Research Article
BibTex RIS Cite

Kromun Zencefil Tozu Üzerine Adsorpsiyon ile Atık Sulardan Uzaklaştırılması

Year 2021, , 480 - 492, 31.01.2021
https://doi.org/10.29130/dubited.800876

Abstract

Sanayi atıkları ve diğer atıklardan kaynaklanan çevre kirliliği, günümüzün en önemli sorunlarından biridir. Ağır metaller; toprak, hava ve su için önemli kirleticiler arasında yer almaktadır. Atık su arıtımında ana odak noktası olan ağır metallerden biri de kromdur. Endüstriyel atık sularda hem üç değerlikli hem de altı değerlikli krom formları mevcut olsa da; altı değerlikli formun kanserojen özellikleri nedeniyle daha tehlikeli olduğu düşünülmektedir. Bu çalışmada, Cr (VI) iyonunun atık sulardan etkili bir şekilde giderilmesi için adsorban olarak yaygın kullanım alanına sahip ve düşük maliyetli olan zencefil tozu kullanılmıştır. Batch (kesikli) yöntemi ile temas süresi, pH, adsorban dozu, kromun başlangıç konsantrasyonu ve sıcaklık parametrelerinin adsorpsiyon üzerindeki etkileri araştırılmış ve optimum koşullar belirlenmiştir. Bu çalışmaya dayanarak, standart Gibbs serbest enerjisi (ΔG°), standart entalpi (ΔH°) ve standart entropi (ΔSG°) gibi termodinamik parametreler değerlendirilmiştir. Adsorpsiyon kinetiği; pseudo birinci derece, pseudo ikinci derece kinetik modeli ve partikül içi difüzyon modeli ile analiz edilerek, Pseudo ikinci derecede kinetik modelin Cr (VI) adsorpsiyonunu en etkili şekilde açıkladığı bulunmuştur. Ayrıca adsorpsiyon denge çalışmalarını tanımlamak için Langmuir, Freundlich, Dubinin-Radushkevich, Temkin izotermleri incelenmiş ve Langmuir izoterminin diğer izoterm modellere göre daha iyi uyum gösterdiği belirlenmiştir. Sonuç olarak, zencefil tozunun düşük maliyetli bir alternatif olarak krom içeren atık suların arıtılmasında verimli bir şekilde kullanılabileceği görülmektedir.

