Research Article
BibTex RIS Cite

Metal-Ion Assisted Imprinted Hydrogels For Recognition Of Lysozyme

Year 2021, , 545 - 555, 29.05.2021
https://doi.org/10.29130/dubited.891731

Abstract

Hydrogels exhibiting selectivity towards lysozyme were produced by metal-ion assisted-imprinting technology. A metal-chelate monomer N-vinyl-2-pyrrolidone is pre-assembled with the template molecule via assistance of Cu(II) ions and co-polymerized with 2-hydroxyethyl methacrylate. Lysozyme imprinted hydrogels were characterized by Fourier transform infrared spectroscopy, swelling tests, scanning electron microscopy. The conditions for the optimum adsorption capacity of the hydrogels towards lysozyme were found out by investigating the effects of initial concentration of lysozyme, medium pH, contact time and ionic strength. Maximum adsorption of lysozyme on poly(hydroxyethyl methacrylate-co-N-vinyl pyrrolidone) hydrogel was found to be 12.25 mg/g for 1.0 mg/mL initial concentration of lysozyme at 25.0°C with an optimal pH of 7.0. After ten adsorption-desorption cycles with the same hydrogel, the lysozyme adsorption capacity decreased by 13.80%.

References

  • [1] A. Panda, A. Shettar, P. K. Sharma, M. A. Repka, and S. N. Murthy, “Development of lysozyme loaded microneedles for dermal applications,” Int. J. Pharm., vol. 593, pp. 120104, 2021.
  • [2] G. Sener, E. Ozgur, E. Yilmaz, L. Uzun, R. Say, and A. Denizli, “Quartz crystal microbalance based nanosensor for lysozyme detection with lysozyme imprinted nanoparticles,” Biosens. Bioelectron., vol. 26, no. 2, pp. 815–821, 2010.
  • [3] R. Ghosh, S. S. Silva, and Z. Cui, “Lysozyme separation by hollow-fibre ultrafiltration,” Biochem. Eng. J., vol. 6, no. 1, pp. 19–24, 2000.
  • [4] A. S. Hoffman, “Hydrogels for biomedical applications,” Advanced Drug Delivery Reviews, vol. 64, no. SUPPL. Elsevier, pp. 18–23, 2012.
  • [5] X. Nie, A. Adalati, J. Du, H. Liu, S. Xu, and J. Wang, “Preparation of amphoteric nanocomposite hydrogels based on exfoliation of montmorillonite via in-situ intercalative polymerization of hydrophilic cationic and anionic monomers,” Appl. Clay Sci., vol. 97–98, pp. 132–137, 2014.
  • [6] W. Wang, R. Narain, and H. Zeng, “Hydrogels,” in Polymer Science and Nanotechnology, Elsevier, 2020, pp. 203–244.
  • [7] E. Caló and V. V. Khutoryanskiy, “Biomedical applications of hydrogels: A review of patents and commercial products,” European Polymer Journal, vol. 65. Elsevier Ltd, pp. 252–267, 2015.
  • [8] M. Liu et al., “Injectable hydrogels for cartilage and bone tissue engineering,” Bone Research, vol. 5, no. 1. Sichuan University, pp. 1–20, 2017.
  • [9] B. Özkahraman, E. Tamahkar, N. İdil, A. Kılıç Suloglu, and I. Perçin, “Evaluation of hyaluronic acid nanoparticle embedded chitosan–gelatin hydrogels for antibiotic release,” Drug Dev. Res., p. ddr.21747, 2020.
  • [10] G. Sharma et al., “Applications of nanocomposite hydrogels for biomedical engineering and environmental protection,” Environmental Chemistry Letters, vol. 16, no. 1. Springer Verlag, pp. 113–146, 2018.
  • [11] Y. Saylan and A. Denizli, “Molecularly Imprinted Polymer-Based Microfluidic Systems for Point-of-Care Applications,” Micromachines, vol. 10, no. 11, p. 766, 2019.
  • [12] K. Şarkaya, S. Aşir, I. Göktürk, F. Yilmaz, H. Yavuz, and A. Denizli, “Electrochromatographic separation of hydrophobic amino acid enantiomers by molecularly imprinted capillary columns,” Process Biochem., vol. 92, pp. 69–77, 2020.
  • [13] C. Armutcu, E. Özgür, M. E. Çorman, and L. Uzun, “Interface imprinted polymers with well-oriented recognition sites for selective purification of hemoglobin,” Colloids Surfaces B Biointerfaces, vol. 197, p. 111435, 2021.
