Research Article
BibTex RIS Cite

The Effects of Steel Core Imperfection, Gap Size and Friction Coefficient on the Behavior of All-Steel Buckling Restrained Braces

Year 2021, , 1342 - 1357, 31.07.2021
https://doi.org/10.29130/dubited.843214

Abstract

Buckling restrained braces (BRBs) which are generally composed of a steel core and a encasing(buckling restrainers) are utilized to resist lateral forces in high seismic regions since BRBs exhibit high energy dissipation capacity, ductility and stiffness. The steel core carries both compressive and tensile forces. During the compression, the core starts buckling and the encasing tries to prevent this buckling. However, due to the unbonding layer/gap between the encasing and steel core, the steel core eventually buckles and contacts with the encasing. Buckling phenomenon is also associated with the initial imperfection and gap size. In this study, the effects of the initial imperfectionof steel core, gap size (1-5 mm)and friction coefficient (0.01-0.5)between the encasing and steel core on the behavior of BRBs are investigated. Pursuant to this goal, numerical analyses using a finite element tool ABAQUS were conducted. A total of 19 numerical models were developed and monotonically loaded. Initial imperfection was implemented to the models using buckling mode shapes.The results revealed that increasing gap size leads to a reduction in load-carrying capacity. It is recommended to keep gap sizes between 1 and 2 mm. On the other hand, initial imperfection does not significantly affect load-carrying capacity and global behavior. However, it was also observed that the fluctuations in load increase as the amplitude of the mode shape and gap size increase. Moreover, the friction coefficient should be kept between 0.01 and 0.05; otherwise, undesired behaviors can be observed.

