Review
BibTex RIS Cite

Metalik Biyo-Uyumlu Stentlerin Gelişim Süreci

Year 2018, Volume: 6 Issue: 1, 328 - 348, 31.01.2018
https://doi.org/10.29130/dubited.319891

Abstract

Stent,
çeşitli nedenlerle engellenen damarlar için yapay bir koridor açmak, bu bölgede
destek yapısı oluşturarak tıkanıklığı gidermek amacıyla kullanılan elemanlara
verilen isimdir. Polimerik ve metalik içerikli biyo-uyumlu malzemelerin
geliştirilmesi ve yaygınlaşması, stent uygulamalarındaki başarının artmasına
neden olmaktadır. Günümüzde nitinolden imal edilen metal stentler yaygın olarak
kullanılmakla birlikte, biyo-bozunur metal stentler konusunda araştırmalar
devam etmektedir. Bilindiği üzere stentin görevi, implantasyondan sonraki 6-12
aylık evreden sonra tamamlanmakta ve bu süreden sonra herhangibir işlevi
kalmamaktadır. Ancak kalıcı stentler bu süre tamamlandıktan sonra da vücut
içerisinde kalmakta ve zaman zaman komplikasyonlara neden olmaktadır. Bu amaca
yönelik aday malzemelerin, stent üretiminde kabul görmüş 316L paslanmaz
çeliklerin mekanik özelliklerine sahip olması, biyo-bozunur olması ve
kendisinin ve bozunan ürünlerin toksik etkiye sahip olmaması beklenmektedir. Bu
makale, son 15 yılda biyo-bozunur stentler için metalik içeriğe sahip
materyallerin tasarımında ve değerlendirilmesinde yapılan en son yenilikleri
gözden geçirmektedir.