  • [14] L. Chen, S. Xu, and J. Li, “Recent advances in molecular imprinting technology: current status, challenges and highlighted applications,” Chem. Soc. Rev., vol. 40, no. 5, p. 2922, 2011.
  • [15] S. A. Zaidi, “Latest trends in molecular imprinted polymer based drug delivery systems,” RSC Advances, vol. 6, no. 91. Royal Society of Chemistry, pp. 88807–88819, 2016.
  • [16] Q. Zhang, L. Zhang, P. Wang, and S. Du, “Coordinate Bonding Strategy for Molecularly Imprinted Hydrogels: Toward pH-Responsive Doxorubicin Delivery,” J. Pharm. Sci., vol. 103, no. 2, pp. 643–651, 2014.
  • [17] H. Zheng, L. Xing, Y. Cao, and S. Che, “Coordination bonding based pH-responsive drug delivery systems,” Coordination Chemistry Reviews, vol. 257, no. 11–12. Elsevier, pp. 1933–1944, 2013.
  • [18] K. Çetin and A. Denizli, “5-Fluorouracil delivery from metal-ion mediated molecularly imprinted cryogel discs,” Colloids Surfaces B Biointerfaces, vol. 126, pp. 401–406, 2015.
  • [19] S. Z. Bajwa and P. A. Lieberzeit, “Recognition principle of Cu2+-imprinted polymers - Assessing interactions by combined spectroscopic and mass-sensitive measurements,” Sensors Actuators, B Chem., vol. 207, no. PB, pp. 976–980, 2015.
  • [20] X. Yang, L. Huang, L. Zhou, H. Xu, and Z. Yi, “A photochromic copolymer hydrogel contact lens: From synthesis to application,” Int. J. Polym. Sci., vol. 2016, 2016.
  • [21] L. Brannon-Peppas and N. A. Peppas, “Dynamic and equilibrium swelling behaviour of pH-sensitive hydrogels containing 2-hydroxyethyl methacrylate,” Biomaterials, vol. 11, no. 9, pp. 635–644, 1990.
  • [22] O. Ozay, P. Ilgin, H. Ozay, Z. Gungor, B. Yilmaz, and M. R. Kıvanç, “The preparation of various shapes and porosities of hydroxyethyl starch/p(HEMA-co-NVP) IPN hydrogels as programmable carrier for drug delivery,” J. Macromol. Sci. Part A, vol. 57, no. 5, pp. 379–387, 2020.
  • [23] N. Bereli, M. Andaç, G. Baydemir, R. Say, I. Y. Galaev, and A. Denizli, “Protein recognition via ion-coordinated molecularly imprinted supermacroporous cryogels,” J. Chromatogr. A, vol. 1190, no. 1, pp. 18–26, 2008.
  • [24] S. Akgöl, S. Özkara, L. Uzun, F. Yılmaz, and A. Denizli, “Pseudospecific magnetic affinity beads for immunoglobulin-G depletion from human serum,” J. Appl. Polym. Sci., vol. 106, no. 4, pp. 2405–2412, 2007.
  • [25] W. Y. Chen, C. F. Wu, and C. C. Liu, “Interactions of imidazole and proteins with immobilized Cu(II) ions: Effects of structure, salt concentration, and pH in affinity and binding capacity,” J. Colloid Interface Sci., vol. 180, no. 1, pp. 135–143, 1996.

Lizozim Tanımada Metal İyon Destekli Baskılanmış Hidrojeller

Year 2021, , 545 - 555, 29.05.2021
https://doi.org/10.29130/dubited.891731

Abstract

Lizozime karşı seçicilik sergileyen hidrojeller, metal iyon aracılı baskılama teknolojisi ile üretildi. Metal şelat monomeri olarak N-vinil-2-pirolidon, Cu(II) iyonlarının yardımıyla kalıp molekül ile önceden kompleksleştrildi ve 2-hidroksietil metakrilat ile birlikte polimerleştirildi. Lizozim baskılanmış hidrojeller, Fourier dönüşümü kızılötesi spektroskopisi, şişme testleri, taramalı elektron mikroskobu ile karakterize edildi. Hidrojellerin lizozime karşı optimum adsorpsiyon kapasitesi için en uygun koşullar, lizozimin başlangıç derişiminin, ortam pH'sının, adsorpsiyon süresinin ve iyonik kuvvetin adsorpsiyon kapasitesine etkileri araştırılarak bulunmuştur. Lizozimin poli(hidroksietil metakrilat-ko-N-vinil pirolidon) hidrojel üzerinde maksimum adsorpsiyonu, 25.0°C'de 1.0 mg/mL başlangıç lizozim derişimi optimum pH değeri (7.0) için 12.25 mg/g olarak bulunmuştur. Aynı hidrojel ile on adsorpsiyon-desorpsiyon döngüsünden sonra, lizozim adsorpsiyon kapasitesi %13.80 azalmıştır.

