Research Article
BibTex RIS Cite

Current 3 Dimensional Printing Technologies Used in Scaffold Design in Tissue Engineering

Year 2017, Volume: 5 Issue: 2, 548 - 564, 31.07.2017

Abstract

In this study, current 3 dimensional
printing technologies have been critically reviewed and most suitable printer
technologies for tissue scaffold building used in bioprinting has been
identified. The specifications of 3 dimensional printers appropriate for
biomaterials used in building artificial tissue structures include the
bioplotter’s ability to provide porosity, structural strength, smoothness and
biodegradability conditions required for tissue engineering. The findings
outlined in this paper can be useful to both academic and industry followers
interested in bioprinting applications such as Scaffold Design and
manufacturing by 3 Dimensional Printer Technologies.

References

  • Bajaj, P., et al., 3D Biofabrication Strategies for Tissue Engineering and Regenerative Medicine. Annual Review of Biomedical Engineering, 2014. 16(1): p. 247-276.
  • Xiaohong, W., et al., 3D Bioprinting Technologies for Hard Tissue and Organ Engineering. Materials (1996-1944), 2016. 9(10): p. 1-23.
  • Melchels, F.P.W., et al., Additive manufacturing of tissues and organs. Progress in Polymer Science, 2012. 37(8): p. 1079-1104.
  • O'Brien, F.J., Biomaterials and scaffolds for tissue engineering. Materials Today, 2011. 14(3): p. 88-95.
  • Hutmacher, D.W., Scaffolds in tissue engineering bone and cartilage. Biomaterials, 2000. 21(24): p. 2529-2543.
  • Leckart, S. How 3-D Printing Body Parts Will Revolutionize Medicine. Popular Science, 2013.
  • Chen, A.A., et al., 3-D Fabrication Technology for Tissue Engineering. BioMEMS and Biomedical Nanotechnology, 2007: p. 23-38.
  • Gu, B.K., et al., 3-dimensional bioprinting for tissue engineering applications. Biomater Res, 2016. 20: p. 12.
  • Abdelaal, O.A. and S.M. Darwish, Fabrication of Tissue Engineering Scaffolds Using Rapid Prototyping Techniques. International Journal of Mechanical, Aerospace, Industrial, Mechatronic and Manufacturing Engineering, 2011: p. 2317-2325.
  • Sun, W., et al., Computer Aided Tissue Engineering: Overview, Scope and Challenges. Biotechnology Applied Biochemistry, 2004: p. 29-47.
  • Sing, S.L., et al., Laser and electron-beam powder-bed additive manufacturing of metallic implants: A review on processes, materials and designs. Journal of Orthopaedic Research, 2016. 34(3): p. 369 - 385.
  • Murphy, S.V. and A. Atala, 3D bioprinting of tissues and organs. Nat Biotechnol, 2014. 32(8): p. 773-85.
  • Tasoglu, S. and U. Demirci, Bioprinting for stem cell research. Trends Biotechnol, 2013. 31(1): p. 10-9.
  • Kim, J.D., et al., Piezoelectric inkjet printing of polymers: Stem cell patterning on polymer substrates. Polymer, 2010. 51(10): p. 2147-2154.
  • Fang, Y., et al., Rapid generation of multiplexed cell cocultures using acoustic droplet ejection followed by aqueous two-phase exclusion patterning. Tissue Eng Part C Methods, 2012. 18(9): p. 647-57.
  • Miranda, P., et al. Sintering and robocasting of beta-tricalcium phosphate scaffolds for orthopaedic applications. 2005 [cited 2016 October]; Available from: http://escholarship.org/uc/item/7b08w22z.
  • Selimis, A. and M. Farsari, Laser-Based 3D Printing and Surface Texturing. 2016: p. 111-136.

Doku Mühendisliğinde Doku İskelesi Tasarımında Kullanılan Güncel 3 Boyutlu Yazdırma Teknolojileri

Year 2017, Volume: 5 Issue: 2, 548 - 564, 31.07.2017

Abstract

Bu çalışmada günümüzde
kullanılan 3 boyutlu yazdırma teknolojileri incelenmiş ve biyoyazdırma için
kullanılan yazdırma teknolojileri arasında en uygun doku iskelesi inşa edenler
tanımlanmıştır. Araştırma kapsamında üretilmesi hedeflenen doku yapısına göre
kullanılacak olan biyomalzemelere uygun 3 boyutlu yazıcıların özellikleri, 3
boyutlu yazıcıların doku mühendisliği için gerekli olan gözeneklilik, yapısal
dayanım, pürüzsüzlük, biyoçözünürlük kalitesini sağlama koşullarına yer
verilmiştir. Bu araştırmada özetlenmiş olan bulgular, Doku İskelesi Tasarımı ve
3 Boyutlu Yazdırma Teknolojileri gibi biyoyazdırma uygulamaları ile ilgilenen
akademik ve sanayi çevre için yararlı olacaktır.