References

  • [1] M. Ahmaruzzaman. Adsorption of phenolic compounds onlow-cost adsorbents: a review. Advances in Colloid and Interface Science, c.143, ss.48–67, 2008.
  • [2] A. Babarinde ve G.O. Onyiaocha. Equilibrium sorption of divalent metal ions onto groundnut (Arachis hypogaea) shell: kinetics, isotherm and thermodynamics. Chemistry International, c. 2, ss. 37–46, 2016.
  • [3] R. Ansari, N. Khashbakht Fahim. Application of polypyrrole coated on wood sawdust for removal of Cr (VI) ion from aqueous solutions. Reactive & Functional Polymers, c. 67, ss. 367–374, 2007.
  • [4] M. Iqbal, M. Abbas, j. Nisar, A. Nazir, A.Z. Qamar. Bioassays based on higher plants as excellent dosimeters for ecotoxicity monitoring: A review, Chemistry International, c. 2, ss.1-80, 2019.
  • [5] W. Qi, Y. Zhao, X. Zheng, M. Ji, Z. Zhang. 2016. Adsorption behavior and mechanism of Cr (VI) using Sakura waste from aqueous solution, Applied Surface Science. c. 360, ss. 470-476, 2016.
  • [6] C.E. Zacarkim, F.R. Espinoza-Quiñones, S.M. Palacio, et. al. Removal of heavy metal from polluted river water using aquatic Macrophytes Salvinia sp,Braz. Journal of Physics A. C.35, ss. 288-299, 2005.
  • [7] M. Bansal, D. Singh, V. Garg. A comparative study for the removal of hexavalent chromium from aqueous solution by agriculture wastes’ carbons, Journal of Hazardous Materials, c.171, ss. 83-92. 2009.
  • [8] Y. Ge, Z. Li. Application of Lignin and Its Derivatives in Adsorption of Heavy Metal Ions in Water: A Review, ACS. Sustainable Chemistry & Engineering, c. 6, ss. 7181-7192, 2018.
  • [9] W. Song, B. Gao, T. Zhang, X. Xu, X. Huang, H. Yu, Q. Yue, Q. High-capacity adsorption of dissolved hexavalent chromium using amine-functionalized magnetic corn stalk composites. Bioresource Technology. c. 190, ss. 550-557, 2015.
  • [10] Ç. Öter, S.Ö., Zorer. Kinetic, isothermal and thermodynamic studies on Th(IV) adsorption by different modified activated carbons. Journal of Radioanalytical and Nuclear Chemistry. c.323, ss. 341–351, 2020.
  • [11] N. Salahudeen, A.S. Ahmed, H. Ala’a, M. Dauda, S.M. Waziri, B.Y. Jibril, et al. Synthesis, characterization and adsorption study ofnano-sized activated alumina synthesized from kaolin usingnovel method. Powder Technology. c. 280, ss. 266-72, 2015.
  • [12] S.K. Prabhakaran, K. Vijayaraghavan, R. Balasubramanian. Removal of Cr(VI) ions by spent tea and coffee dusts: reduction to Cr(III) and biosorption, Industrial & Engineering Chemistry Research, c. 48, ss. 2113-2117, 2009.
  • [13] K. Sumathi. Use of low-cost biological wastes and vermiculite for removal of chromium from tannery effluent. Bioresource Technology. c. 96, ss. 309-316, 2005.
  • [14] M. Bhaumik, H.J. Choi, M.P. Seopela, R.I. McCrindle, A. Maity, 2013. Highly effective removal of toxic Cr(VI) from wastewater using sulfuric acid-modified avocado seed. Industrial & Engineering Chemistry Research, c.53, ss.1214-1224, 20013.
  • [15] V.K. Gupta, A.K. Shrivastava, N. Jain.2001. Biosorption of chromium(VI) from aqueous solutions by green algae spirogyra species, Water Research. c. 3, ss. 4079-4085, 2001.
  • [16] M. Kobya. Removal of Cr (VI) from aqueous solutions by adsorption onto hazelnut shell activated carbon: kinetic and equilibrium studies. Bioresource Technology. c. 91, ss. 317-321, 2004.
  • [17] Ö. Albuz, 2019. Günlük Yaşamda Gıda Takviyesi Olarak Kullanılan Zencefil, Zerdeçal ve Karanfilin Sitotoksik Etkilerinin Araştırılması. Kocatepe Veterinary Journal. c. 12(3), ss. 351-356.
  • [18] Z. Sun, B. Liu, M. Li, C. Li, S. Zhang. Carboxyl-rich carbon nanocomposite based onnatural diatomite as adsorbent for efficient removalof Cr (VI). Journal of Materials Research and Technology. ss. 1-12, 2019.
  • [19] B. Saha, C. Orvig. Biosorbents for hexavalent chromium elimination from industrial and municipal effluents. Coordination Chemistry Reviews. c. 254, ss. 2959-2972, 2010.
  • [20] G. Zhao, J. Li, X. Ren, C. Chen, X. Wang, Few-layered graphene oxide nanosheets as superior sorbents for heavy metal ion pollution management. Environmental Science Technology. c. 45, ss.10454–10462, 2011.
  • [21] D. Hritcu, D. Humelnicu, G. Dodi, M.L Popa. Magnetic chitosan composite particles: Evaluation of thorium and uranyl ion adsorption from aqueous solutions. Carbohydrate Polymers. c. 87, ss. 1185– 1191, 2012.
  • [22] Ü.H. Kaynar, I. Şabikoğlu, SÇ. Kaynar, M. Eral. ‘Modeling of thorium (IV) ions adsorption onto a novel adsorbent material silicon dioxide nano-balls using response surface methodology’. Applied Radiation and Isotopes, c. 115, ss. 280-288, 2016.
  • [23] A. Rahman-Sani, A.H. Bandegharaei, S.H. Hosseini, K. Kharghani, H. Zarei, A. Rastegar. ‘Kinetic, equilibrium and thermodynamic studies on sorption of uranium and thorium from aqueous solutions by a selective impregnated resin containing carminic acid’. Journal of Hazardous Material. c. 286, ss. 152-163, 2015.
  • [24] A.N. Módenes, F.R. Espinoza-Quiñones, S.M. Palácio, A.D. Kroumov, G. Stutz, G. Tirao, A.S. Camera. Cr(VI) reduction by activated carbon and non-living macrophytes roots as assessed by Kβ spectroscopy. Chemistry Engineering Journal, c. 162, ss. 266–272, 2010.
  • [25] S. Gupta, B.V. Babu. Removal of toxic metal Cr (VI) from aqueous solutions using sawdust as adsorbent: equilibrium, kinetics and regeneration studies. Chemistry Engineering Journal. c. 150, ss. 352–365, 2009.
  • [26] M. Dakiky, M. Khamis, A. Manassra, M. Mer'eb, Selective adsorption of chromium (VI) in industrial wastewater using low-cost abundantly available adsorbents ž, Advances in Environmental Research, c. 6, ss. 533–540, 2002.
  • [27] D.C. Sharma. A preliminary examination into the adsorption of hexavalent chromiusing low-cost adsorbents, Bioresource Technology. c.47, ss.257–264, 1994.
  • [28] T. Karthikeyan, S. Rajgopal, L.R. Miranda. Chromium(VI) adsorption from aqueous solution by Hevea Brasilinesis sawdust activated carbon. Journal of Hazardous Materials. c. B124, ss.192–199, 2005.
  • [29] M.R. Awual, M.M. Hasan, G.E. Eldesoky, M.A. Khaleque, M.M. Rahman, M. Naushad. Facile mercury detection and removal fromaqueous media involving ligand impregnated conjugatenanomaterials. Chemistry Engineering Journal. c. 290, ss. 243–51, 2016.
  • [30] Y. Zhang, M. Lia, J. Lia, Y. Yangb, X. Liua. Surface modified leaves with high efficiency for the removal of aqueous Cr (VI). Applied Surface Science. c. 484, ss. 189–196, 20
Year 2021, , 480 - 492, 31.01.2021
https://doi.org/10.29130/dubited.800876