References

  • [1] A. Panda, A. Shettar, P. K. Sharma, M. A. Repka, and S. N. Murthy, “Development of lysozyme loaded microneedles for dermal applications,” Int. J. Pharm., vol. 593, pp. 120104, 2021.
  • [2] G. Sener, E. Ozgur, E. Yilmaz, L. Uzun, R. Say, and A. Denizli, “Quartz crystal microbalance based nanosensor for lysozyme detection with lysozyme imprinted nanoparticles,” Biosens. Bioelectron., vol. 26, no. 2, pp. 815–821, 2010.
  • [3] R. Ghosh, S. S. Silva, and Z. Cui, “Lysozyme separation by hollow-fibre ultrafiltration,” Biochem. Eng. J., vol. 6, no. 1, pp. 19–24, 2000.
  • [4] A. S. Hoffman, “Hydrogels for biomedical applications,” Advanced Drug Delivery Reviews, vol. 64, no. SUPPL. Elsevier, pp. 18–23, 2012.
  • [5] X. Nie, A. Adalati, J. Du, H. Liu, S. Xu, and J. Wang, “Preparation of amphoteric nanocomposite hydrogels based on exfoliation of montmorillonite via in-situ intercalative polymerization of hydrophilic cationic and anionic monomers,” Appl. Clay Sci., vol. 97–98, pp. 132–137, 2014.
  • [6] W. Wang, R. Narain, and H. Zeng, “Hydrogels,” in Polymer Science and Nanotechnology, Elsevier, 2020, pp. 203–244.
  • [7] E. Caló and V. V. Khutoryanskiy, “Biomedical applications of hydrogels: A review of patents and commercial products,” European Polymer Journal, vol. 65. Elsevier Ltd, pp. 252–267, 2015.
  • [8] M. Liu et al., “Injectable hydrogels for cartilage and bone tissue engineering,” Bone Research, vol. 5, no. 1. Sichuan University, pp. 1–20, 2017.
  • [9] B. Özkahraman, E. Tamahkar, N. İdil, A. Kılıç Suloglu, and I. Perçin, “Evaluation of hyaluronic acid nanoparticle embedded chitosan–gelatin hydrogels for antibiotic release,” Drug Dev. Res., p. ddr.21747, 2020.
  • [10] G. Sharma et al., “Applications of nanocomposite hydrogels for biomedical engineering and environmental protection,” Environmental Chemistry Letters, vol. 16, no. 1. Springer Verlag, pp. 113–146, 2018.
  • [11] Y. Saylan and A. Denizli, “Molecularly Imprinted Polymer-Based Microfluidic Systems for Point-of-Care Applications,” Micromachines, vol. 10, no. 11, p. 766, 2019.
  • [12] K. Şarkaya, S. Aşir, I. Göktürk, F. Yilmaz, H. Yavuz, and A. Denizli, “Electrochromatographic separation of hydrophobic amino acid enantiomers by molecularly imprinted capillary columns,” Process Biochem., vol. 92, pp. 69–77, 2020.
  • [13] C. Armutcu, E. Özgür, M. E. Çorman, and L. Uzun, “Interface imprinted polymers with well-oriented recognition sites for selective purification of hemoglobin,” Colloids Surfaces B Biointerfaces, vol. 197, p. 111435, 2021.
  • [14] L. Chen, S. Xu, and J. Li, “Recent advances in molecular imprinting technology: current status, challenges and highlighted applications,” Chem. Soc. Rev., vol. 40, no. 5, p. 2922, 2011.
  • [15] S. A. Zaidi, “Latest trends in molecular imprinted polymer based drug delivery systems,” RSC Advances, vol. 6, no. 91. Royal Society of Chemistry, pp. 88807–88819, 2016.
  • [16] Q. Zhang, L. Zhang, P. Wang, and S. Du, “Coordinate Bonding Strategy for Molecularly Imprinted Hydrogels: Toward pH-Responsive Doxorubicin Delivery,” J. Pharm. Sci., vol. 103, no. 2, pp. 643–651, 2014.
  • [17] H. Zheng, L. Xing, Y. Cao, and S. Che, “Coordination bonding based pH-responsive drug delivery systems,” Coordination Chemistry Reviews, vol. 257, no. 11–12. Elsevier, pp. 1933–1944, 2013.
  • [18] K. Çetin and A. Denizli, “5-Fluorouracil delivery from metal-ion mediated molecularly imprinted cryogel discs,” Colloids Surfaces B Biointerfaces, vol. 126, pp. 401–406, 2015.
  • [19] S. Z. Bajwa and P. A. Lieberzeit, “Recognition principle of Cu2+-imprinted polymers - Assessing interactions by combined spectroscopic and mass-sensitive measurements,” Sensors Actuators, B Chem., vol. 207, no. PB, pp. 976–980, 2015.
  • [20] X. Yang, L. Huang, L. Zhou, H. Xu, and Z. Yi, “A photochromic copolymer hydrogel contact lens: From synthesis to application,” Int. J. Polym. Sci., vol. 2016, 2016.
  • [21] L. Brannon-Peppas and N. A. Peppas, “Dynamic and equilibrium swelling behaviour of pH-sensitive hydrogels containing 2-hydroxyethyl methacrylate,” Biomaterials, vol. 11, no. 9, pp. 635–644, 1990.
  • [22] O. Ozay, P. Ilgin, H. Ozay, Z. Gungor, B. Yilmaz, and M. R. Kıvanç, “The preparation of various shapes and porosities of hydroxyethyl starch/p(HEMA-co-NVP) IPN hydrogels as programmable carrier for drug delivery,” J. Macromol. Sci. Part A, vol. 57, no. 5, pp. 379–387, 2020.
  • [23] N. Bereli, M. Andaç, G. Baydemir, R. Say, I. Y. Galaev, and A. Denizli, “Protein recognition via ion-coordinated molecularly imprinted supermacroporous cryogels,” J. Chromatogr. A, vol. 1190, no. 1, pp. 18–26, 2008.
  • [24] S. Akgöl, S. Özkara, L. Uzun, F. Yılmaz, and A. Denizli, “Pseudospecific magnetic affinity beads for immunoglobulin-G depletion from human serum,” J. Appl. Polym. Sci., vol. 106, no. 4, pp. 2405–2412, 2007.
  • [25] W. Y. Chen, C. F. Wu, and C. C. Liu, “Interactions of imidazole and proteins with immobilized Cu(II) ions: Effects of structure, salt concentration, and pH in affinity and binding capacity,” J. Colloid Interface Sci., vol. 180, no. 1, pp. 135–143, 1996.
There are 25 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Kemal Çetin 0000-0002-7393-7377