References

  • Bhat, S.V., “Biomaterials”, Kluwer Academic Publishers: Boston, MT, USA, 2002, p. 265.
  • Park, J.B., Lakes, R.S., “Biomaterials an Introduction”, 3rd ed., Springer SpringerLink (Service en ligne): New York, NY, USA, 2007, p. 561.
  • Witte, F. “The history of biodegradable magnesium implants: a review”, Acta Biomater., 6, 2010, 1680–1692.
  • Webster, T.J. “Nanotechnology Enabled in Situ Sensors for Monitoring Health”, Springer Verlag: New York, NY, USA, 2010.
  • Schulz, M.J.; Shanov, V.N.; Yun, Y., “Nanomedicine Design of Particles, Sensors, Motors, Implants, Robots, and Devices”, Artech House: Boston, MT, USA, 2009.
  • Moore, J.E.; Zouridakis, G., “Biomedical Technology and Devices Handbook”, CRC Press: Boca Raton, FL, USA, 2004.
  • Chan, A.W.; Moliterno, D.J., “In-stent restenosis: update on intracoronary radiotherapy”, Cleve. Clin. J. Med. 68, 2001, 796–803.
  • Saito, S., “New horizon of bioabsorbable stent”, Catheter. Cardiovasc. Interv. 66, 2005, 595–596.
  • Erne, P.; Schier, M.; Resink, T.J., “The road to bioabsorbable stents: reaching clinical reality?” Cardiovasc. Interv. Radiol., 29, 2006, 11–16.
  • Peuster, M.; Wohlsein, P.; Brugmann, M.; Ehlerding, M.; Seidler, K.; Fink, C.; Brauer, H.; Fischer, A.; Hausdorf, G., “A novel approach to temporary stenting: degradable cardiovascular stents produced from corrodible metal-results 6–18 months after implantation into New Zealand white rabbits”, Heart, 86, 2001, 563–569.
  • Colombo, A., Karvouni, E., “Biodegradable stents: ―fulfilling the mission and stepping away”, Circulation, 102, 2000, 371–373.
  • Hermawan, H., Dubé, D., Mantovani, D., “Developments in metallic biodegradable stents”, Acta Biomaterialia, 6, 2010, 1693–1697.
  • Heublein B., Rohde R., Kaese V., Niemeyer M., Hartung W., Haverich A., “Biocorrosion of magnesium alloys: a new principle in cardiovascular implant technology?”, Heart, 89: 2003, 651–6.
  • Erbel R., Di Mario C., Bartunek J., Bonnier J., de Bruyne B., Eberli FR., et al., “Temporary scaffolding of coronary arteries with bioabsorbable magnesium stents: a prospective, non-randomised multicentre trial”, Lancet, 369, 2007, 1869–75.
  • Ormiston JA, Serruys PW, Regar E, Dudek D, Thuesen L, Webster MWI, et al., “A bioabsorbable everolimus-eluting coronary stent system for patients with single de-novo coronary artery lesions (ABSORB): a prospective open-label trial”, Lancet 371, 2008, 899–907.
  • Bosiers M, Peeters P, D’Archambeau O, Hendriks J, Pilger E, Duber C, et al., “AMS INSIGHT – absorbable metal stent implantation for treatment of below-theknee critical limb ischemia: 6-month analysis”, Cardiovasc Intervent Radiol, 32, 2009, 424–35.
  • Zartner P, Cesnjevar R, Singer H, Weyand M., “First successful implantation of a biodegradable metal stent into the left pulmonary artery of a preterm baby”, Catheter Cardiovasc Interv, 66, 2005, 590–4.
  • Peeters P, Bosiers M, Verbist J, Deloose K, Heublein B., “Preliminary results after application of absorbable metal stents in patients with critical limb ischemia”, J Endovasc Ther, 12: 2005,1–5.
  • Hermawan, H., Mantovani, D., “Process of prototyping coronary stents from biodegradable Fe–Mn alloys”, Acta Biomaterialia, 9, 2013, 8585–8592.
  • Moravej, M., and Mantovani, D., “Biodegradable Metals for Cardiovascular Stent Application: Interests and New Opportunities”, Int. J. Mol. Sci., 12, 4250-4270, 2011.
  • Mani, G., Feldman, M.D., Patel, D., Agrawal, C.M., “Coronary stents: A materials perspective”, Biomaterials, 28, 2007, 1689–1710.
  • Peuster, M., Hesse, C., Schloo, T., Fink, C., Beerbaum, P., von Schnakenburg, C., “Long-term biocompatibility of a corrodible peripheral iron stent in the porcine descending aorta”, Biomaterials, 27, 2006, 4955–4962.
  • Waksman, R., Pakala, R., Baffour, R., Seabron, R., Hellinga, D., Tio, F.O., “Short-term effects of biocorrodible iron stents in porcine coronary arteries”, J. Interv. Cardiol, 21, 2008, 15–20.
  • Hermawan, H., Dube, D., Mantovani, D., “Development of degradable Fe-35Mn alloy for biomedical application”, Adv. Mater. Res., 15, 2007, 107–112.
  • Hermawan, H., Alamdari, H., Mantovani, D., Dube, D., “Iron-manganese: new class of metallic degradable biomaterials prepared by powder metallurgy”, Powder Metall, 51, 2008, 38–45.
  • Hermawan, H., Purnama, A., Dube, D., Couet, J., Mantovani, D., “Fe-Mn alloys for metallic biodegradable stents: Degradation and cell viability studies”, Acta Biomater, 6, 2010, 1852–1860.
  • Hermawan, H., Dube, D., Mantovani, D., “Degradable metallic biomaterials: design and development of Fe-Mn alloys for stents”, J. Biomed. Mater. Res. A, 93, 2010, 1–11.
  • Schinhammer, M., Hanzi, A.C., Loffler, J.F., Uggowitzer, P.J., “Design strategy for biodegradable Fe-based alloys for medical applications”, Acta Biomater, 6, 2010, 1705–1713.
  • Liu, B., Zheng, Y., “Effects of alloying elements (Mn, Co, Al, W, Sn, B, C and S) on biodegradability and in vitro biocompatibility of pure iron”, Acta Biomater, 7, 2010, 1407–1420.
  • Liu, B., Zheng, Y., Ruan, L., “In vitro investigation of Fe30Mn6Si shape memory alloy as potential biodegradable metallic material”, Mater. Lett, 65, 2010, 540–543.
  • ASTM F756-08, “Standard Practice for Assessment of Hemolytic Properties of Materials”, ASTM International: West Conshohocken, PA, USA, 2008, doi: 10.1520/F0756-08.
  • Moravej, M., Prima, F., Fiset, M., Mantovani, D., “Electroformed iron as new biomaterial for degradable stents: Development process and structure-properties relationship”, Acta Biomater, 6, 2010, 1726–1735.
  • Moravej, M., Purnama, A., Fiset, M., Couet, J., Mantovani, D., “Electroformed pure iron as a new biomaterial for degradable stents: In vitro degradation and preliminary cell viability studies”, Acta Biomater, 6, 2010, 1843–1851.
  • Moravej, M., Amira, S., Prima, F., Rahem, A., Fiset, M., Mantovani, D., “Effect of electrodeposition current density on the microstructure and the degradation of electroformed iron for degradable stents”, Mater. Sci. Eng., B 2011.
