Research Article
BibTex RIS Cite

Experimental Investigation of the Effect of Hydrophobic Surfaces On Friction Losses in Turbulent Pipe Flows

Year 2022, , 1383 - 1397, 31.07.2022
https://doi.org/10.29130/dubited.873308

Abstract

In this study, the inner surface of the smooth copper pipe was coated with a hydrophobic material and an experimental study was made to determine the effect on the friction factor in turbulent flow. Fluoroid ethylene propylene (FEP) was chosen as the base coating material and 1% by weight of graphene and graphite are added to this base material to obtain FEP-G and FEP-C materials, respectively. The inner surface of the smooth copper pipe was coated with FEP, FEP-G and FEP-C materials by using the spray technique. Than coated pipe was dried at 400 °C to form hydrophobic surfaces. The contact angles representing the hydrophobicity of the uncoated conventional smooth copper, FEP, FEP-C, and FEP-G coated surfaces were measured as 65°, 93°, 96° and 102°, respectively. In the turbulent flow, the pressure losses in the range of 5000 – 30000 Reynolds numbers were experimentally measured and the friction factor was determined. As a result, the decrease in the friction factor in the range of 7% to 36.1% was determined.

References

  • [1] Z. Yumurtaci and A. Sarıgül, “Santrifüj Pompalarda Enerji Verimliliği ve Uygulamaları,” Makina Mühendisleri Odası Tesisat Mühendisliği Derg., pp. 49–58, 2011. [2] P. Zhang and F. Y. Lv, “A review of the recent advances in superhydrophobic surfaces and the emerging energy-related applications,” Energy, vol. 82, pp. 1068–1087, 2015. [3] L. Oberli, D. Caruso, C. Hall, M. Fabretto, P. J. Murphy, and D. Evans, “Condensation and freezing of droplets on superhydrophobic surfaces,” Adv. Colloid Interface Sci., vol. 210, pp. 47–57, 2014. [4] F. E. Kartal, “Nanokompozit süperhidrofobik yüzey sentezi ve karakterizasyonu.” Yüksek lisans tezi, Kimya Mühendisliği, Fen Bilimleri Enstitüsü, Gazi Üniversitesi, Ankara, Türkiye, 2009. [5] H. Blasius, “The law of similarity applied to friction phenomena,” Phys. Z, vol. 12, pp. 1175–1178, 1911. [6] C. Wang, F. Tang, Q. Li, Y. Zhang, and X. Wang, “Spray-coated superhydrophobic surfaces with wear-resistance, drag-reduction and anti-corrosion properties,” Colloids Surfaces A Physicochem. Eng. Asp., vol. 514, pp. 236–242, 2017. [7] D. C. Tretheway and C. D. Meinhart, “Apparent fluid slip at hydrophobic microchannel walls,” Phys. fluids, vol. 14, no. 3, pp. L9–L12, 2002. [8] A. Ríos-Rodríguez, C. A. Palacios-Morales, E. Bernal, G. Ascanio, and J. P. Aguayo-Vallejo, “Effect of hydrophobic coating on Hagen-Poiseuille flows,” J. Appl. Fluid Mech., vol. 9, no. 3, pp. 1035–1040, 2016. [9] J. Ou and J. P. Rothstein, “Direct velocity measurements of the flow past drag-reducing ultrahydrophobic surfaces,” Phys. fluids, vol. 17, no. 10, pp. 103606, 2005. [10] C. Ybert, C. Barentin, C. Cottin-Bizonne, P. Joseph, and L. Bocquet, “Achieving large slip with superhydrophobic surfaces: Scaling laws for generic geometries,” Phys. fluids, vol. 19, no. 12, pp. 123601, 2007. [11] C. Henoch, T. Krupenkin, P. Kolodner, J. Taylor, M. Hodes, A. Lyons ve K. Breuer, “Turbulent drag reduction using superhydrophobic surfaces,” in 3rd AIAA Flow Control Conference, 2006, pp. 3192. [12] R. J. Daniello, N. E. Waterhouse, and J. P. Rothstein, “Drag reduction in turbulent flows over superhydrophobic surfaces,” Phys. Fluids, vol. 21, no. 8, pp. 85103, 2009. [13] R. Truesdell, A. Mammoli, P. Vorobieff, F. van Swol, and C. J. Brinker, “Drag reduction on a patterned superhydrophobic surface,” Phys. Rev. Lett., vol. 97, no. 4, pp. 44504, 2006. [14] M. B. Martell, J. P. Rothstein, and J. B. Perot, “An analysis of superhydrophobic turbulent drag reduction mechanisms using direct numerical simulation,” Phys. Fluids, vol. 22, no. 6, pp. 65102, 2010. [15] M. B. Martell, J. B. Perot, and J. P. Rothstein, “Direct numerical simulations of turbulent flows over superhydrophobic surfaces,” J. Fluid Mech., vol. 620, pp. 31–41, 2009. [16] K. Jeffs, D. Maynes, and B. W. Webb, “Prediction of turbulent channel flow with superhydrophobic walls consisting of micro-ribs and cavities oriented parallel to the flow direction,” Int. J. Heat Mass Transf., vol. 53, no. 4, pp. 786–796, 