Research Article
BibTex RIS Cite

13 Atomlu Cu-Ag-Au Üçlü Nanoalaşımların Kimyasal Sıralama ve Yapısal Özelliklerinin İncelenmesi

Year 2021, , 461 - 473, 29.05.2021
https://doi.org/10.29130/dubited.845551

Abstract

Bu çalışmada, 13 atomlu Cu-Ag-Au üçlü metal nanoalaşımların kimyasal sıralama ve yapısal özellikleri Gupta ve DFT düzeylerinde ve üç farklı kompozisyon sisteminde incelenmiştir. Cu-Ag-Au üçlü nanoalaşımların Gupta düzeyindeki lokal optimizasyonları Basin-Hopping algoritması kullanılarak gerçekleştirilmiştir. Optimizasyon sonuçları Ag atomlarının yüzeye yerleşmeyi tercih ettiğini göstermektedir. Cu ve Au atomlarının nanoalaşımların yüzeyine veya merkezine ayrışma eğilimlerinin ise kompozisyon sistemine göre değiştiği bulunmuştur. Cu-Ag-Au nanoalaşımlarının tüm kompozisyonları için en kararlı kimyasal düzene sahip yapılar DFT relaksasyonu ile yeniden optimize edilmiştir ve Gupta ve DFT düzeylerinin karışma enerjileri karşılaştırılmıştır. Karışma enerjisi analizi, Gupta seviyesinde bulunan Ag1AunCu12-n (n=0-12) ve Au1AgnCu12-n (n=0-12) kompozisyon sistemlerinin en kararlı yapısının DFT ile uyuşmadığını göstermiştir.