  • Nie, F., Zheng, Y., Wei, S., Hu, C., Yang, G., “In vitro corrosion, cytotoxicity and hemocompatibility of bulk nanocrystalline pure iron”, Biomed. Mater, 5, 065015, 2010.
  • J. Cheng, T. Huang, Y. F. Zheng, “Microstructure, mechanical property, biodegradation behavior, and biocompatibility of biodegradable Fe–Fe2O3 composites”, Journal of Biomedical Materıals Research A, Vol 102a, Issue 7, Jul 2014, 2277-2287.
  • Jeremy E. Schaffer, Eric A. Nauman, Lia A. Stanciu, “Cold drawn bioabsorbable ferrous and ferrous composite wires: An evaluation of in vitro vascular cytocompatibility”, Acta Biomaterialia, 9, 2013, 8574–8584.
  • J. Cheng, Y.F. Zheng, “In vitro study on newly designed biodegradable Fe-X composites (X = W, CNT) prepared by spark plasma sintering”, Journal of Biomedical Materials Research B: Applied Biomaterials, Vol 101B, Issue 4, May 2013, 485-497.
  • F. L. Nie, Y. F. Zheng, “Surface chemistry of bulk nanocrystalline pure iron and electrochemistry study in gas-flow physiological saline”, Journal of Biomedical Materials Research B: Applied Biomaterials | Vol 100B, Issue 5, Jul 2012, 1400-1410.
  • Hermawan, H., Dube´, D., Mantovani, D., “Degradable metallic biomaterials: Design and development of Fe–Mn alloys for stents”, Journal of Biomedical Materials Research, Part A, 2009, 1-11.
  • Peuster, M., Beerbaum, P., Bach, F.W., Hauser, H, “Are resorbable implants about to become a reality?” Cardiol. Young, 16, 2006, 107–116.
  • Xu, L., Yu, G., Zhang, E., Pan, F., Yang, K, “In vivo corrosion behavior of Mg Mn Zn alloy for bone implant application”, J. Biomed. Mater. Res. A, 83, 2007, 703–711.
  • Niemeyer, M, “Magnesium Alloys as Biodegradable Metallic Implant Materials”. In Proceedings of 7th Conference on Advanced Materials and Processes, Rimini, Italy, 2001.
  • Heublein, B., Rohde, R., Niemeyer, M., Kaese, V., Hartung, W., Rocken, C., “Degradation of metallic alloys-A new principle in stent technology?”, J. Am. Coll. Cardiol., 35, 14a–15a, 2000.
  • Di Mario, C., Griffiths, H., Goktekin, O., Peeters, N., Verbist, J., Bosiers, M., Deloose, K., Heublein, B., Rohde, R., Kasese, V., Ilsley, C., Erbel, R, “Drug-eluting bioabsorbable magnesium stent”, J. Interv. Cardiol., 17, 2004, 391–395.
  • Waksman, R., Pakala, R., Kuchulakanti, P.K., Baffour, R., Hellinga, D., Seabron, R., Tio, F.O., Wittchow, E., Hartwig, S., Harder, C., Rohde, R., Heublein, B., Andreae, A., Waldmann, K.H., Haverich, A., “Safety and efficacy of bioabsorbable magnesium alloy stents in porcine coronary arteries”, Catheter. Cardiovasc. Interv., 68, 2006, 607–617.
  • Klocke, B., Diener, T., Fringes, M., Harder, C., “Degradable metal stent having agent-containing coating”, U.S. Patent 20090030507, January 2008.
  • Waksman, R., “Current state of the absorbable metallic (magnesium) stent”, Euro. Interv. Suppl. 5, F94–F98, 2009.
  • Lu, P., Fan, H., Liu, Y., Cao, L., Wu, X., Xu, X., “Controllable biodegradability; drug release behavior and hemocompatibility of PTX-eluting magnesium stents”, Colloids Surf. B Biointerfaces, 83, 2010, 23–28.
  • Kondyurin, A., Kondyurina, I., Bilek, M., “Biodegradable drug eluting coating of cardiovascular stents dewets and can cause thrombosis”, http://arxiv.org/abs/1101.0659.
  • Feyerabend, F., Fischer, J., Holtz, J., Witte, F., Willumeit, R., Drucker, H., Vogt, C., Hort, N., “Evaluation of short-term effects of rare earth and other elements used in magnesium alloys on primary cells and cell lines”, Acta Biomater., 6, 2010, 1834–1842.
  • Hänzi, A., Gunde, P., Schinhammer, M., Uggowitzer, P., “On the biodegradation performance of an Mg-Y-RE alloy with various surface conditions in simulated body fluid”, Acta Biomater., 5, 2009, 162–171.
  • Hänzi, A.C., Gerber, I., Schinhammer, M., Löffler, J.F., Uggowitzer, P.J., “On the in vitro and in vivo degradation performance and biological response of new biodegradable Mg-Y-Zn alloys”, Acta Biomater., 6, 2010, 1824–1833.
  • Seitz, J.-M., Eifler, R., Bach, Fr.-W., Maier, H. J., “Magnesium degradation products: Effects on tissue and human metabolism”, Journal of Biomedical Materials Research A, Vol 102A, Issue 10, Oct 2014, 3744-3753.
  • Chen, Y., Yan, J., Wang, Z., Yu, S., Wang, X., Yuan, Z., Zhang, X., Zhao, C., Zheng, Q., “In vitro and in vivo corrosion measurements of Mg–6Zn alloys in the bile”, Materials Science and Engineering, C 42, 2014, 116–123.
  • Lock, J.Y., Wyatt, E., Upadhyayula, S., Whall, A., Nunez, V., Vullev, V.I., Liu, H., “Degradation and antibacterial properties of magnesium alloys in artificial urine for potential resorbable ureteral stent applications”, Journal of Biomedical Materials Research A, Vol 102A, Issue 3, 2014, 781-792.
  • Campos, C.M., Muramatsu, T., Iqbal, J., Zhang, YJ., Onuma, Y., Garcia-Garcia, H.M., Haude, M., Lemos, P.A., Warnack, B., and Serruys, P.W., “Bioresorbable Drug-Eluting Magnesium-Alloy Scaffold for Treatment of Coronary Artery Disease”, Int. J. Mol. Sci., 14, 2013, 24492-24500.
  • Peng, Q., Li, K., Han, Z., Wang, E., Xu, Z., Liu, R., Tian, Y., “Degradable magnesium-based implant materials with anti-inflammatory activity”, Journal of Biomedical Materials Research A, Vol 101A, Issue 7: Jul 2013,1898-1906.
  • Sternberg, K., Gratz, M., Koeck, K., Mostertz, J., Begunk, R., Loebler, M., Semmling, B., Seidlitz, A., Hildebrandt, P., Homuth, G., Grabow, N., Tuemmler, C., Weitschies, W., Schmitz, K.P., Kroemer, H.K., “Magnesium used in bioabsorbable stents controls smooth muscle cell proliferation and stimulates endothelial cells in vitro”, Journal of Biomedical Materials Research B: Applied Biomaterials, Vol 100B, Issue 1: Jan 2012, 41-50.
  • Lu, P., Cao, L., Liu, Y., Xu, X., Wu, X., “Evaluation of magnesium ions release, biocorrosion, and hemocompatibility of MAO/PLLA-modified magnesium alloy WE42”, Journal of Biomedical Materials Research B: Applied Biomaterials, Vol 96B, Issue 1: Jan 2011, 101-109.
  • Le´vesque, L., Hermawan, H., Dube´, D., Mantovani, D., “Design of a pseudo-physiological test bench specific to the development of biodegradable metallic biomaterials”, Acta Biomaterialia, 4, 2008, 284–295.