2010. [17] B. Woolford, J. Prince, D. Maynes, and B. W. Webb, “Particle image velocimetry characterization of turbulent channel flow with rib patterned superhydrophobic walls,” Phys. Fluids, vol. 21, no. 8, pp. 85106, 2009. [18] H. Tian, J. Zhang, E. Wang, Z. Yao, and N. Jiang, “Experimental investigation on drag reduction in turbulent boundary layer over superhydrophobic surface by TRPIV,” Theor. Appl. Mech. Lett., vol. 5, no. 1, pp. 45–49, 2015. [19] A. V Volkov et al., “Analysis of the effect of hydrophobic properties of surfaces in the flow part of centrifugal pumps on their operational performance,” Therm. Eng., vol. 62, no. 11, pp. 817–824, 2015. [20] M. Chinappi and C. M. Casciola, “Intrinsic slip on hydrophobic self-assembled monolayer coatings,” Phys. Fluids, vol. 22, no. 4, pp. 42003, 2010. [21] C. Cottin-Bizonne, B. Cross, A. Steinberger, and E. Charlaix, “Boundary slip on smooth hydrophobic surfaces: Intrinsic effects and possible artifacts,” Phys. Rev. Lett., vol. 94, no. 5, pp. 56102, 2005. [22] N. M. Nouri, S. Sekhavat, and A. Mofidi, “Drag reduction in a turbulent channel flow with hydrophobic wall,” J. Hydrodyn. Ser. B, vol. 24, no. 3, pp. 458–466, 2012. [23] T. O. Jelly, S. Y. Jung, and T. A. Zaki, “Turbulence and skin friction modification in channel flow with streamwise-aligned superhydrophobic surface texture,” Phys. Fluids, vol. 26, no. 9, pp. 95102, 2014. [24] S. Fialová, F. Pochylý, M. Kotek, and D. Jašíková, “Velocity profiles of fluid flow close to a hydrophobic surface,” in EPJ Web of Conferences, 2017, pp. 2023. [25] F. Simona, P. František, H. Michal, and M. Jiři, “Influence of boundary conditions on fluid flow on hydrophobic surfaces,” in AIP Conference Proceedings, 2017, vol. 1889, no. 1, pp. 20008. [26] F. Pochylý, S. Fialová, and M. Havlásek, “New boundary conditions for fluid interaction with hydrophobic surface,” in EPJ Web of Conferences, 2018, pp. 2084. [27] E. Aljallis, M. A. Sarshar, R. Datla, V. Sikka, A. Jones, and C.-H. Choi, “Experimental study of skin friction drag reduction on superhydrophobic flat plates in high Reynolds number boundary layer flow,” Phys. fluids, vol. 25, no. 2, pp. 25103, 2013. [28] K. Moaven, M. Rad, and M. Taeibi-Rahni, “Experimental investigation of viscous drag reduction of superhydrophobic nano-coating in laminar and turbulent flows,” Exp. Therm. Fluid Sci., vol. 51, pp. 239–243, 2013. [29] M. Özbey, M. Gürbüz, and U. Karakurt, “Hidrofobik çark yüzeylerinin santrifüj tip bir pompa performansına etkilerinin deneysel incelenmesi,” Gazi Üniversitesi Mühendislik Mimar. Fakültesi Derg., vol. 36, no. 1, pp. 267–274, 2021.
  • [30] K. Fukuda, J. Tokunaga, T. Nobunaga, T. Nakatani, T. Iwasaki, and Y. Kunitake, “Frictional drag reduction with air lubricant over a super-water-repellent surface,” J. Mar. Sci. Technol., vol. 5, no. 3, pp. 123–130, 2000. [31] J. P. Winkler, (2008, June 24) “Shipping wasting 4.37 million barrels of oil a day,” Reuters Press Release. [Online]. Available: http://www.reuters.com/article/2008/06/24/idUS8232 [32] X. Qi and D.-P. Song, “Minimizing fuel emissions by optimizing vessel schedules in liner shipping with uncertain port times,” Transp. Res. Part E Logist. Transp. Rev., vol. 48, no. 4, pp. 863–880, 2012. [33] H. Park and G. Sun, “Superhydrophobic turbulent drag reduction as a function of surface grating parameters,” J. Fluid Mech., vol. 747, pp. 722–734, 2014. [34] R. A. Bidkar, L. Leblanc, A. J. Kulkarni, V. Bahadur, S. L. Ceccio, and M. Perlin, “Skin-friction drag reduction in the turbulent regime using random-textured hydrophobic surfaces,” Phys. Fluids, vol. 26, no. 8, pp. 85108, 2014. [35] M. Pehlivan, U. Karakurt, M. Özbey, and M. Gürbüz, “Floro Polimer Kaplamanın Bakır Plaka Üzerine Uygulanması ve Aşınma Üzerine Etkisinin İncelenmesi,” in 3rd International Symposium on Innnovative Approaches in Scientific Studies, 2019, pp. 408–410. [36] A. D. Cuhadaroğlu and K. Erdal, “Grafit: Bir genel değerlendirme,” Tek. Bilim. Derg., vol. 8, no. 1, pp. 14–33, 2018. [37] M. C. Şenel, M. Gürbüz, and K. O. Ç. Erdem, “Grafen takviyeli alüminyum matrisli yeni nesil kompozitler,” Mühendis ve Makina, vol. 56, no. 669, pp. 36–47, 2015. [38] J. P. Holman, “Experimental Methods for Engineers,” McGraw-Hill, 5th Edition, 1989.