References

  • Referans1 A. K. Garip, H. Arslan, D. Rapetti, R. Ferrando, “A DFT study of chemical ordering and oxygen adsorption in AuPtPd ternary nanoalloys,” Materials Today Communications, c. 25, ss. 101545, 2020.
  • Referans2 X. Wu, G. Wu, Y. Chen, Y. Qiao, “Structural optimization of Cu-Ag-Au trimetallic clusters by adaptive immune optimization algorithm,” The Journal of Physical Chemistry A, c. 115, s. 46, ss. 13316-13323, 2011.
  • Referans3 S. Taran, H. Arslan, “Stability and magnetic behaviour of 19-,23- and 26- atom trimetallic Pt-Ni-Ag nanoalloys,” Molecular Physics, c. 118, s. 23, 2020.
  • Referans4 S. A. C. Carabineiro, “Special Issue coinage metal (Copper, Silver, and Gold) catalysis,” Molecules, c. 21, s. 6, ss. 746, 2016.
  • Referans5 Y. Hashimoto, G. Seniutinas, A, Balcytis, S. Juodkazis, Y. Nishijima, “Au-Ag-Cu nano-alloys tailoring of permittivity,” Scientific Reports, c. 6, ss. 25010, 2016.
  • Referans6 C. Nwosu, “An electronegativity approach to catalytic performance,” Journal of Technical Science and Technologies, c. 1, s. 2, ss. 25-28, 2012.
  • Referans7 A. M. Echavarren, N. Jiao, V. Gevorgyan, “Coinage metals in organic synthesis,” Chemical Society Reviews, c. 45, ss. 4445-4447, 2016.
  • Referans8 J. M. Conesa, M. V. Morales, C. Lopez-Olmos, I. Rodriguez-Ramos, A. Guerrero-Ruiz, “Comparative study of Cu, Ag and Ag-Cu catalysts over graphite in the ethanol dehydrogenation reaction: Catalytic activity, deactivation and regeneration,” Applied Catalysis A, General, c. 576, ss. 54-64, 2019.
  • Referans9 C. Syu, H. Yang, F. Hsu, J. Wang, “The chemical origin and catalytic activity of coinage metals: from oxidation to dehydrogenation,” Physical Chemistry Chemical Physics, c. 16, ss. 7481-7490, 2014.
  • Referans10 K. Shin, D. H. Kim, H. M. Lee, “Catalytic characteristics of AgCu bimetallic nanoparticles in the oxygen reduction reaction,” ChemSusChem, c. 6, s. 6, ss. 1-7, 2013.
  • Referans11 N. Zhang, F. Chen, X. Wu, Q. Wang, A. Qaseem, Z. Xia, “The activity origin of core–shell and alloy AgCu bimetallic nanoparticles for the oxygen reduction reaction,” Journal of Materials Chemistry A, c. 5, ss. 7043-7054, 2017.
  • Referans12 D. Cheng, X. Liu, D. Cao, W. Wang, S. Huang, “Surface segregation of Ag–Cu–Au trimetallic clusters,” Nanotechnology, c. 18, s. 47, ss. 475702, 2007.
  • Referans13 A. Rapallo, G. Rossi, R. Ferrando, A. Fortunelli, B. C. Curley, L. D. Lloyd, G. M. Tarbuck, R. L. Johnston, “Global optimization of bimetallic cluster structures. I. Size-mismatched Ag-Cu, Ag-Ni, and Au-Cu systems,” The Journal of Chemical Physics, c. 122, s. 19, ss. 194308, 2005.
  • Referans14 N. T. Wilson, R. L. Johnston, “A theoretical study of atom ordering in copper–gold nanoalloy clusters,” Journal of Materials Chemistry, c. 12, ss. 2913-2922, 2002.
  • Referans15 X. Wu, W. Cai, X. Shao, “Optimization of bimetallic Cu-Au and Ag-Au clusters by using a modified adaptive immune optimization algorithm,” Journal of Computational Chemistry, c. 30, s. 13, ss.1992-2000, 2009.
  • Referans16 H. Yıldırım, H. Arslan, “CuAgAu üçlü nanoalaşımların optimizasyonu ve erime dinamiği,” Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 21, s. 1, ss. 336-351, 2019.
  • Referans17 H. Yıldırım, H. Arslan, “Size and composition effect on structural properties and melting behaviors of Cu-Ag-Au ternary nanoalloys,” International Journal of Modern Physics C, c. 31, s. 6, ss. 2050078, 2020.
  • Referans18 J. Goh, J. Akola, R. Ferrando, “Geometric structure and chemical ordering of large AuCu clusters:A computational study,” The Journal of Physical Chemistry C, c. 121, s. 20, ss. 10809-10816, 2017.