Developmental Process of Metallic Bio-Compatible Stents

Year 2018, Volume: 6 Issue: 1, 328 - 348, 31.01.2018
https://doi.org/10.29130/dubited.319891

Abstract

Stenting is the employ of a device to form an artificial corridor, support structure or opening for hollow organs that are blocked because of benign disruptive diseases. The development of biodegradable stents, which can execute the function and leave, is the normal application. Current progress in biodegradable metal and polymer materials nowadays also permit for the design of entirely biodegradable stages, which are intended for scaffolding the vein merely provisionally to stop recoil and tapered remodeling of the vein through the early time needed. Degradable metallic materials could potentially substitute corrosion-resistant metals presently utilized for stent function as it has been exposed that the task of stenting is momentary and restricted to a phase of 6–12 months following implantation through which arterial remodeling and curing happen. The nominee materials for such purpose should have mechanical properties preferably near to those of 316L stainless steel for stent function to supply mechanical maintain to contaminated arteries. Non-toxicity of the metal itself and its degradation products is a further obligation as the material is engrossed by blood and cells. This article reviews the latest improvements in the design and assessment of polymeric and metallic materials for biodegradable stents for the last 15 years. It also initiates the novel techniques as well as the conventional ones which could be applied for the fabrication of metallic biodegradable stents and their effect on the properties of the manufactured metals. 