Hidrofobik Yüzeylerin Türbülanslı Boru Akımlarında Sürtünme Kayıplarına Etkisinin Deneysel İncelenmesi

Year 2022, , 1383 - 1397, 31.07.2022
https://doi.org/10.29130/dubited.873308

Abstract

Bu çalışmada, pürüzsüz bakır boru iç yüzeyi hidrofobik özellik kazandırılacak şekilde kaplanarak türbülanslı akımda basınç kaybı ve sürtünme faktörü üzerindeki etkisi deneysel olarak incelenmiştir. Kaplama malzemesi olarak floroidetilenpropilen (FEP) ve bu temel malzemeye ağırlıkça %1 oranda grafen (FEP-G) ve grafit (FEP-C) ekleyerek elde edilen solüsyonlar kullanılmıştır. FEP, FEP-G ve FEP-C malzemeleri ile pürüzsüz bakır boru iç yüzeyleri sprey yöntemi ile kaplanıp 400 °C sıcaklıkta kurutularak hidrofobik yüzeyler elde edilmiştir. İşlenmemiş konvansiyonel pürüzsüz bakır yüzeyi ile FEP, FEP-C ve FEP-G kaplı yüzeylerin hidrofobikliği temas açıları sırasıyla 65°, 93°, 96° ve 102° olarak ölçülerek belirlenmiştir. Türbülanslı akımda, 5000 – 30000 Reynolds sayıları aralığında deneysel olarak basınç kayıpları ölçülerek sürtünme faktörü belirlenmiştir. FEP, FEP-C ve FEP-G kaplı hidrofobik yüzeyler, konvansiyonel bakır yüzeye kıyasla 5000 – 30000 Reynolds sayısı aralığındaki türbülanslı akımda %7 - %36.1 aralığında sürtünme faktöründe bir azalma göstermiştir.