Abstract

Environmental pollution caused by industrial wastes and other wastes is one of the most important problems of today. Heavy metals; for soil, air and water are among the important pollutants. Chromium is one of the heavy metals which is the main focus of wastewater treatment. Although there are both trivalent and hexavalent chromium forms in industrial wastewater; The hexavalent form is thought to be more dangerous because of its carcinogenic properties.  In this study, ginger powder, which is widely used and has low cost, was used as an adsorbent to effectively remove Cr (VI) ion from wastewater The effects of contact time, pH, adsorbent dose, chromium initial concentration and temperature parameters on adsorption were investigated by using batch method and optimum conditions were determined. Based on this study, thermodynamic parameters such as standard Gibbs free energy (ΔG°), standard enthalpy (ΔH°) and standard entropy (ΔS°) were evaluated. Adsorption kinetics; The pseudo first order, pseudo second order kinetic model and intra-particle diffusion model were analyzed and it was found that Pseudo second order kinetic model explained Cr (VI) adsorption in the most effective way. In addition, Langmuir, Freundlich, Dubinin-Radushkevich, Temkin isotherms were examined to determine adsorption equilibrium studies and Langmuir isotherm was found to be better compatible with other isotherm models.As a result, it is seen that ginger powder can be used efficiently in the treatment of chromium-containing wastewater as a low-cost alternative.