References

  • Bhat, S.V., “Biomaterials”, Kluwer Academic Publishers: Boston, MT, USA, 2002, p. 265.
  • Park, J.B., Lakes, R.S., “Biomaterials an Introduction”, 3rd ed., Springer SpringerLink (Service en ligne): New York, NY, USA, 2007, p. 561.
  • Witte, F. “The history of biodegradable magnesium implants: a review”, Acta Biomater., 6, 2010, 1680–1692.
  • Webster, T.J. “Nanotechnology Enabled in Situ Sensors for Monitoring Health”, Springer Verlag: New York, NY, USA, 2010.
  • Schulz, M.J.; Shanov, V.N.; Yun, Y., “Nanomedicine Design of Particles, Sensors, Motors, Implants, Robots, and Devices”, Artech House: Boston, MT, USA, 2009.
  • Moore, J.E.; Zouridakis, G., “Biomedical Technology and Devices Handbook”, CRC Press: Boca Raton, FL, USA, 2004.
  • Chan, A.W.; Moliterno, D.J., “In-stent restenosis: update on intracoronary radiotherapy”, Cleve. Clin. J. Med. 68, 2001, 796–803.
  • Saito, S., “New horizon of bioabsorbable stent”, Catheter. Cardiovasc. Interv. 66, 2005, 595–596.
  • Erne, P.; Schier, M.; Resink, T.J., “The road to bioabsorbable stents: reaching clinical reality?” Cardiovasc. Interv. Radiol., 29, 2006, 11–16.
  • Peuster, M.; Wohlsein, P.; Brugmann, M.; Ehlerding, M.; Seidler, K.; Fink, C.; Brauer, H.; Fischer, A.; Hausdorf, G., “A novel approach to temporary stenting: degradable cardiovascular stents produced from corrodible metal-results 6–18 months after implantation into New Zealand white rabbits”, Heart, 86, 2001, 563–569.
  • Colombo, A., Karvouni, E., “Biodegradable stents: ―fulfilling the mission and stepping away”, Circulation, 102, 2000, 371–373.
  • Hermawan, H., Dubé, D., Mantovani, D., “Developments in metallic biodegradable stents”, Acta Biomaterialia, 6, 2010, 1693–1697.
  • Heublein B., Rohde R., Kaese V., Niemeyer M., Hartung W., Haverich A., “Biocorrosion of magnesium alloys: a new principle in cardiovascular implant technology?”, Heart, 89: 2003, 651–6.
  • Erbel R., Di Mario C., Bartunek J., Bonnier J., de Bruyne B., Eberli FR., et al., “Temporary scaffolding of coronary arteries with bioabsorbable magnesium stents: a prospective, non-randomised multicentre trial”, Lancet, 369, 2007, 1869–75.
  • Ormiston JA, Serruys PW, Regar E, Dudek D, Thuesen L, Webster MWI, et al., “A bioabsorbable everolimus-eluting coronary stent system for patients with single de-novo coronary artery lesions (ABSORB): a prospective open-label trial”, Lancet 371, 2008, 899–907.
  • Bosiers M, Peeters P, D’Archambeau O, Hendriks J, Pilger E, Duber C, et al., “AMS INSIGHT – absorbable metal stent implantation for treatment of below-theknee critical limb ischemia: 6-month analysis”, Cardiovasc Intervent Radiol, 32, 2009, 424–35.
  • Zartner P, Cesnjevar R, Singer H, Weyand M., “First successful implantation of a biodegradable metal stent into the left pulmonary artery of a preterm baby”, Catheter Cardiovasc Interv, 66, 2005, 590–4.
  • Peeters P, Bosiers M, Verbist J, Deloose K, Heublein B., “Preliminary results after application of absorbable metal stents in patients with critical limb ischemia”, J Endovasc Ther, 12: 2005,1–5.
  • Hermawan, H., Mantovani, D., “Process of prototyping coronary stents from biodegradable Fe–Mn alloys”, Acta Biomaterialia, 9, 2013, 8585–8592.
  • Moravej, M., and Mantovani, D., “Biodegradable Metals for Cardiovascular Stent Application: Interests and New Opportunities”, Int. J. Mol. Sci., 12, 4250-4270, 2011.
  • Mani, G., Feldman, M.D., Patel, D., Agrawal, C.M., “Coronary stents: A materials perspective”, Biomaterials, 28, 2007, 1689–1710.
  • Peuster, M., Hesse, C., Schloo, T., Fink, C., Beerbaum, P., von Schnakenburg, C., “Long-term biocompatibility of a corrodible peripheral iron stent in the porcine descending aorta”, Biomaterials, 27, 2006, 4955–4962.
  • Waksman, R., Pakala, R., Baffour, R., Seabron, R., Hellinga, D., Tio, F.O., “Short-term effects of biocorrodible iron stents in porcine coronary arteries”, J. Interv. Cardiol, 21, 2008, 15–20.
  • Hermawan, H., Dube, D., Mantovani, D., “Development of degradable Fe-35Mn alloy for biomedical application”, Adv. Mater. Res., 15, 2007, 107–112.