References

  • [1] M. E. Kural, Ö. Zeybek, and M. Seçer, "Çelik Yapi Sistemlerinde İkinci Mertebe Analiz Yöntemlerinin İncelenmesi," Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi, vol. 13, no. 2, pp. 75-87, 2011.
  • [2] C. Avci-Karatas, O. C. Celik, and C. Yalcin, "Experimental investigation of aluminum alloy and steel core buckling restrained braces (BRBs)," International Journal of Steel Structures, vol. 18, no. 2, pp. 650-673, 2018.
  • [3] C. Avci-Karatas and O. C. Celik, "Çelik Çekirdekli Burkulması Önlenmiş Çaprazların (BÖÇ) tasarımı, üretimi ve deneysel incelenmesi," Teknik Dergi, c. 30, s. 1, ss. 8861-8886, 2019.
  • [4] C. Avci-Karatas and O. C. Celik, "Design, fabrication, and cyclic behavior of aluminum alloy core buckling restrained braces (BRBs)," Pamukkale University Journal of Engineering Sciences, vol. 23, no. 6, pp. 659-670, 2017.
  • [5] Y. O. Özkılıç, M. B. Bozkurt, and C. Topkaya, "Evaluation of seismic response factors for BRBFs using FEMA P695 methodology," Journal of Constructional Steel Research, vol. 151, pp. 41 57, 2018.
  • [6] J. Wang, B. Li, C. Chou, and L. Chen, "Cyclic experimental and analytical studies of buckling-restrained braces with various gusset connections," Engineering Structures, vol. 163, pp. 38 50, 2018.
  • [7] R. Ozcelik and E. F. Erdil, "Pseudodynamic Test of a Deficient RC Frame strengthened with buckling restrained braces," Earthquake Spectra, vol. 35, no. 3, pp. 1163-1187, 2019.
  • [8] R. Ozcelik, Y. Dikiciasik, and E. F. Erdil, "The development of the buckling restrained braces with new end restrains," Journal of Constructional Steel Research, vol. 138, pp. 208-220, 2017.
  • [9] Y. L. Guo, J.-Z. Tong, X.-A. Wang, and P. Zhou, "Subassemblage tests and design of steel channels assembled buckling-restrained braces," Bulletin of Earthquake Engineering, vol. 16, no. 9, pp. 4191-4224, 2018. [10] M. B. Bozkurt and C. Topkaya, "Development of welded overlap core steel encased buckling restrained braces," Journal of Constructional Steel Research, vol. 127, pp. 151-164, 2016.
  • [11] R. Özçelik, "Buckling restrained braces," Pamukkale University Journal of Engineering Sciences, vol. 22, no. 3, pp. 160-170, 2016.
  • [12] Y.-L. Guo, J.-Z. Tong, X.-A. Wang, and B.-H. Zhang, "Subassemblage tests and numerical analyses of buckling-restrained braces under pre-compression," Engineering Structures, vol. 138, pp. 473-489, 2017.
  • [13] C.-C. Chou and S.-Y. Chen, "Subassemblage tests and finite element analyses of sandwiched buckling-restrained braces," Engineering Structures, vol. 32, no. 8, pp. 2108-2121, 2010.
  • [14] M. AlHamaydeh, F. Abed, and A. Mustapha, "Key parameters influencing performance and failure modes for BRBs using nonlinear FEA," Journal of Constructional Steel Research, vol. 116, pp. 1-18, 2016.
  • [15] H. Heidary-Torkamani and S. Maalek, "Conceptual numerical investigation of all-steel Tube in-Tube buckling restrained braces," Journal of Constructional Steel Research, vol. 139, pp. 220-235, 2017.
  • [16] C. Avci-Karatas, O. C. Celik, and S. Ozmen Eruslu, "Modeling of Buckling Restrained Braces (BRBs) using Full-Scale Experimental Data," KSCE Journal of Civil Engineering, vol. 23, no. 10, pp. 4431-4444, 2019.
  • [17] X.-Y. Cao, D.-C. Feng, G. Wu, and Y.-H. Zeng, "Reusing & replacing performances of the AB-BRB with thin-walled concrete-infilled steel shells," Thin-Walled Structures, vol. 157, p. 107069, 2020.
  • [18] Z. Jiang, Y. Guo, B. Zhang, and X. Zhang, "Influence of design parameters of buckling restrained brace on its performance," Journal of Constructional Steel Research, vol. 105, pp. 139-150, 2015.
  • [19] ABAQUS Manual, Providence, RI, USA, "Abaqus Version 6.12-1 Documentation," 2012.
  • [20] E. Madenci, andY. O. Özkılıç,"Free vibration analysis of open cell FG porous beams: analytical, numerical and ANN approaches," Steel and Composite Structures, vol. 40, no. 2, pp. 157 173, 2021.
  • [21] C. Aksoylu, Y. O. Özkılıç, and M. H. Arslan, "Damages on prefabricated concrete dapped-end purlins due to snow loads and a novel reinforcement detail," Engineering Structures, vol. 225, pp. 111225, 2020.
  • [22] C. Aksoylu, Y. O. Özkılıç, Ş. Yazman, L. Gemi and M. H. Arslan, "Experimental and Numerical Investigation of Load Bearing Capacity of Thinned End Precast Purlin Beams and Solution Proposals," Teknik Dergi, vol. 32, no. 3 p. 10823-10858, 2021.
  • [23] E. Madenci, Y. O. Özkılıç, and L. Gemi, "Theoretical investigation on static analysis of pultruded GFRP composite beams,"Akademik Platform Mühendislik ve Fen Bilimleri Dergisi, vol. 8, no. 3, pp. 483-490, 2020.
  • [24] L. Gemi, E. Madenci, and Y. O. Özkılıç, "Experimental, analytical and numerical investigation of pultruded GFRP composite beams infilled with hybrid FRP reinforced concrete,"Engineering Structures, vol. 244, pp. 112790, 2021.
  • [25] Y. O. Özkılıç, "A comparative study on yield line mechanisms for four bolted extended end plated connection," Challenge Journal of Structural Mechanics, vol. 7, no. 3, pp. 93-106, 2021.
  • [26] Y. O. Özkılıç, "Investigation of the effects of bolt diameter and end-plate thickness on the capacity and failure modes of end-plated beamto-column connections," Research on Engineering Structures & Materials, in-press, 2021.
  • [27] Y. O. Özkılıç, "A new replaceable fuse for moment resisting frames: Replaceable bolted reduced beam section connections," Steel and Composite Structures, vol. 35, no. 3, pp. 353-370, 2020.
  • [28] Y. O. Özkılıç, M. B. Bozkurt, and C. Topkaya, "Mid-spliced end-plated replaceable links for eccentrically braced frames," Engineering Structures, vol. 237, p. 112225, 2021.
  • [29] M. B. Bozkurt, S. Kazemzadeh Azad, and C. Topkaya, "Development of detachable replaceable links for eccentrically braced frames," Earthquake Engineering & Structural Dynamics, vol. 48, no. 10, pp. 1134-1155, 2019.
  • [30] G. Della Corte, M. D'Aniello, and R. Landolfo, "Analytical and numerical study of plastic overstrength of shear links," Journal of Constructional Steel Research, vol. 82, pp. 19-32, 2013.
  • [31] Y. O. Özkılıç, "Experimental and numerical studies on replaceable links for eccentrically braced frames," Middle East Technical University, Doctoral Dissertation, Ankara, Turkey, 2020.
  • [32] P. W. Richards and C.-M. Uang, "Effect of flange width-thickness ratio on eccentrically braced frames link cyclic rotation capacity," Journal of Structural Engineering, vol. 131, no. 10, pp. 1546-1552, 2005.
  • [33] Y. O. Özkılıç, and C. Topkaya, "Extended end-plate connections for replaceable shear links," Engineering Structures, vol. 240, p. 112385, 2021.
  • [34] Y. O. Özkılıç, "Optimized stiffener detailing for shear links in eccentrically braced frames," Steel and Composite Structures, vol. 39, no. 1, pp. 35-50, 2021.
  • [35] L. Gemi, E. Madenci and Y. O. Özkılıç, "Çelik, Cam FRP ve hibrit donatılı betonarme kirişlerin eğilme performansının incelenmesi,"Düzce Üniversitesi Bilim ve Teknoloji Dergisi, vol. 8, no. 2, pp. 1470-1483, 2020.
  • [36] M. B. Bozkurt, Y. O. Özkılıç,and C. Topkaya, "Investigation on connection details for welded overlap core steel encased buckling restrained braces," presented at the 13th International Congress on Advances in Civil Engineering, İzmir, Turkey, 2018.
  • [37] AISC. 341-16, Seismic provisions for structural steel buildings. 2016.
  • [38] Z. Yi, "Assessment Using FEA of the Influence of Detailing Parameters on Performance of Buckling Restrained Braces," Politehnica University, Msc, 2016.