References

  • Bajaj, P., et al., 3D Biofabrication Strategies for Tissue Engineering and Regenerative Medicine. Annual Review of Biomedical Engineering, 2014. 16(1): p. 247-276.
  • Xiaohong, W., et al., 3D Bioprinting Technologies for Hard Tissue and Organ Engineering. Materials (1996-1944), 2016. 9(10): p. 1-23.
  • Melchels, F.P.W., et al., Additive manufacturing of tissues and organs. Progress in Polymer Science, 2012. 37(8): p. 1079-1104.
  • O'Brien, F.J., Biomaterials and scaffolds for tissue engineering. Materials Today, 2011. 14(3): p. 88-95.
  • Hutmacher, D.W., Scaffolds in tissue engineering bone and cartilage. Biomaterials, 2000. 21(24): p. 2529-2543.
  • Leckart, S. How 3-D Printing Body Parts Will Revolutionize Medicine. Popular Science, 2013.
  • Chen, A.A., et al., 3-D Fabrication Technology for Tissue Engineering. BioMEMS and Biomedical Nanotechnology, 2007: p. 23-38.
  • Gu, B.K., et al., 3-dimensional bioprinting for tissue engineering applications. Biomater Res, 2016. 20: p. 12.
  • Abdelaal, O.A. and S.M. Darwish, Fabrication of Tissue Engineering Scaffolds Using Rapid Prototyping Techniques. International Journal of Mechanical, Aerospace, Industrial, Mechatronic and Manufacturing Engineering, 2011: p. 2317-2325.
  • Sun, W., et al., Computer Aided Tissue Engineering: Overview, Scope and Challenges. Biotechnology Applied Biochemistry, 2004: p. 29-47.
  • Sing, S.L., et al., Laser and electron-beam powder-bed additive manufacturing of metallic implants: A review on processes, materials and designs. Journal of Orthopaedic Research, 2016. 34(3): p. 369 - 385.
  • Murphy, S.V. and A. Atala, 3D bioprinting of tissues and organs. Nat Biotechnol, 2014. 32(8): p. 773-85.
  • Tasoglu, S. and U. Demirci, Bioprinting for stem cell research. Trends Biotechnol, 2013. 31(1): p. 10-9.
  • Kim, J.D., et al., Piezoelectric inkjet printing of polymers: Stem cell patterning on polymer substrates. Polymer, 2010. 51(10): p. 2147-2154.
  • Fang, Y., et al., Rapid generation of multiplexed cell cocultures using acoustic droplet ejection followed by aqueous two-phase exclusion patterning. Tissue Eng Part C Methods, 2012. 18(9): p. 647-57.
  • Miranda, P., et al. Sintering and robocasting of beta-tricalcium phosphate scaffolds for orthopaedic applications. 2005 [cited 2016 October]; Available from: http://escholarship.org/uc/item/7b08w22z.
  • Selimis, A. and M. Farsari, Laser-Based 3D Printing and Surface Texturing. 2016: p. 111-136.
There are 17 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Beka Çotur

H.kürşad Sezer

Publication Date July 31, 2017
Published in Issue Year 2017 Volume: 5 Issue: 2

Cite

APA Çotur, B., & Sezer, H. (2017). Current 3 Dimensional Printing Technologies Used in Scaffold Design in Tissue Engineering. Duzce University Journal of Science and Technology, 5(2), 548-564.
AMA Çotur B, Sezer H. Current 3 Dimensional Printing Technologies Used in Scaffold Design in Tissue Engineering. DUBİTED. July 2017;5(2):548-564.
Chicago Çotur, Beka, and H.kürşad Sezer. “Current 3 Dimensional Printing Technologies Used in Scaffold Design in Tissue Engineering”. Duzce University Journal of Science and Technology 5, no. 2 (July 2017): 548-64.
EndNote Çotur B, Sezer H (July 1, 2017) Current 3 Dimensional Printing Technologies Used in Scaffold Design in Tissue Engineering. Duzce University Journal of Science and Technology 5 2 548–564.
IEEE B. Çotur and H. Sezer, “Current 3 Dimensional Printing Technologies Used in Scaffold Design in Tissue Engineering”, DUBİTED, vol. 5, no. 2, pp. 548–564, 2017.
ISNAD Çotur, Beka - Sezer, H.kürşad. “Current 3 Dimensional Printing Technologies Used in Scaffold Design in Tissue Engineering”. Duzce University Journal of Science and Technology 5/2 (July 2017), 548-564.
JAMA Çotur B, Sezer H. Current 3 Dimensional Printing Technologies Used in Scaffold Design in Tissue Engineering. DUBİTED. 2017;5:548–564.
MLA Çotur, Beka and H.kürşad Sezer. “Current 3 Dimensional Printing Technologies Used in Scaffold Design in Tissue Engineering”. Duzce University Journal of Science and Technology, vol. 5, no. 2, 2017, pp. 548-64.
Vancouver Çotur B, Sezer H. Current 3 Dimensional Printing Technologies Used in Scaffold Design in Tissue Engineering. DUBİTED. 2017;5(2):548-64.