  • Hermawan, H., Alamdari, H., Mantovani, D., Dube, D., “Iron-manganese: new class of metallic degradable biomaterials prepared by powder metallurgy”, Powder Metall, 51, 2008, 38–45.
  • Hermawan, H., Purnama, A., Dube, D., Couet, J., Mantovani, D., “Fe-Mn alloys for metallic biodegradable stents: Degradation and cell viability studies”, Acta Biomater, 6, 2010, 1852–1860.
  • Hermawan, H., Dube, D., Mantovani, D., “Degradable metallic biomaterials: design and development of Fe-Mn alloys for stents”, J. Biomed. Mater. Res. A, 93, 2010, 1–11.
  • Schinhammer, M., Hanzi, A.C., Loffler, J.F., Uggowitzer, P.J., “Design strategy for biodegradable Fe-based alloys for medical applications”, Acta Biomater, 6, 2010, 1705–1713.
  • Liu, B., Zheng, Y., “Effects of alloying elements (Mn, Co, Al, W, Sn, B, C and S) on biodegradability and in vitro biocompatibility of pure iron”, Acta Biomater, 7, 2010, 1407–1420.
  • Liu, B., Zheng, Y., Ruan, L., “In vitro investigation of Fe30Mn6Si shape memory alloy as potential biodegradable metallic material”, Mater. Lett, 65, 2010, 540–543.
  • ASTM F756-08, “Standard Practice for Assessment of Hemolytic Properties of Materials”, ASTM International: West Conshohocken, PA, USA, 2008, doi: 10.1520/F0756-08.
  • Moravej, M., Prima, F., Fiset, M., Mantovani, D., “Electroformed iron as new biomaterial for degradable stents: Development process and structure-properties relationship”, Acta Biomater, 6, 2010, 1726–1735.
  • Moravej, M., Purnama, A., Fiset, M., Couet, J., Mantovani, D., “Electroformed pure iron as a new biomaterial for degradable stents: In vitro degradation and preliminary cell viability studies”, Acta Biomater, 6, 2010, 1843–1851.
  • Moravej, M., Amira, S., Prima, F., Rahem, A., Fiset, M., Mantovani, D., “Effect of electrodeposition current density on the microstructure and the degradation of electroformed iron for degradable stents”, Mater. Sci. Eng., B 2011.
  • Nie, F., Zheng, Y., Wei, S., Hu, C., Yang, G., “In vitro corrosion, cytotoxicity and hemocompatibility of bulk nanocrystalline pure iron”, Biomed. Mater, 5, 065015, 2010.
  • J. Cheng, T. Huang, Y. F. Zheng, “Microstructure, mechanical property, biodegradation behavior, and biocompatibility of biodegradable Fe–Fe2O3 composites”, Journal of Biomedical Materıals Research A, Vol 102a, Issue 7, Jul 2014, 2277-2287.
  • Jeremy E. Schaffer, Eric A. Nauman, Lia A. Stanciu, “Cold drawn bioabsorbable ferrous and ferrous composite wires: An evaluation of in vitro vascular cytocompatibility”, Acta Biomaterialia, 9, 2013, 8574–8584.
  • J. Cheng, Y.F. Zheng, “In vitro study on newly designed biodegradable Fe-X composites (X = W, CNT) prepared by spark plasma sintering”, Journal of Biomedical Materials Research B: Applied Biomaterials, Vol 101B, Issue 4, May 2013, 485-497.
  • F. L. Nie, Y. F. Zheng, “Surface chemistry of bulk nanocrystalline pure iron and electrochemistry study in gas-flow physiological saline”, Journal of Biomedical Materials Research B: Applied Biomaterials | Vol 100B, Issue 5, Jul 2012, 1400-1410.
  • Hermawan, H., Dube´, D., Mantovani, D., “Degradable metallic biomaterials: Design and development of Fe–Mn alloys for stents”, Journal of Biomedical Materials Research, Part A, 2009, 1-11.
  • Peuster, M., Beerbaum, P., Bach, F.W., Hauser, H, “Are resorbable implants about to become a reality?” Cardiol. Young, 16, 2006, 107–116.
  • Xu, L., Yu, G., Zhang, E., Pan, F., Yang, K, “In vivo corrosion behavior of Mg Mn Zn alloy for bone implant application”, J. Biomed. Mater. Res. A, 83, 2007, 703–711.
  • Niemeyer, M, “Magnesium Alloys as Biodegradable Metallic Implant Materials”. In Proceedings of 7th Conference on Advanced Materials and Processes, Rimini, Italy, 2001.
  • Heublein, B., Rohde, R., Niemeyer, M., Kaese, V., Hartung, W., Rocken, C., “Degradation of metallic alloys-A new principle in stent technology?”, J. Am. Coll. Cardiol., 35, 14a–15a, 2000.
  • Di Mario, C., Griffiths, H., Goktekin, O., Peeters, N., Verbist, J., Bosiers, M., Deloose, K., Heublein, B., Rohde, R., Kasese, V., Ilsley, C., Erbel, R, “Drug-eluting bioabsorbable magnesium stent”, J. Interv. Cardiol., 17, 2004, 391–395.