Çelik Çekirdek Kusurunun, Boşluk Boyutunun ve Sürtünme Katsayısının Tamamı Çelik Burkulması Önlenmiş Çaprazların Davranışına Etkileri

Year 2021, , 1342 - 1357, 31.07.2021
https://doi.org/10.29130/dubited.843214

Abstract

Burkulması önlenmiş çaprazlar (BÖÇ'ler), genellikle bir çelik çekirdekten ve bir burkulmayı önleyen ortamdan oluşan, yüksek enerji sönümleme kapasiteleri, süneklik ve rijitlik sergiledikleri için, yüksek sismik bölgelerde yanal kuvvetlere direnmek için kullanılır. Çelik çekirdek hem basınç hem de çekme kuvvetlerini taşır. Basınç sırasında çekirdek burkulmaya başlar ve burkulmayı önleyen ortam bu burkulmayı önlemeye çalışır. Bununla birlikte, enkesit ve çelik çekirdek arasındaki boşluk nedeniyle, çelik çekirdek sonunda burkulur. Burkulma fenomeni ayrıca başlangıç kusuru ve sürtünmesiz yüzey/boşluk boyutu ile de ilişkilidir. Bu çalışmada, çelik çekirdeğin başlangıç kusurunun, boşluk boyutunun (1-5 mm) ve sürtünme katsayısının (0.01-0.5) BÖÇ'lerin davranışı üzerindeki etkileri araştırılmıştır. Bu amaç doğrultusunda sonlu elemanlar aracı ABAQUS kullanılarak numerik analizler yapılmıştır. Toplam 19 sayısal model geliştirilmiştir ve tekdüze yüklenmiştir. İlk kusur, burkulma mod şekilleri kullanılarak modellere uygulandı. Sonuçlar, boşluk boyutu artıkça yük taşıma kapasitesinde azalmaya sebep olduğunu ortaya koymuştur. Boşluk boyutunun 1 ile 2 mm arasında tutulması önerilmiştir. Diğer bir yandan, ilk kusurun yük taşıma kapasitesini ve genel davranışı etkilememiştir. Ancak mod şeklinin ölçeği ve boşluk boyutu arttıkça yükteki dalgalanmaların da arttığı görülmüştür. Ayrıca, sürtünme kaysayısı 0.01 ile 0.05 arasında tutulmalıdır yoksa istenmeyen davranışlar gözlemlenebilir.