  • Referans19 Z. Jiang, K. Lee, S. Li, S. Chu, “Structures and charge distributions of cationic and neutral Cun-1Ag clusters (n=2–8),” Physical Review B, c. 73, ss. 235423, 2006.
  • Referans20 S. Taran, A. K. Garip, H. Arslan, “Investigation of the chemical ordering and structural properties of the trimetallic (PtNi)@Ag nanoalloys,” Journal of Cluster Science, ss. 1-10, 2020.
  • Referans21 S. Taran, “13 atomlu Cu-Au-Pt üçlü metal nanoalaşımların yapısal özellikleri,” Düzce Üniversitesi Bilim ve Teknoloji Dergisi, c. 7, ss. 1204-1216, 2019.
  • Referans22 S. Taran, “Composition effect on melting behaviors of Cu-Au-Pt trimetallic nanoalloys,” Computational and Theoretical Chemistry, c. 1166, ss. 112576, 2019.
  • Referans23 S. Taran, “Alloying effect on the local atomic pressures of nanoclusters,” Sakarya University Journal of Science, c. 24, s. 3, ss. 501-510, 2020.
  • Referans24 R. Ferrando, “Structure and properties of nanoalloys,” in Frontiers of Nanoscience, c.10, 1st. Ed. Elsevier, 2016, ss. 350. [Online]. https://www.elsevier.com.
  • Referans25 D. J. Wales, J. P. K. Doye, “Global optimization by basin-hopping and the lowest energy structures of lennard-jones clusters containing up to 110 Atoms,” The Journal of Physical Chemistry A, c. 101, s. 28, ss. 5111-5116, 1997.
  • Referans26 F. Cleri, V. Rosato, “Tight-binding potentials for transition metals and alloys,” Physical Review B, c. 48, s. 1, ss. 22-33, 1993.
  • Referans27 L. O. Paz-Borbon, R. L. Johnston, G. Barcaro, A. Fortunelli, “Structural motifs, mixing, and segregation effects in 38-atom binary clusters,” The Journal of Chemical Physics, c. 128, s. 13, ss. 134517, 2008.
  • Referans28 A. K. Garip, H. Arslan, “40 atomlu Pd-Co ikili metal atom topaklarının yapısal özelliklerinin incelenmesi,” Karaelmas Fen ve Mühendislik Dergisi, c. 4, s. 2, ss. 38-45, 2014.
  • Referans29 A. K. Garip, “Kesilmiş oktahedron yapısına sahip PdnPt(6-n)Au32 nanoalaşımlarının erime dinamiği,” Düzce Üniversitesi Bilim ve Teknoloji Dergisi, c. 8, ss. 1732-1745, 2020.
  • Referans30 P.Giannozzi vd. “QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials,” Journal of Physics:Condensed Matter, c. 21, s. 39, ss. 395502, 2009.
  • Referans31 P.Giannozzi vd. “Advanced capabilities for materials modelling with Quantum ESPRESSO,” Journal of Physics:Condensed Matter, c. 29, s. 46, ss. 465901, 2017.
  • Referans32 D. Vanderbilt, “Soft self-consistent pseudopotentials in a generalized eigenvalue formalism,” Physical Review B, c. 41, s. 11, ss. 7892-7895, 1990.
  • Referans33 J. P. Perdew, K. Burke, M. Ernzerhof, “Generalized gradient approximation made simple,” Physical Review Letters, c. 77, s. 18, ss. 3865-3868, 1996.
  • Referans34 A. Stukowski, “Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool,” Modelling and Simulation in Materials Science and Engineering, c. 18, s.1, ss. 015012, 2010.
  • Referans35 A. Stukowski, “Structure identification methods for atomistic simulations of crystalline materials,” Modelling and Simulation in Materials Science and Engineering, c. 20, s. 4, ss. 045021, 2012.
  • Referans36 R. Ferrando, J. Jellinek, R. L. Johnston, “Nanoalloys: From Theory to Applications of Alloy Clusters and Nanoparticles,” Chemical Reviews, c.108, s. 3, ss. 845–910, 2008.
  • Referans37 S. Taran, A. K. Garip, H. Arslan, “A theoretical study on chemical ordering of 38-atom trimetallic Pd-Ag-Pt nanoalloys,” Chinese Physics B, c. 29, s. 7, 2020.
Year 2021, , 461 - 473, 29.05.2021
https://doi.org/10.29130/dubited.845551

