Ti6Al4V titanyum alaşımı parçalarda iyi bir birleşmenin gerçekleştiği, kaynak metalinin hem ince uzun morfolojide asiküler α fazı hem de büyük boyutlu β fazı tanelerinden oluştuğu görülmüştür. Isı tesiri altındaki kaynak bölgesinde kaynak metaline yaklaşıldıkça sertlik artmıştır. Kaynak metali sertliği de esas metale göre oldukça yüksektir. TIG kaynaklı titanyum alaşımının asidik ortamdaki korozyon hızı kaynaksız titanyum alaşımına göre daha yüksek olmuştur.

References

  • [1] Q. Yunlian, D. Ju, H. Quan, Z. Liying, “Electron Beam Welding, Laser Beam Welding and Gas Tungsten Arc Welding of Titanium Sheet,” Mater. Sci. Eng. A, c. 280, ss. 177–181, 2000.
  • [2] Z. Xu, Z. Dong, Z. Yu, W. Wang, J. Zhang, “Relationships Between Microhardness, Microstructure, and Grain Orientation in Laser-Welded Joints with Different Welding Speeds for Ti6Al4V Titanium Alloy”, Trans. Nonferrous Met. Soc. China, c. 30, ss. 1277−1289, 2020.
  • [3] C. Xu, G. Sheng, H. Feng, X. Yuan, “Tungsten Inert Gas Welding Brazing of AZ31B Magnesium Alloy to TC4 Titanium Alloy”, J. Mater. Sci. Technol., c. 32, ss. 167–171, 2016.
  • [4] Y. Zhang, J. Huang, Z. Ye, Z. Cheng, “An Investigation on Butt Joints of Ti6Al4V and 5A06 Using MIG/TIG Double-Side Arc Welding-Brazing”, J. Manuf. Process., c. 27, ss. 221–225, 2017.
  • [5] R. Bendikiene, S. Baskutis, J. Baskutiene, A. Ciuplys, T. Kacinskas, “Comparative Study of TIG Welded Commercially Pure Titanium”, J. Manuf. Process., c. 36, ss. 155–163, 2018.
  • [6] A. Karpagaraj, N.S. Shanmugam, K. Sankaranarayanasamy, “Some Studies on Mechanical Properties and Microstructural Characterization of Automated TIG Welding of Thin Commercially Pure Titanium Sheets”, Mater. Sci. Eng. A, c. 640, ss. 180–189, 2015.
  • [7] L. Shixiong, Q. Cui, Y. Huang, X. Jing, “Influence of Zr Addition on TIG Welding–Brazing of Ti–6Al–4V to Al5A06”, Mater. Sci. Eng. A, c. 568, ss. 150–154, 2013.
  • [8] B.H. Choi, B.K. Choi, “The Effect of Welding Conditions According to Mechanical Properties of Pure Titanium”, J. Mater. Process. Technol., c. 201, ss. 526–530, 2008.
  • [9] M. Junaid, M.N. Baig, M. Shamir, F.N. Khan, K. Rehman, J. Haider, “A Comparative Study of Pulsed Laser and Pulsed TIG Welding of Ti-5Al-2.5Sn Titanium Alloy Sheet”, J. Mater. Process. Technol., c. 242, ss. 24–38, 2017.
  • [10] Q. Chu, M. Zhang, J. Li, C. Yan, Z. Qin, “Influence of Vanadium Filler on the Properties of Titanium and Steel TIG Welded Joints”, J. Mater. Process. Technol., c. 240, ss. 293–304, 2017.
  • [11] X.L. Gao, L.J. Zhang, J. Liu, J.X. Zhang, “A Comparative Study of Pulsed Nd:YAG Laser Welding and TIG Welding of Thin Ti6Al4V Titanium Alloy Plate”, Mater. Sci. Eng. A, c. 559, ss. 14–21, 2013.
  • [12] J. Xiong, S. Li, F. Gao, J. Zhang, “Microstructure and Mechanical Properties of Ti6321 Alloy Welded Joint by GTAW”, Mater. Sci. Eng. A, c. 640, ss. 419–423, 2015.
  • [13] E.B. Tamarit, A.I. Munoz, J.G. Anton, D.G. Garcia, “Corrosion Behaviour and Galvanic Coupling of Titanium and Welded Titanium in Libr Solutions”, Corros. Sci., c. 49, ss. 1000–1026, 2007.