References

  • [1] Z. Yumurtaci and A. Sarıgül, “Santrifüj Pompalarda Enerji Verimliliği ve Uygulamaları,” Makina Mühendisleri Odası Tesisat Mühendisliği Derg., pp. 49–58, 2011. [2] P. Zhang and F. Y. Lv, “A review of the recent advances in superhydrophobic surfaces and the emerging energy-related applications,” Energy, vol. 82, pp. 1068–1087, 2015. [3] L. Oberli, D. Caruso, C. Hall, M. Fabretto, P. J. Murphy, and D. Evans, “Condensation and freezing of droplets on superhydrophobic surfaces,” Adv. Colloid Interface Sci., vol. 210, pp. 47–57, 2014. [4] F. E. Kartal, “Nanokompozit süperhidrofobik yüzey sentezi ve karakterizasyonu.” Yüksek lisans tezi, Kimya Mühendisliği, Fen Bilimleri Enstitüsü, Gazi Üniversitesi, Ankara, Türkiye, 2009. [5] H. Blasius, “The law of similarity applied to friction phenomena,” Phys. Z, vol. 12, pp. 1175–1178, 1911. [6] C. Wang, F. Tang, Q. Li, Y. Zhang, and X. Wang, “Spray-coated superhydrophobic surfaces with wear-resistance, drag-reduction and anti-corrosion properties,” Colloids Surfaces A Physicochem. Eng. Asp., vol. 514, pp. 236–242, 2017. [7] D. C. Tretheway and C. D. Meinhart, “Apparent fluid slip at hydrophobic microchannel walls,” Phys. fluids, vol. 14, no. 3, pp. L9–L12, 2002. [8] A. Ríos-Rodríguez, C. A. Palacios-Morales, E. Bernal, G. Ascanio, and J. P. Aguayo-Vallejo, “Effect of hydrophobic coating on Hagen-Poiseuille flows,” J. Appl. Fluid Mech., vol. 9, no. 3, pp. 1035–1040, 2016. [9] J. Ou and J. P. Rothstein, “Direct velocity measurements of the flow past drag-reducing ultrahydrophobic surfaces,” Phys. fluids, vol. 17, no. 10, pp. 103606, 2005. [10] C. Ybert, C. Barentin, C. Cottin-Bizonne, P. Joseph, and L. Bocquet, “Achieving large slip with superhydrophobic surfaces: Scaling laws for generic geometries,” Phys. fluids, vol. 19, no. 12, pp. 123601, 2007. [11] C. Henoch, T. Krupenkin, P. Kolodner, J. Taylor, M. Hodes, A. Lyons ve K. Breuer, “Turbulent drag reduction using superhydrophobic surfaces,” in 3rd AIAA Flow Control Conference, 2006, pp. 3192. [12] R. J. Daniello, N. E. Waterhouse, and J. P. Rothstein, “Drag reduction in turbulent flows over superhydrophobic surfaces,” Phys. Fluids, vol. 21, no. 8, pp. 85103, 2009. [13] R. Truesdell, A. Mammoli, P. Vorobieff, F. van Swol, and C. J. Brinker, “Drag reduction on a patterned superhydrophobic surface,” Phys. Rev. Lett., vol. 97, no. 4, pp. 44504, 2006. [14] M. B. Martell, J. P. Rothstein, and J. B. Perot, “An analysis of superhydrophobic turbulent drag reduction mechanisms using direct numerical simulation,” Phys. Fluids, vol. 22, no. 6, pp. 65102, 2010. [15] M. B. Martell, J. B. Perot, and J. P. Rothstein, “Direct numerical simulations of turbulent flows over superhydrophobic surfaces,” J. Fluid Mech., vol. 620, pp. 31–41, 2009. [16] K. Jeffs, D. Maynes, and B. W. Webb, “Prediction of turbulent channel flow with superhydrophobic walls consisting of micro-ribs and cavities oriented parallel to the flow direction,” Int. J. Heat Mass Transf., vol. 53, no. 4, pp. 786–796, 2010. [17] B. Woolford, J. Prince, D. Maynes, and B. W. Webb, “Particle image velocimetry characterization of turbulent channel flow with rib patterned superhydrophobic walls,” Phys. Fluids, vol. 21, no. 8, pp. 85106, 2009. [18] H. Tian, J. Zhang, E. Wang, Z. Yao, and N. Jiang, “Experimental investigation on drag reduction in turbulent boundary layer over superhydrophobic surface by TRPIV,” Theor. Appl. Mech. Lett., vol. 5, no. 1, pp. 45–49, 2015. [19] A. V Volkov et al., “Analysis of the effect of hydrophobic properties of surfaces in the flow part of centrifugal pumps on their operational performance,” Therm. Eng., vol. 62, no. 11, pp. 817–824, 2015. [20] M. Chinappi and