References

  • [1] M. Ahmaruzzaman. Adsorption of phenolic compounds onlow-cost adsorbents: a review. Advances in Colloid and Interface Science, c.143, ss.48–67, 2008.
  • [2] A. Babarinde ve G.O. Onyiaocha. Equilibrium sorption of divalent metal ions onto groundnut (Arachis hypogaea) shell: kinetics, isotherm and thermodynamics. Chemistry International, c. 2, ss. 37–46, 2016.
  • [3] R. Ansari, N. Khashbakht Fahim. Application of polypyrrole coated on wood sawdust for removal of Cr (VI) ion from aqueous solutions. Reactive & Functional Polymers, c. 67, ss. 367–374, 2007.
  • [4] M. Iqbal, M. Abbas, j. Nisar, A. Nazir, A.Z. Qamar. Bioassays based on higher plants as excellent dosimeters for ecotoxicity monitoring: A review, Chemistry International, c. 2, ss.1-80, 2019.
  • [5] W. Qi, Y. Zhao, X. Zheng, M. Ji, Z. Zhang. 2016. Adsorption behavior and mechanism of Cr (VI) using Sakura waste from aqueous solution, Applied Surface Science. c. 360, ss. 470-476, 2016.
  • [6] C.E. Zacarkim, F.R. Espinoza-Quiñones, S.M. Palacio, et. al. Removal of heavy metal from polluted river water using aquatic Macrophytes Salvinia sp,Braz. Journal of Physics A. C.35, ss. 288-299, 2005.
  • [7] M. Bansal, D. Singh, V. Garg. A comparative study for the removal of hexavalent chromium from aqueous solution by agriculture wastes’ carbons, Journal of Hazardous Materials, c.171, ss. 83-92. 2009.
  • [8] Y. Ge, Z. Li. Application of Lignin and Its Derivatives in Adsorption of Heavy Metal Ions in Water: A Review, ACS. Sustainable Chemistry & Engineering, c. 6, ss. 7181-7192, 2018.
  • [9] W. Song, B. Gao, T. Zhang, X. Xu, X. Huang, H. Yu, Q. Yue, Q. High-capacity adsorption of dissolved hexavalent chromium using amine-functionalized magnetic corn stalk composites. Bioresource Technology. c. 190, ss. 550-557, 2015.
  • [10] Ç. Öter, S.Ö., Zorer. Kinetic, isothermal and thermodynamic studies on Th(IV) adsorption by different modified activated carbons. Journal of Radioanalytical and Nuclear Chemistry. c.323, ss. 341–351, 2020.
  • [11] N. Salahudeen, A.S. Ahmed, H. Ala’a, M. Dauda, S.M. Waziri, B.Y. Jibril, et al. Synthesis, characterization and adsorption study ofnano-sized activated alumina synthesized from kaolin usingnovel method. Powder Technology. c. 280, ss. 266-72, 2015.
  • [12] S.K. Prabhakaran, K. Vijayaraghavan, R. Balasubramanian. Removal of Cr(VI) ions by spent tea and coffee dusts: reduction to Cr(III) and biosorption, Industrial & Engineering Chemistry Research, c. 48, ss. 2113-2117, 2009.
  • [13] K. Sumathi. Use of low-cost biological wastes and vermiculite for removal of chromium from tannery effluent. Bioresource Technology. c. 96, ss. 309-316, 2005.
  • [14] M. Bhaumik, H.J. Choi, M.P. Seopela, R.I. McCrindle, A. Maity, 2013. Highly effective removal of toxic Cr(VI) from wastewater using sulfuric acid-modified avocado seed. Industrial & Engineering Chemistry Research, c.53, ss.1214-1224, 20013.
  • [15] V.K. Gupta, A.K. Shrivastava, N. Jain.2001. Biosorption of chromium(VI) from aqueous solutions by green algae spirogyra species, Water Research. c. 3, ss. 4079-4085, 2001.
  • [16] M. Kobya. Removal of Cr (VI) from aqueous solutions by adsorption onto hazelnut shell activated carbon: kinetic and equilibrium studies. Bioresource Technology. c. 91, ss. 317-321, 2004.
  • [17] Ö. Albuz, 2019. Günlük Yaşamda Gıda Takviyesi Olarak Kullanılan Zencefil, Zerdeçal ve Karanfilin Sitotoksik Etkilerinin Araştırılması. Kocatepe Veterinary Journal. c. 12(3), ss. 351-356.
  • [18] Z. Sun, B. Liu, M. Li, C. Li, S. Zhang. Carboxyl-rich carbon nanocomposite based onnatural diatomite as adsorbent for efficient removalof Cr (VI). Journal of Materials Research and Technology. ss. 1-12, 2019.
  • [19] B. Saha, C. Orvig. Biosorbents for hexavalent chromium elimination from industrial and municipal effluents. Coordination Chemistry Reviews. c. 254, ss. 2959-2972, 2010.
  • [20] G. Zhao, J. Li, X. Ren, C. Chen, X. Wang, Few-layered graphene oxide nanosheets as superior sorbents for heavy metal ion pollution management. Environmental Science Technology. c. 45, ss.10454–10462, 2011.
  • [21] D. Hritcu, D. Humelnicu, G. Dodi, M.L Popa. Magnetic chitosan composite particles: Evaluation of thorium and uranyl ion adsorption from aqueous solutions. Carbohydrate Polymers. c. 87, ss. 1185– 1191, 2012.
  • [22] Ü.H. Kaynar, I. Şabikoğlu, SÇ. Kaynar, M. Eral. ‘Modeling of thorium (IV) ions adsorption onto a novel adsorbent material silicon dioxide nano-balls using response surface methodology’. Applied Radiation and Isotopes, c. 115, ss. 280-288, 2016.
  • [23] A. Rahman-Sani, A.H. Bandegharaei, S.H. Hosseini, K. Kharghani, H. Zarei, A. Rastegar. ‘Kinetic, equilibrium and thermodynamic studies on sorption of uranium and thorium from aqueous solutions by a selective impregnated resin containing carminic acid’. Journal of Hazardous Material. c. 286, ss. 152-163, 2015.
  • [24] A.N. Módenes, F.R. Espinoza-Quiñones, S.M. Palácio, A.D. Kroumov, G. Stutz, G. Tirao, A.S. Camera. Cr(VI) reduction by activated carbon and non-living macrophytes roots as assessed by Kβ spectroscopy. Chemistry Engineering Journal, c. 162, ss. 266–272, 2010.
  • [25] S. Gupta, B.V. Babu. Removal of toxic metal Cr (VI) from aqueous solutions using sawdust as adsorbent: equilibrium, kinetics and regeneration studies. Chemistry Engineering Journal. c. 150, ss. 352–365, 2009.
  • [26] M. Dakiky, M. Khamis, A. Manassra, M. Mer'eb, Selective adsorption of chromium (VI) in industrial wastewater using low-cost abundantly available adsorbents ž, Advances in Environmental Research, c. 6, ss. 533–540, 2002.
  • [27] D.C. Sharma. A preliminary examination into the adsorption of hexavalent chromiusing low-cost adsorbents, Bioresource Technology. c.47, ss.257–264, 1994.
  • [28] T. Karthikeyan, S. Rajgopal, L.R. Miranda. Chromium(VI) adsorption from aqueous solution by Hevea Brasilinesis sawdust activated carbon. Journal of Hazardous Materials. c. B124, ss.192–199, 2005.
  • [29] M.R. Awual, M.M. Hasan, G.E. Eldesoky, M.A. Khaleque, M.M. Rahman, M. Naushad. Facile mercury detection and removal fromaqueous media involving ligand impregnated conjugatenanomaterials. Chemistry Engineering Journal. c. 290, ss. 243–51, 2016.
  • [30] Y. Zhang, M. Lia, J. Lia, Y. Yangb, X. Liua. Surface modified leaves with high efficiency for the removal of aqueous Cr (VI). Applied Surface Science. c. 484, ss. 189–196, 20
There are 30 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Çiğdem Öter 0000-0002-8262-4882