  • [14] M. Balasubramanian, V. Jayabalan, V. Balasubramanian, “Effect of Pulsed Gas Tungsten Arc Welding on Corrosion Behavior of Ti–6Al–4V Titanium Alloy”, Mater. Design, c. 29, ss. 1359–1363, 2008.
  • [15] E.B. Tamarit, A.I. Munoz, J.G. Anton, D.M. Garcia, “Galvanic Corrosion of Titanium Coupled to Welded Titanium in Libr Solutions at Different Temperatures”, Corros. Sci., c. 51, ss. 1095–1102, 2009.
  • [16] M. Balasubramanian, V. Jayabalan, V. Balaubramanian, “Modeling Corrosion Behavior of Gas Tungsten Arc Welded Titanium Alloy”, Trans. Nonferrous Met. Soc. China, c. 17, ss. 676–680, 2007.
  • [17] P. Ferro, F. Berto, F. Bonollo, L. Romanin, G. Salemi, “Post Welding Heat Treatment Improving Mechanical Properties on Ti-6Al-4V”, Procedia Struct. Integrity, c. 26, ss. 11–19, 2020.
  • [18] J. Shi, G. Song, J. Chi, “Effect of Active Gas on Weld Appearance and Performance in Laser-TIG Hybrid Welded Titanium Alloy”, Int. J. Lightweight Mater. Manuf., c. 1, ss. 47–53, 2018.
  • [19] Z.B. Wang, H.X. Hu, Y.G. Zheng, W. Ke, Y.X. Qiao, “Comparison of the Corrosion Behavior of Pure Titanium and Its Alloys in Fluoride-Containing Sulfuric Acid”, Corros. Sci., c. 103, ss. 50–65, 2016.
  • [20] S. Ningshen, M. Sakairi, K. Suzuki, T. Okuno, “Corrosion Performance and Surface Analysis of Ti–Ni–Pd–Ru–Cr Alloy in Nitric Acid Solution”, Corros. Sci., c. 91, ss. 120–128, 2015.
  • [21] A. Robin, H.R.Z. Sandim, J. Rosa, “Corrosion Behavior of the Ti-%4Al-%4V Alloy in Boiling Nitric Acid Solutions”, Corros. Sci., c. 41, ss. 1333–1346, 1999.
  • [22] A.M. Fekry, “The Influence of Chloride and Sulphate Ions on the Corrosion Behavior of Ti and Ti-6Al-4V Alloy in Oxalic Acid”, Electrochim. Acta, c. 54, ss. 3480–3489, 2009.
  • [23] Z.B. Wang, H.X. Hua, C.B. Liu, Y.G. Zheng, “The Effect of Fluoride Ions on the Corrosion Behavior of Pure Titanium in 0.05 M Sulfuric Acid”, Electrochim. Acta, c. 135, ss. 526–535, 2014.
  • [24] M. Koike, H. Fujii, “The Corrosion Resistance of Pure Titanium in Organic Acids”, Biomater., c. 22, ss. 2931–2936, 2001.
  • [25] Z. Jiang, X. Dai, H. Middleton, “Investigation on Passivity of Titanium under Steady-State Conditions in Acidic Solutions”, Mater. Chem. Phys., c. 126, ss. 859–865, 2011.
  • [26] I. Gurrappa, D.V. Reddy, “Characterisation of Titanium Alloy, IMI-834 for Corrosion Resistance under Different Environmental Conditions”, J. Alloy Compd., c. 390, ss. 270–274, 2005.
  • [27] J.S. Lu, “Corrosion of Titanium in Phosphoric Acid at 250 °C”, Trans. Nonferrous Met. Soc. China, c. 19, ss. 552–556, 2009.
  • [28] G. Mabilleau, S. Bourdon, M.L.J. Guillou, R. Filmon, M.F. Basle, D. Chappard, “Influence of Fluoride, Hydrogen Peroxide and Lactic Acid on the Corrosion Resistance of Commercially Pure Titanium, Acta Biomater., c. 2, ss. 121–129, 2006.
There are 28 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Kubilay Karacif 0000-0001-7180-7897

