Research Article
BibTex RIS Cite

Investigation of Structural and Magnetic Fluid Hyperthermia Properties of La0,7Nd0,1K0,2MnO3 Perovskite Manganite Composition

Year 2018, Volume: 6 Issue: 4, 1335 - 1343, 01.08.2018
https://doi.org/10.29130/dubited.411328

Abstract

In this study, La0.7Nd0.1K0.2MnO3 nanoparticles were synthesized by sol-gel method and the structural, magnetic and magneto-thermal properties of the compound were investigated in detail. XRD and SEM analyzes have been performed to determine the structural properties. Rietveld analysis has been performed on the obtained XRD pattern using the FullProf program. At the analysis, it has been observed that the crystal symetry of the compound has had a rhombohedral structure and has had La2O3 and MnO2 impurities in the structure. SEM analysis has revealed that nanoparticles has had spherical and cubic shapes in two different forms. As a result of the magnetic analysis, it has been determined that the compound has been in a ferromagnetic partially paramagnetic state at the room temperature and the saturation magnetization of the existing ferromagnetic phase has been 0.23 Am2/ kg and the coercivity value has been 0.005 T. As a result of the magneto-thermal measurements, the SAR value of the compound has been calculated to be 9.6 W/g.

References

  • [1] Belous, A.G., Synthesis and Properties of Ferromagnetic Nanostructures and Their Possible Use in Medicine and Microwave Engineering. 2014 Ieee International Conference on Oxide Materials for Electronic Engineering (Omee), p. 69-70, 2014.
  • [2] Ansari, L. and B. Malaekeh-Nikouei, Magnetic silica nanocomposites for magnetic hyperthermia applications. International Journal of Hyperthermia, 33 (3), p. 354-363, 2017.
  • [3] Epherre, R., et al., Manganite perovskite nanoparticles for self-controlled magnetic fluid hyperthermia: about the suitability of an aqueous combustion synthesis route. Journal of Materials Chemistry, 21 (12), p. 4393-4401, 2011.
  • [4] S. Martirosyan, K., Thermosensitive Magnetic Nanoparticles for Self-Controlled Hyperthermia Cancer Treatment. Journal of Nanomedicine & Nanotechnology, 03 (06), 2012.
  • [5] Bubnovskaya, L., et al., Magnetic Fluid Hyperthermia of Rodent Tumors Using Manganese Perovskite Nanoparticles. Journal of Nanoparticles, p. 1-9, 2014.
  • [6] Pollert, E., et al., Core-shell La(1-x)Sr(x)MnO3 nanoparticles as colloidal mediators for magnetic fluid hyperthermia. Philos Trans A Math Phys Eng Sci, 368 (1927), p. 4389-405, 2010.
  • [7] Myrovali, E., et al., Arrangement at the nanoscale: Effect on magnetic particle hyperthermia. Sci Rep, 6, p. 37934, 2016.
  • [8] Nam, N.H., D.T.M. Huong, and N.H. Luong, Synthesis and Magnetic Properties of Perovskite La1-xSrxMnO3 Nanoparticles. Ieee Transactions on Magnetics, 50 (6), 2014.
  • [9] Cullity, B.D. and C.D. Graham, Introduction to Magnetic Materials. Wiley, 2011.
  • [10] Bornstein, B.A., et al., Local Hyperthermia, Radiation-Therapy, and Chemotherapy in Patients with Local-Regional Recurrence of Breast-Carcinoma. International Journal of Radiation Oncology Biology Physics, 25 (1), p. 79-85, 1993.
  • [11] Kumar, C.S.S.R. and F. Mohammad, Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery. Advanced Drug Delivery Reviews, 63(9), p. 789-808, 2011.
  • [12] Haase, C. and U. Nowak, Role of dipole-dipole interactions for hyperthermia heating of magnetic nanoparticle ensembles. Physical Review B, 85(4), 2012.
  • [13] Kumar, S., et al., Theranostic fluorescent silica encapsulated magnetic nanoassemblies for in vitro MRI imaging and hyperthermia. Rsc Advances, 5 (66), p. 53180-53188, 2015.
  • [14] Arteaga-Cardona, F., et al., Improving the magnetic heating by disaggregating nanoparticles. Journal of Alloys and Compounds, 663, p. 636-644, 2016.
  • [15] Gupta, A.K. and M. Gupta, Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials, 26(18), p. 3995-4021, 2005.
  • [16] Cristofolini, L., et al., Hybrid Polyelectrolyte/Fe3O4 Nanocapsules for Hyperthermia Applications. Acs Applied Materials & Interfaces, 8(38), p. 25043-25050, 2016.
  • [17] Guibert, C., et al., Magnetic fluid hyperthermia probed by both calorimetric and dynamic hysteresis measurements. Journal of Magnetism and Magnetic Materials, 421, p. 384-392, 2017.
  • [18] Natividad, E., et al., New insights into the heating mechanisms and self-regulating abilities of manganite perovskite nanoparticles suitable for magnetic fluid hyperthermia. Nanoscale, 4 (13), p. 3954-62, 2012.
  • [19] Gorbenko, O.Y., et al., Synthesis, composition, and properties of the solid solutions La1 −x Ag y MnO3 + δ, promising materials for cell hyperthermia. Doklady Chemistry, 424 (1), p. 7-10, 2009.
  • [20] Pollert, E., et al., Search of new core materials for magnetic fluid hyperthermia: Preliminary chemical and physical issues. Progress in Solid State Chemistry, 37(1): p. 1-14, 2009.
  • [21] Zener, C., Interaction between the d-Shells in the Transition Metals. II. Ferromagnetic Compounds of Manganese with Perovskite Structure. Physical Review, 82 (3), p. 403-405, 1951.
  • [22] Aliev, A.M., et al., Magnetocaloric properties of La1-xKxMnO3 manganites. Journal of Experimental and Theoretical Physics, 112(3), p. 460-468, 2011.
  • [23] Ünlü, C.G., et al., Magnetocaloric effect in La 0.7 Nd x Ba (0.3-x) MnO 3 (x = 0, 0.05, 0.1) perovskite manganites. Journal of Alloys and Compounds, 704, p. 58-63, 2017.
  • [24] Cullity, B.D., Elements of X-ray diffraction. Massachusets: Addison-Wesley. 547, 1978.