C. M. Casciola, “Intrinsic slip on hydrophobic self-assembled monolayer coatings,” Phys. Fluids, vol. 22, no. 4, pp. 42003, 2010. [21] C. Cottin-Bizonne, B. Cross, A. Steinberger, and E. Charlaix, “Boundary slip on smooth hydrophobic surfaces: Intrinsic effects and possible artifacts,” Phys. Rev. Lett., vol. 94, no. 5, pp. 56102, 2005. [22] N. M. Nouri, S. Sekhavat, and A. Mofidi, “Drag reduction in a turbulent channel flow with hydrophobic wall,” J. Hydrodyn. Ser. B, vol. 24, no. 3, pp. 458–466, 2012. [23] T. O. Jelly, S. Y. Jung, and T. A. Zaki, “Turbulence and skin friction modification in channel flow with streamwise-aligned superhydrophobic surface texture,” Phys. Fluids, vol. 26, no. 9, pp. 95102, 2014. [24] S. Fialová, F. Pochylý, M. Kotek, and D. Jašíková, “Velocity profiles of fluid flow close to a hydrophobic surface,” in EPJ Web of Conferences, 2017, pp. 2023. [25] F. Simona, P. František, H. Michal, and M. Jiři, “Influence of boundary conditions on fluid flow on hydrophobic surfaces,” in AIP Conference Proceedings, 2017, vol. 1889, no. 1, pp. 20008. [26] F. Pochylý, S. Fialová, and M. Havlásek, “New boundary conditions for fluid interaction with hydrophobic surface,” in EPJ Web of Conferences, 2018, pp. 2084. [27] E. Aljallis, M. A. Sarshar, R. Datla, V. Sikka, A. Jones, and C.-H. Choi, “Experimental study of skin friction drag reduction on superhydrophobic flat plates in high Reynolds number boundary layer flow,” Phys. fluids, vol. 25, no. 2, pp. 25103, 2013. [28] K. Moaven, M. Rad, and M. Taeibi-Rahni, “Experimental investigation of viscous drag reduction of superhydrophobic nano-coating in laminar and turbulent flows,” Exp. Therm. Fluid Sci., vol. 51, pp. 239–243, 2013. [29] M. Özbey, M. Gürbüz, and U. Karakurt, “Hidrofobik çark yüzeylerinin santrifüj tip bir pompa performansına etkilerinin deneysel incelenmesi,” Gazi Üniversitesi Mühendislik Mimar. Fakültesi Derg., vol. 36, no. 1, pp. 267–274, 2021.
  • [30] K. Fukuda, J. Tokunaga, T. Nobunaga, T. Nakatani, T. Iwasaki, and Y. Kunitake, “Frictional drag reduction with air lubricant over a super-water-repellent surface,” J. Mar. Sci. Technol., vol. 5, no. 3, pp. 123–130, 2000. [31] J. P. Winkler, (2008, June 24) “Shipping wasting 4.37 million barrels of oil a day,” Reuters Press Release. [Online]. Available: http://www.reuters.com/article/2008/06/24/idUS8232 [32] X. Qi and D.-P. Song, “Minimizing fuel emissions by optimizing vessel schedules in liner shipping with uncertain port times,” Transp. Res. Part E Logist. Transp. Rev., vol. 48, no. 4, pp. 863–880, 2012. [33] H. Park and G. Sun, “Superhydrophobic turbulent drag reduction as a function of surface grating parameters,” J. Fluid Mech., vol. 747, pp. 722–734, 2014. [34] R. A. Bidkar, L. Leblanc, A. J. Kulkarni, V. Bahadur, S. L. Ceccio, and M. Perlin, “Skin-friction drag reduction in the turbulent regime using random-textured hydrophobic surfaces,” Phys. Fluids, vol. 26, no. 8, pp. 85108, 2014. [35] M. Pehlivan, U. Karakurt, M. Özbey, and M. Gürbüz, “Floro Polimer Kaplamanın Bakır Plaka Üzerine Uygulanması ve Aşınma Üzerine Etkisinin İncelenmesi,” in 3rd International Symposium on Innnovative Approaches in Scientific Studies, 2019, pp. 408–410. [36] A. D. Cuhadaroğlu and K. Erdal, “Grafit: Bir genel değerlendirme,” Tek. Bilim. Derg., vol. 8, no. 1, pp. 14–33, 2018. [37] M. C. Şenel, M. Gürbüz, and K. O. Ç. Erdem, “Grafen takviyeli alüminyum matrisli yeni nesil kompozitler,” Mühendis ve Makina, vol. 56, no. 669, pp. 36–47, 2015. [38] J. P. Holman, “Experimental Methods for Engineers,” McGraw-Hill, 5th Edition, 1989.
There are 2 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Mustafa Pehlivan 0000-0002-7469-6528