References

  • [1] M. E. Kural, Ö. Zeybek, and M. Seçer, "Çelik Yapi Sistemlerinde İkinci Mertebe Analiz Yöntemlerinin İncelenmesi," Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi, vol. 13, no. 2, pp. 75-87, 2011.
  • [2] C. Avci-Karatas, O. C. Celik, and C. Yalcin, "Experimental investigation of aluminum alloy and steel core buckling restrained braces (BRBs)," International Journal of Steel Structures, vol. 18, no. 2, pp. 650-673, 2018.
  • [3] C. Avci-Karatas and O. C. Celik, "Çelik Çekirdekli Burkulması Önlenmiş Çaprazların (BÖÇ) tasarımı, üretimi ve deneysel incelenmesi," Teknik Dergi, c. 30, s. 1, ss. 8861-8886, 2019.
  • [4] C. Avci-Karatas and O. C. Celik, "Design, fabrication, and cyclic behavior of aluminum alloy core buckling restrained braces (BRBs)," Pamukkale University Journal of Engineering Sciences, vol. 23, no. 6, pp. 659-670, 2017.
  • [5] Y. O. Özkılıç, M. B. Bozkurt, and C. Topkaya, "Evaluation of seismic response factors for BRBFs using FEMA P695 methodology," Journal of Constructional Steel Research, vol. 151, pp. 41 57, 2018.
  • [6] J. Wang, B. Li, C. Chou, and L. Chen, "Cyclic experimental and analytical studies of buckling-restrained braces with various gusset connections," Engineering Structures, vol. 163, pp. 38 50, 2018.
  • [7] R. Ozcelik and E. F. Erdil, "Pseudodynamic Test of a Deficient RC Frame strengthened with buckling restrained braces," Earthquake Spectra, vol. 35, no. 3, pp. 1163-1187, 2019.
  • [8] R. Ozcelik, Y. Dikiciasik, and E. F. Erdil, "The development of the buckling restrained braces with new end restrains," Journal of Constructional Steel Research, vol. 138, pp. 208-220, 2017.
  • [9] Y. L. Guo, J.-Z. Tong, X.-A. Wang, and P. Zhou, "Subassemblage tests and design of steel channels assembled buckling-restrained braces," Bulletin of Earthquake Engineering, vol. 16, no. 9, pp. 4191-4224, 2018. [10] M. B. Bozkurt and C. Topkaya, "Development of welded overlap core steel encased buckling restrained braces," Journal of Constructional Steel Research, vol. 127, pp. 151-164, 2016.
  • [11] R. Özçelik, "Buckling restrained braces," Pamukkale University Journal of Engineering Sciences, vol. 22, no. 3, pp. 160-170, 2016.
  • [12] Y.-L. Guo, J.-Z. Tong, X.-A. Wang, and B.-H. Zhang, "Subassemblage tests and numerical analyses of buckling-restrained braces under pre-compression," Engineering Structures, vol. 138, pp. 473-489, 2017.
  • [13] C.-C. Chou and S.-Y. Chen, "Subassemblage tests and finite element analyses of sandwiched buckling-restrained braces," Engineering Structures, vol. 32, no. 8, pp. 2108-2121, 2010.
  • [14] M. AlHamaydeh, F. Abed, and A. Mustapha, "Key parameters influencing performance and failure modes for BRBs using nonlinear FEA," Journal of Constructional Steel Research, vol. 116, pp. 1-18, 2016.
  • [15] H. Heidary-Torkamani and S. Maalek, "Conceptual numerical investigation of all-steel Tube in-Tube buckling restrained braces," Journal of Constructional Steel Research, vol. 139, pp. 220-235, 2017.
  • [16] C. Avci-Karatas, O. C. Celik, and S. Ozmen Eruslu, "Modeling of Buckling Restrained Braces (BRBs) using Full-Scale Experimental Data," KSCE Journal of Civil Engineering, vol. 23, no. 10, pp. 4431-4444, 2019.
  • [17] X.-Y. Cao, D.-C. Feng, G. Wu, and Y.-H. Zeng, "Reusing & replacing performances of the AB-BRB with thin-walled concrete-infilled steel shells," Thin-Walled Structures, vol. 157, p. 107069, 2020.
  • [18] Z. Jiang, Y. Guo, B. Zhang, and X. Zhang, "Influence of design parameters of buckling restrained brace on its performance," Journal of Constructional Steel Research, vol. 105, pp. 139-150, 2015.
  • [19] ABAQUS Manual, Providence, RI, USA, "Abaqus Version 6.12-1 Documentation," 2012.