  • Waksman, R., Pakala, R., Kuchulakanti, P.K., Baffour, R., Hellinga, D., Seabron, R., Tio, F.O., Wittchow, E., Hartwig, S., Harder, C., Rohde, R., Heublein, B., Andreae, A., Waldmann, K.H., Haverich, A., “Safety and efficacy of bioabsorbable magnesium alloy stents in porcine coronary arteries”, Catheter. Cardiovasc. Interv., 68, 2006, 607–617.
  • Klocke, B., Diener, T., Fringes, M., Harder, C., “Degradable metal stent having agent-containing coating”, U.S. Patent 20090030507, January 2008.
  • Waksman, R., “Current state of the absorbable metallic (magnesium) stent”, Euro. Interv. Suppl. 5, F94–F98, 2009.
  • Lu, P., Fan, H., Liu, Y., Cao, L., Wu, X., Xu, X., “Controllable biodegradability; drug release behavior and hemocompatibility of PTX-eluting magnesium stents”, Colloids Surf. B Biointerfaces, 83, 2010, 23–28.
  • Kondyurin, A., Kondyurina, I., Bilek, M., “Biodegradable drug eluting coating of cardiovascular stents dewets and can cause thrombosis”, http://arxiv.org/abs/1101.0659.
  • Feyerabend, F., Fischer, J., Holtz, J., Witte, F., Willumeit, R., Drucker, H., Vogt, C., Hort, N., “Evaluation of short-term effects of rare earth and other elements used in magnesium alloys on primary cells and cell lines”, Acta Biomater., 6, 2010, 1834–1842.
  • Hänzi, A., Gunde, P., Schinhammer, M., Uggowitzer, P., “On the biodegradation performance of an Mg-Y-RE alloy with various surface conditions in simulated body fluid”, Acta Biomater., 5, 2009, 162–171.
  • Hänzi, A.C., Gerber, I., Schinhammer, M., Löffler, J.F., Uggowitzer, P.J., “On the in vitro and in vivo degradation performance and biological response of new biodegradable Mg-Y-Zn alloys”, Acta Biomater., 6, 2010, 1824–1833.
  • Seitz, J.-M., Eifler, R., Bach, Fr.-W., Maier, H. J., “Magnesium degradation products: Effects on tissue and human metabolism”, Journal of Biomedical Materials Research A, Vol 102A, Issue 10, Oct 2014, 3744-3753.
  • Chen, Y., Yan, J., Wang, Z., Yu, S., Wang, X., Yuan, Z., Zhang, X., Zhao, C., Zheng, Q., “In vitro and in vivo corrosion measurements of Mg–6Zn alloys in the bile”, Materials Science and Engineering, C 42, 2014, 116–123.
  • Lock, J.Y., Wyatt, E., Upadhyayula, S., Whall, A., Nunez, V., Vullev, V.I., Liu, H., “Degradation and antibacterial properties of magnesium alloys in artificial urine for potential resorbable ureteral stent applications”, Journal of Biomedical Materials Research A, Vol 102A, Issue 3, 2014, 781-792.
  • Campos, C.M., Muramatsu, T., Iqbal, J., Zhang, YJ., Onuma, Y., Garcia-Garcia, H.M., Haude, M., Lemos, P.A., Warnack, B., and Serruys, P.W., “Bioresorbable Drug-Eluting Magnesium-Alloy Scaffold for Treatment of Coronary Artery Disease”, Int. J. Mol. Sci., 14, 2013, 24492-24500.
  • Peng, Q., Li, K., Han, Z., Wang, E., Xu, Z., Liu, R., Tian, Y., “Degradable magnesium-based implant materials with anti-inflammatory activity”, Journal of Biomedical Materials Research A, Vol 101A, Issue 7: Jul 2013,1898-1906.
  • Sternberg, K., Gratz, M., Koeck, K., Mostertz, J., Begunk, R., Loebler, M., Semmling, B., Seidlitz, A., Hildebrandt, P., Homuth, G., Grabow, N., Tuemmler, C., Weitschies, W., Schmitz, K.P., Kroemer, H.K., “Magnesium used in bioabsorbable stents controls smooth muscle cell proliferation and stimulates endothelial cells in vitro”, Journal of Biomedical Materials Research B: Applied Biomaterials, Vol 100B, Issue 1: Jan 2012, 41-50.
  • Lu, P., Cao, L., Liu, Y., Xu, X., Wu, X., “Evaluation of magnesium ions release, biocorrosion, and hemocompatibility of MAO/PLLA-modified magnesium alloy WE42”, Journal of Biomedical Materials Research B: Applied Biomaterials, Vol 96B, Issue 1: Jan 2011, 101-109.
  • Le´vesque, L., Hermawan, H., Dube´, D., Mantovani, D., “Design of a pseudo-physiological test bench specific to the development of biodegradable metallic biomaterials”, Acta Biomaterialia, 4, 2008, 284–295.
There are 61 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Osman İyibilgin