Abstract

References

  • Referans1 A. K. Garip, H. Arslan, D. Rapetti, R. Ferrando, “A DFT study of chemical ordering and oxygen adsorption in AuPtPd ternary nanoalloys,” Materials Today Communications, c. 25, ss. 101545, 2020.
  • Referans2 X. Wu, G. Wu, Y. Chen, Y. Qiao, “Structural optimization of Cu-Ag-Au trimetallic clusters by adaptive immune optimization algorithm,” The Journal of Physical Chemistry A, c. 115, s. 46, ss. 13316-13323, 2011.
  • Referans3 S. Taran, H. Arslan, “Stability and magnetic behaviour of 19-,23- and 26- atom trimetallic Pt-Ni-Ag nanoalloys,” Molecular Physics, c. 118, s. 23, 2020.
  • Referans4 S. A. C. Carabineiro, “Special Issue coinage metal (Copper, Silver, and Gold) catalysis,” Molecules, c. 21, s. 6, ss. 746, 2016.
  • Referans5 Y. Hashimoto, G. Seniutinas, A, Balcytis, S. Juodkazis, Y. Nishijima, “Au-Ag-Cu nano-alloys tailoring of permittivity,” Scientific Reports, c. 6, ss. 25010, 2016.
  • Referans6 C. Nwosu, “An electronegativity approach to catalytic performance,” Journal of Technical Science and Technologies, c. 1, s. 2, ss. 25-28, 2012.
  • Referans7 A. M. Echavarren, N. Jiao, V. Gevorgyan, “Coinage metals in organic synthesis,” Chemical Society Reviews, c. 45, ss. 4445-4447, 2016.
  • Referans8 J. M. Conesa, M. V. Morales, C. Lopez-Olmos, I. Rodriguez-Ramos, A. Guerrero-Ruiz, “Comparative study of Cu, Ag and Ag-Cu catalysts over graphite in the ethanol dehydrogenation reaction: Catalytic activity, deactivation and regeneration,” Applied Catalysis A, General, c. 576, ss. 54-64, 2019.
  • Referans9 C. Syu, H. Yang, F. Hsu, J. Wang, “The chemical origin and catalytic activity of coinage metals: from oxidation to dehydrogenation,” Physical Chemistry Chemical Physics, c. 16, ss. 7481-7490, 2014.
  • Referans10 K. Shin, D. H. Kim, H. M. Lee, “Catalytic characteristics of AgCu bimetallic nanoparticles in the oxygen reduction reaction,” ChemSusChem, c. 6, s. 6, ss. 1-7, 2013.
  • Referans11 N. Zhang, F. Chen, X. Wu, Q. Wang, A. Qaseem, Z. Xia, “The activity origin of core–shell and alloy AgCu bimetallic nanoparticles for the oxygen reduction reaction,” Journal of Materials Chemistry A, c. 5, ss. 7043-7054, 2017.
  • Referans12 D. Cheng, X. Liu, D. Cao, W. Wang, S. Huang, “Surface segregation of Ag–Cu–Au trimetallic clusters,” Nanotechnology, c. 18, s. 47, ss. 475702, 2007.
  • Referans13 A. Rapallo, G. Rossi, R. Ferrando, A. Fortunelli, B. C. Curley, L. D. Lloyd, G. M. Tarbuck, R. L. Johnston, “Global optimization of bimetallic cluster structures. I. Size-mismatched Ag-Cu, Ag-Ni, and Au-Cu systems,” The Journal of Chemical Physics, c. 122, s. 19, ss. 194308, 2005.
  • Referans14 N. T. Wilson, R. L. Johnston, “A theoretical study of atom ordering in copper–gold nanoalloy clusters,” Journal of Materials Chemistry, c. 12, ss. 2913-2922, 2002.
  • Referans15 X. Wu, W. Cai, X. Shao, “Optimization of bimetallic Cu-Au and Ag-Au clusters by using a modified adaptive immune optimization algorithm,” Journal of Computational Chemistry, c. 30, s. 13, ss.1992-2000, 2009.
  • Referans16 H. Yıldırım, H. Arslan, “CuAgAu üçlü nanoalaşımların optimizasyonu ve erime dinamiği,” Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 21, s. 1, ss. 336-351, 2019.
  • Referans17 H. Yıldırım, H. Arslan, “Size and composition effect on structural properties and melting behaviors of Cu-Ag-Au ternary nanoalloys,” International Journal of Modern Physics C, c. 31, s. 6, ss. 2050078, 2020.
  • Referans18 J. Goh, J. Akola, R. Ferrando, “Geometric structure and chemical ordering of large AuCu clusters:A computational study,” The Journal of Physical Chemistry C, c. 121, s. 20, ss. 10809-10816, 2017.
  • Referans19 Z. Jiang, K. Lee, S. Li, S. Chu, “Structures and charge distributions of cationic and neutral Cun-1Ag clusters (n=2–8),” Physical Review B, c. 73, ss. 235423, 2006.
  • Referans20 S. Taran, A. K. Garip, H. Arslan, “Investigation of the chemical ordering and structural properties of the trimetallic (PtNi)@Ag nanoalloys,” Journal of Cluster Science, ss. 1-10, 2020.
  • Referans21 S. Taran, “13 atomlu Cu-Au-Pt üçlü metal nanoalaşımların yapısal özellikleri,” Düzce Üniversitesi Bilim ve Teknoloji Dergisi, c. 7, ss. 1204-1216, 2019.
  • Referans22 S. Taran, “Composition effect on melting behaviors of Cu-Au-Pt trimetallic nanoalloys,” Computational and Theoretical Chemistry, c. 1166, ss. 112576, 2019.
  • Referans23 S. Taran, “Alloying effect on the local atomic pressures of nanoclusters,” Sakarya University Journal of Science, c. 24, s. 3, ss. 501-510, 2020.
  • Referans24 R. Ferrando, “Structure and properties of nanoalloys,” in Frontiers of Nanoscience, c.10, 1st. Ed. Elsevier, 2016, ss. 350. [Online]. https://www.elsevier.com.
  • Referans25 D. J. Wales, J. P. K. Doye, “Global optimization by basin-hopping and the lowest energy structures of lennard-jones clusters containing up to 110 Atoms,” The Journal of Physical Chemistry A, c. 101, s. 28, ss. 5111-5116, 1997.
  • Referans26 F. Cleri, V. Rosato, “Tight-binding potentials for transition metals and alloys,” Physical Review B, c. 48, s. 1, ss. 22-33, 1993.
  • Referans27 L. O. Paz-Borbon, R. L. Johnston, G. Barcaro, A. Fortunelli, “Structural motifs, mixing, and segregation effects in 38-atom binary clusters,” The Journal of Chemical Physics, c. 128, s. 13, ss. 134517, 2008.
  • Referans28 A. K. Garip, H. Arslan, “40 atomlu Pd-Co ikili metal atom topaklarının yapısal özelliklerinin incelenmesi,” Karaelmas Fen ve Mühendislik Dergisi, c. 4, s. 2, ss. 38-45, 2014.
  • Referans29 A. K. Garip, “Kesilmiş oktahedron yapısına sahip PdnPt(6-n)Au32 nanoalaşımlarının erime dinamiği,” Düzce Üniversitesi Bilim ve Teknoloji Dergisi, c. 8, ss. 1732-1745, 2020.
  • Referans30 P.Giannozzi vd. “QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials,” Journal of Physics:Condensed Matter, c. 21, s. 39, ss. 395502, 2009.
  • Referans31 P.Giannozzi vd. “Advanced capabilities for materials modelling with Quantum ESPRESSO,” Journal of Physics:Condensed Matter, c. 29, s. 46, ss. 465901, 2017.
  • Referans32 D. Vanderbilt, “Soft self-consistent pseudopotentials in a generalized eigenvalue formalism,” Physical Review B, c. 41, s. 11, ss. 7892-7895, 1990.
  • Referans33 J. P. Perdew, K. Burke, M. Ernzerhof, “Generalized gradient approximation made simple,” Physical Review Letters, c. 77, s. 18, ss. 3865-3868, 1996.
  • Referans34 A. Stukowski, “Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool,” Modelling and Simulation in Materials Science and Engineering, c. 18, s.1, ss. 015012, 2010.
  • Referans35 A. Stukowski, “Structure identification methods for atomistic simulations of crystalline materials,” Modelling and Simulation in Materials Science and Engineering, c. 20, s. 4, ss. 045021, 2012.
  • Referans36 R. Ferrando, J. Jellinek, R. L. Johnston, “Nanoalloys: From Theory to Applications of Alloy Clusters and Nanoparticles,” Chemical Reviews, c.108, s. 3, ss. 845–910, 2008.
  • Referans37 S. Taran, A. K. Garip, H. Arslan, “A theoretical study on chemical ordering of 38-atom trimetallic Pd-Ag-Pt nanoalloys,” Chinese Physics B, c. 29, s. 7, 2020.
There are 37 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Hüseyin Yıldırım 0000-0002-8554-3885