  • [20] E. Madenci, andY. O. Özkılıç,"Free vibration analysis of open cell FG porous beams: analytical, numerical and ANN approaches," Steel and Composite Structures, vol. 40, no. 2, pp. 157 173, 2021.
  • [21] C. Aksoylu, Y. O. Özkılıç, and M. H. Arslan, "Damages on prefabricated concrete dapped-end purlins due to snow loads and a novel reinforcement detail," Engineering Structures, vol. 225, pp. 111225, 2020.
  • [22] C. Aksoylu, Y. O. Özkılıç, Ş. Yazman, L. Gemi and M. H. Arslan, "Experimental and Numerical Investigation of Load Bearing Capacity of Thinned End Precast Purlin Beams and Solution Proposals," Teknik Dergi, vol. 32, no. 3 p. 10823-10858, 2021.
  • [23] E. Madenci, Y. O. Özkılıç, and L. Gemi, "Theoretical investigation on static analysis of pultruded GFRP composite beams,"Akademik Platform Mühendislik ve Fen Bilimleri Dergisi, vol. 8, no. 3, pp. 483-490, 2020.
  • [24] L. Gemi, E. Madenci, and Y. O. Özkılıç, "Experimental, analytical and numerical investigation of pultruded GFRP composite beams infilled with hybrid FRP reinforced concrete,"Engineering Structures, vol. 244, pp. 112790, 2021.
  • [25] Y. O. Özkılıç, "A comparative study on yield line mechanisms for four bolted extended end plated connection," Challenge Journal of Structural Mechanics, vol. 7, no. 3, pp. 93-106, 2021.
  • [26] Y. O. Özkılıç, "Investigation of the effects of bolt diameter and end-plate thickness on the capacity and failure modes of end-plated beamto-column connections," Research on Engineering Structures & Materials, in-press, 2021.
  • [27] Y. O. Özkılıç, "A new replaceable fuse for moment resisting frames: Replaceable bolted reduced beam section connections," Steel and Composite Structures, vol. 35, no. 3, pp. 353-370, 2020.
  • [28] Y. O. Özkılıç, M. B. Bozkurt, and C. Topkaya, "Mid-spliced end-plated replaceable links for eccentrically braced frames," Engineering Structures, vol. 237, p. 112225, 2021.
  • [29] M. B. Bozkurt, S. Kazemzadeh Azad, and C. Topkaya, "Development of detachable replaceable links for eccentrically braced frames," Earthquake Engineering & Structural Dynamics, vol. 48, no. 10, pp. 1134-1155, 2019.
  • [30] G. Della Corte, M. D'Aniello, and R. Landolfo, "Analytical and numerical study of plastic overstrength of shear links," Journal of Constructional Steel Research, vol. 82, pp. 19-32, 2013.
  • [31] Y. O. Özkılıç, "Experimental and numerical studies on replaceable links for eccentrically braced frames," Middle East Technical University, Doctoral Dissertation, Ankara, Turkey, 2020.
  • [32] P. W. Richards and C.-M. Uang, "Effect of flange width-thickness ratio on eccentrically braced frames link cyclic rotation capacity," Journal of Structural Engineering, vol. 131, no. 10, pp. 1546-1552, 2005.
  • [33] Y. O. Özkılıç, and C. Topkaya, "Extended end-plate connections for replaceable shear links," Engineering Structures, vol. 240, p. 112385, 2021.
  • [34] Y. O. Özkılıç, "Optimized stiffener detailing for shear links in eccentrically braced frames," Steel and Composite Structures, vol. 39, no. 1, pp. 35-50, 2021.
  • [35] L. Gemi, E. Madenci and Y. O. Özkılıç, "Çelik, Cam FRP ve hibrit donatılı betonarme kirişlerin eğilme performansının incelenmesi,"Düzce Üniversitesi Bilim ve Teknoloji Dergisi, vol. 8, no. 2, pp. 1470-1483, 2020.
  • [36] M. B. Bozkurt, Y. O. Özkılıç,and C. Topkaya, "Investigation on connection details for welded overlap core steel encased buckling restrained braces," presented at the 13th International Congress on Advances in Civil Engineering, İzmir, Turkey, 2018.
  • [37] AISC. 341-16, Seismic provisions for structural steel buildings. 2016.
  • [38] Z. Yi, "Assessment Using FEA of the Influence of Detailing Parameters on Performance of Buckling Restrained Braces," Politehnica University, Msc, 2016.
There are 37 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Yasin Onuralp Özkılıç 0000-0001-9354-4784