Fehim Fındık

Publication Date January 31, 2018
Published in Issue Year 2018 Volume: 6 Issue: 1

Cite

APA İyibilgin, O., & Fındık, F. (2018). Metalik Biyo-Uyumlu Stentlerin Gelişim Süreci. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi, 6(1), 328-348. https://doi.org/10.29130/dubited.319891
AMA İyibilgin O, Fındık F. Metalik Biyo-Uyumlu Stentlerin Gelişim Süreci. DUBİTED. January 2018;6(1):328-348. doi:10.29130/dubited.319891
Chicago İyibilgin, Osman, and Fehim Fındık. “Metalik Biyo-Uyumlu Stentlerin Gelişim Süreci”. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi 6, no. 1 (January 2018): 328-48. https://doi.org/10.29130/dubited.319891.
EndNote İyibilgin O, Fındık F (January 1, 2018) Metalik Biyo-Uyumlu Stentlerin Gelişim Süreci. Düzce Üniversitesi Bilim ve Teknoloji Dergisi 6 1 328–348.
IEEE O. İyibilgin and F. Fındık, “Metalik Biyo-Uyumlu Stentlerin Gelişim Süreci”, DUBİTED, vol. 6, no. 1, pp. 328–348, 2018, doi: 10.29130/dubited.319891.
ISNAD İyibilgin, Osman - Fındık, Fehim. “Metalik Biyo-Uyumlu Stentlerin Gelişim Süreci”. Düzce Üniversitesi Bilim ve Teknoloji Dergisi 6/1 (January 2018), 328-348. https://doi.org/10.29130/dubited.319891.
JAMA İyibilgin O, Fındık F. Metalik Biyo-Uyumlu Stentlerin Gelişim Süreci. DUBİTED. 2018;6:328–348.
MLA İyibilgin, Osman and Fehim Fındık. “Metalik Biyo-Uyumlu Stentlerin Gelişim Süreci”. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi, vol. 6, no. 1, 2018, pp. 328-4, doi:10.29130/dubited.319891.
Vancouver İyibilgin O, Fındık F. Metalik Biyo-Uyumlu Stentlerin Gelişim Süreci. DUBİTED. 2018;6(1):328-4.