Publication Date April 25, 2021
Published in Issue Year 2021

Cite

APA Karacif, K. (2021). TIG Kaynak Yöntemi ile Birleştirilen Ti6Al4V Titanyum Alaşımının Mikroyapı, Sertlik ve Asidik Ortamdaki Korozyon Özelliklerinin İncelenmesi. Duzce University Journal of Science and Technology, 9(2), 802-811. https://doi.org/10.29130/dubited.799862
AMA Karacif K. TIG Kaynak Yöntemi ile Birleştirilen Ti6Al4V Titanyum Alaşımının Mikroyapı, Sertlik ve Asidik Ortamdaki Korozyon Özelliklerinin İncelenmesi. DÜBİTED. April 2021;9(2):802-811. doi:10.29130/dubited.799862
Chicago Karacif, Kubilay. “TIG Kaynak Yöntemi Ile Birleştirilen Ti6Al4V Titanyum Alaşımının Mikroyapı, Sertlik Ve Asidik Ortamdaki Korozyon Özelliklerinin İncelenmesi”. Duzce University Journal of Science and Technology 9, no. 2 (April 2021): 802-11. https://doi.org/10.29130/dubited.799862.
EndNote Karacif K (April 1, 2021) TIG Kaynak Yöntemi ile Birleştirilen Ti6Al4V Titanyum Alaşımının Mikroyapı, Sertlik ve Asidik Ortamdaki Korozyon Özelliklerinin İncelenmesi. Duzce University Journal of Science and Technology 9 2 802–811.
IEEE K. Karacif, “TIG Kaynak Yöntemi ile Birleştirilen Ti6Al4V Titanyum Alaşımının Mikroyapı, Sertlik ve Asidik Ortamdaki Korozyon Özelliklerinin İncelenmesi”, DÜBİTED, vol. 9, no. 2, pp. 802–811, 2021, doi: 10.29130/dubited.799862.
ISNAD Karacif, Kubilay. “TIG Kaynak Yöntemi Ile Birleştirilen Ti6Al4V Titanyum Alaşımının Mikroyapı, Sertlik Ve Asidik Ortamdaki Korozyon Özelliklerinin İncelenmesi”. Duzce University Journal of Science and Technology 9/2 (April 2021), 802-811. https://doi.org/10.29130/dubited.799862.
JAMA Karacif K. TIG Kaynak Yöntemi ile Birleştirilen Ti6Al4V Titanyum Alaşımının Mikroyapı, Sertlik ve Asidik Ortamdaki Korozyon Özelliklerinin İncelenmesi. DÜBİTED. 2021;9:802–811.
MLA Karacif, Kubilay. “TIG Kaynak Yöntemi Ile Birleştirilen Ti6Al4V Titanyum Alaşımının Mikroyapı, Sertlik Ve Asidik Ortamdaki Korozyon Özelliklerinin İncelenmesi”. Duzce University Journal of Science and Technology, vol. 9, no. 2, 2021, pp. 802-11, doi:10.29130/dubited.799862.
Vancouver Karacif K. TIG Kaynak Yöntemi ile Birleştirilen Ti6Al4V Titanyum Alaşımının Mikroyapı, Sertlik ve Asidik Ortamdaki Korozyon Özelliklerinin İncelenmesi. DÜBİTED. 2021;9(2):802-11.