Publication Date May 29, 2021
Published in Issue Year 2021

Cite

APA Çetin, K. (2021). Metal-Ion Assisted Imprinted Hydrogels For Recognition Of Lysozyme. Duzce University Journal of Science and Technology, 9(3), 545-555. https://doi.org/10.29130/dubited.891731
AMA Çetin K. Metal-Ion Assisted Imprinted Hydrogels For Recognition Of Lysozyme. DÜBİTED. May 2021;9(3):545-555. doi:10.29130/dubited.891731
Chicago Çetin, Kemal. “Metal-Ion Assisted Imprinted Hydrogels For Recognition Of Lysozyme”. Duzce University Journal of Science and Technology 9, no. 3 (May 2021): 545-55. https://doi.org/10.29130/dubited.891731.
EndNote Çetin K (May 1, 2021) Metal-Ion Assisted Imprinted Hydrogels For Recognition Of Lysozyme. Duzce University Journal of Science and Technology 9 3 545–555.
IEEE K. Çetin, “Metal-Ion Assisted Imprinted Hydrogels For Recognition Of Lysozyme”, DÜBİTED, vol. 9, no. 3, pp. 545–555, 2021, doi: 10.29130/dubited.891731.
ISNAD Çetin, Kemal. “Metal-Ion Assisted Imprinted Hydrogels For Recognition Of Lysozyme”. Duzce University Journal of Science and Technology 9/3 (May 2021), 545-555. https://doi.org/10.29130/dubited.891731.
JAMA Çetin K. Metal-Ion Assisted Imprinted Hydrogels For Recognition Of Lysozyme. DÜBİTED. 2021;9:545–555.
MLA Çetin, Kemal. “Metal-Ion Assisted Imprinted Hydrogels For Recognition Of Lysozyme”. Duzce University Journal of Science and Technology, vol. 9, no. 3, 2021, pp. 545-5, doi:10.29130/dubited.891731.
Vancouver Çetin K. Metal-Ion Assisted Imprinted Hydrogels For Recognition Of Lysozyme. DÜBİTED. 2021;9(3):545-5.