Publication Date July 31, 2021
Published in Issue Year 2021

Cite

APA Özkılıç, Y. O. (2021). The Effects of Steel Core Imperfection, Gap Size and Friction Coefficient on the Behavior of All-Steel Buckling Restrained Braces. Duzce University Journal of Science and Technology, 9(4), 1342-1357. https://doi.org/10.29130/dubited.843214
AMA Özkılıç YO. The Effects of Steel Core Imperfection, Gap Size and Friction Coefficient on the Behavior of All-Steel Buckling Restrained Braces. DÜBİTED. July 2021;9(4):1342-1357. doi:10.29130/dubited.843214
Chicago Özkılıç, Yasin Onuralp. “The Effects of Steel Core Imperfection, Gap Size and Friction Coefficient on the Behavior of All-Steel Buckling Restrained Braces”. Duzce University Journal of Science and Technology 9, no. 4 (July 2021): 1342-57. https://doi.org/10.29130/dubited.843214.
EndNote Özkılıç YO (July 1, 2021) The Effects of Steel Core Imperfection, Gap Size and Friction Coefficient on the Behavior of All-Steel Buckling Restrained Braces. Duzce University Journal of Science and Technology 9 4 1342–1357.
IEEE Y. O. Özkılıç, “The Effects of Steel Core Imperfection, Gap Size and Friction Coefficient on the Behavior of All-Steel Buckling Restrained Braces”, DÜBİTED, vol. 9, no. 4, pp. 1342–1357, 2021, doi: 10.29130/dubited.843214.
ISNAD Özkılıç, Yasin Onuralp. “The Effects of Steel Core Imperfection, Gap Size and Friction Coefficient on the Behavior of All-Steel Buckling Restrained Braces”. Duzce University Journal of Science and Technology 9/4 (July 2021), 1342-1357. https://doi.org/10.29130/dubited.843214.
JAMA Özkılıç YO. The Effects of Steel Core Imperfection, Gap Size and Friction Coefficient on the Behavior of All-Steel Buckling Restrained Braces. DÜBİTED. 2021;9:1342–1357.
MLA Özkılıç, Yasin Onuralp. “The Effects of Steel Core Imperfection, Gap Size and Friction Coefficient on the Behavior of All-Steel Buckling Restrained Braces”. Duzce University Journal of Science and Technology, vol. 9, no. 4, 2021, pp. 1342-57, doi:10.29130/dubited.843214.
Vancouver Özkılıç YO. The Effects of Steel Core Imperfection, Gap Size and Friction Coefficient on the Behavior of All-Steel Buckling Restrained Braces. DÜBİTED. 2021;9(4):1342-57.