Publication Date January 31, 2021
Published in Issue Year 2021

Cite

APA Öter, Ç. (2021). Kromun Zencefil Tozu Üzerine Adsorpsiyon ile Atık Sulardan Uzaklaştırılması. Duzce University Journal of Science and Technology, 9(1), 480-492. https://doi.org/10.29130/dubited.800876
AMA Öter Ç. Kromun Zencefil Tozu Üzerine Adsorpsiyon ile Atık Sulardan Uzaklaştırılması. DÜBİTED. January 2021;9(1):480-492. doi:10.29130/dubited.800876
Chicago Öter, Çiğdem. “Kromun Zencefil Tozu Üzerine Adsorpsiyon Ile Atık Sulardan Uzaklaştırılması”. Duzce University Journal of Science and Technology 9, no. 1 (January 2021): 480-92. https://doi.org/10.29130/dubited.800876.
EndNote Öter Ç (January 1, 2021) Kromun Zencefil Tozu Üzerine Adsorpsiyon ile Atık Sulardan Uzaklaştırılması. Duzce University Journal of Science and Technology 9 1 480–492.
IEEE Ç. Öter, “Kromun Zencefil Tozu Üzerine Adsorpsiyon ile Atık Sulardan Uzaklaştırılması”, DÜBİTED, vol. 9, no. 1, pp. 480–492, 2021, doi: 10.29130/dubited.800876.
ISNAD Öter, Çiğdem. “Kromun Zencefil Tozu Üzerine Adsorpsiyon Ile Atık Sulardan Uzaklaştırılması”. Duzce University Journal of Science and Technology 9/1 (January 2021), 480-492. https://doi.org/10.29130/dubited.800876.
JAMA Öter Ç. Kromun Zencefil Tozu Üzerine Adsorpsiyon ile Atık Sulardan Uzaklaştırılması. DÜBİTED. 2021;9:480–492.
MLA Öter, Çiğdem. “Kromun Zencefil Tozu Üzerine Adsorpsiyon Ile Atık Sulardan Uzaklaştırılması”. Duzce University Journal of Science and Technology, vol. 9, no. 1, 2021, pp. 480-92, doi:10.29130/dubited.800876.
Vancouver Öter Ç. Kromun Zencefil Tozu Üzerine Adsorpsiyon ile Atık Sulardan Uzaklaştırılması. DÜBİTED. 2021;9(1):480-92.