Publication Date May 29, 2021
Published in Issue Year 2021

Cite

APA Yıldırım, H. (2021). 13 Atomlu Cu-Ag-Au Üçlü Nanoalaşımların Kimyasal Sıralama ve Yapısal Özelliklerinin İncelenmesi. Duzce University Journal of Science and Technology, 9(3), 461-473. https://doi.org/10.29130/dubited.845551
AMA Yıldırım H. 13 Atomlu Cu-Ag-Au Üçlü Nanoalaşımların Kimyasal Sıralama ve Yapısal Özelliklerinin İncelenmesi. DÜBİTED. May 2021;9(3):461-473. doi:10.29130/dubited.845551
Chicago Yıldırım, Hüseyin. “13 Atomlu Cu-Ag-Au Üçlü Nanoalaşımların Kimyasal Sıralama Ve Yapısal Özelliklerinin İncelenmesi”. Duzce University Journal of Science and Technology 9, no. 3 (May 2021): 461-73. https://doi.org/10.29130/dubited.845551.
EndNote Yıldırım H (May 1, 2021) 13 Atomlu Cu-Ag-Au Üçlü Nanoalaşımların Kimyasal Sıralama ve Yapısal Özelliklerinin İncelenmesi. Duzce University Journal of Science and Technology 9 3 461–473.
IEEE H. Yıldırım, “13 Atomlu Cu-Ag-Au Üçlü Nanoalaşımların Kimyasal Sıralama ve Yapısal Özelliklerinin İncelenmesi”, DÜBİTED, vol. 9, no. 3, pp. 461–473, 2021, doi: 10.29130/dubited.845551.
ISNAD Yıldırım, Hüseyin. “13 Atomlu Cu-Ag-Au Üçlü Nanoalaşımların Kimyasal Sıralama Ve Yapısal Özelliklerinin İncelenmesi”. Duzce University Journal of Science and Technology 9/3 (May 2021), 461-473. https://doi.org/10.29130/dubited.845551.
JAMA Yıldırım H. 13 Atomlu Cu-Ag-Au Üçlü Nanoalaşımların Kimyasal Sıralama ve Yapısal Özelliklerinin İncelenmesi. DÜBİTED. 2021;9:461–473.
MLA Yıldırım, Hüseyin. “13 Atomlu Cu-Ag-Au Üçlü Nanoalaşımların Kimyasal Sıralama Ve Yapısal Özelliklerinin İncelenmesi”. Duzce University Journal of Science and Technology, vol. 9, no. 3, 2021, pp. 461-73, doi:10.29130/dubited.845551.
Vancouver Yıldırım H. 13 Atomlu Cu-Ag-Au Üçlü Nanoalaşımların Kimyasal Sıralama ve Yapısal Özelliklerinin İncelenmesi. DÜBİTED. 2021;9(3):461-73.