Mustafa Özbey 0000-0002-3294-1943

Publication Date July 31, 2022
Published in Issue Year 2022

Cite

APA Pehlivan, M., & Özbey, M. (2022). Hidrofobik Yüzeylerin Türbülanslı Boru Akımlarında Sürtünme Kayıplarına Etkisinin Deneysel İncelenmesi. Duzce University Journal of Science and Technology, 10(3), 1383-1397. https://doi.org/10.29130/dubited.873308
AMA Pehlivan M, Özbey M. Hidrofobik Yüzeylerin Türbülanslı Boru Akımlarında Sürtünme Kayıplarına Etkisinin Deneysel İncelenmesi. DÜBİTED. July 2022;10(3):1383-1397. doi:10.29130/dubited.873308
Chicago Pehlivan, Mustafa, and Mustafa Özbey. “Hidrofobik Yüzeylerin Türbülanslı Boru Akımlarında Sürtünme Kayıplarına Etkisinin Deneysel İncelenmesi”. Duzce University Journal of Science and Technology 10, no. 3 (July 2022): 1383-97. https://doi.org/10.29130/dubited.873308.
EndNote Pehlivan M, Özbey M (July 1, 2022) Hidrofobik Yüzeylerin Türbülanslı Boru Akımlarında Sürtünme Kayıplarına Etkisinin Deneysel İncelenmesi. Duzce University Journal of Science and Technology 10 3 1383–1397.
IEEE M. Pehlivan and M. Özbey, “Hidrofobik Yüzeylerin Türbülanslı Boru Akımlarında Sürtünme Kayıplarına Etkisinin Deneysel İncelenmesi”, DÜBİTED, vol. 10, no. 3, pp. 1383–1397, 2022, doi: 10.29130/dubited.873308.
ISNAD Pehlivan, Mustafa - Özbey, Mustafa. “Hidrofobik Yüzeylerin Türbülanslı Boru Akımlarında Sürtünme Kayıplarına Etkisinin Deneysel İncelenmesi”. Duzce University Journal of Science and Technology 10/3 (July 2022), 1383-1397. https://doi.org/10.29130/dubited.873308.
JAMA Pehlivan M, Özbey M. Hidrofobik Yüzeylerin Türbülanslı Boru Akımlarında Sürtünme Kayıplarına Etkisinin Deneysel İncelenmesi. DÜBİTED. 2022;10:1383–1397.
MLA Pehlivan, Mustafa and Mustafa Özbey. “Hidrofobik Yüzeylerin Türbülanslı Boru Akımlarında Sürtünme Kayıplarına Etkisinin Deneysel İncelenmesi”. Duzce University Journal of Science and Technology, vol. 10, no. 3, 2022, pp. 1383-97, doi:10.29130/dubited.873308.
Vancouver Pehlivan M, Özbey M. Hidrofobik Yüzeylerin Türbülanslı Boru Akımlarında Sürtünme Kayıplarına Etkisinin Deneysel İncelenmesi. DÜBİTED. 2022;10(3):1383-97.