La0,7Nd0,1K0,2MnO3 Perovskit Manganit Bileşiğinin Yapısal ve Manyetik Akışkan Hipertermi Özelliğinin Araştırılması

Year 2018, Volume: 6 Issue: 4, 1335 - 1343, 01.08.2018
https://doi.org/10.29130/dubited.411328

Abstract

Çalışmada La0.7Nd0.1K0.2MnO3
nanoparçacıklar sol-gel yöntemiyle sentezlendi ve bileşiğin yapısal, manyetik
ve manyeto-termal özellikleri detaylı bir biçimde incelendi. Yapısal
özelliklerin belirlenmesi için XRD ve SEM analizi yapıldı. Elde edilen XRD
desenine FullProf programı kullanılarak Rietveld analizi yapıldı. Analiz sonucunda
bileşiğin kristal örgüsünün Rhombohedral yapıda olduğu ve içesinde ayrıca La2O3
ve MnO2 safsızlıkların bulunduğu gözlendi. SEM analiziyle
nanoparçacıkların iki farklı şekilde, küresel ve kübik şekillenime sahip olduğu
belirlendi. Manyetik analizlerin sonucunda bileşiğin oda sıcaklığında
ferromanyetik- kısmen paramanyetik duruma geçtiği ve var olan ferromanyetik
faza ait doyum mıknatıslanması 0.23 Am2/kg ve bileşiğin koarsivite
değeri 0.005 T olarak belirlendi. Manyeto-termal ölçümler sonucunda bileşiğin
SAR değeri 9.6 W/g olarak hesaplandı.

References

  • [1] Belous, A.G., Synthesis and Properties of Ferromagnetic Nanostructures and Their Possible Use in Medicine and Microwave Engineering. 2014 Ieee International Conference on Oxide Materials for Electronic Engineering (Omee), p. 69-70, 2014.
  • [2] Ansari, L. and B. Malaekeh-Nikouei, Magnetic silica nanocomposites for magnetic hyperthermia applications. International Journal of Hyperthermia, 33 (3), p. 354-363, 2017.
  • [3] Epherre, R., et al., Manganite perovskite nanoparticles for self-controlled magnetic fluid hyperthermia: about the suitability of an aqueous combustion synthesis route. Journal of Materials Chemistry, 21 (12), p. 4393-4401, 2011.
  • [4] S. Martirosyan, K., Thermosensitive Magnetic Nanoparticles for Self-Controlled Hyperthermia Cancer Treatment. Journal of Nanomedicine & Nanotechnology, 03 (06), 2012.
  • [5] Bubnovskaya, L., et al., Magnetic Fluid Hyperthermia of Rodent Tumors Using Manganese Perovskite Nanoparticles. Journal of Nanoparticles, p. 1-9, 2014.
  • [6] Pollert, E., et al., Core-shell La(1-x)Sr(x)MnO3 nanoparticles as colloidal mediators for magnetic fluid hyperthermia. Philos Trans A Math Phys Eng Sci, 368 (1927), p. 4389-405, 2010.
  • [7] Myrovali, E., et al., Arrangement at the nanoscale: Effect on magnetic particle hyperthermia. Sci Rep, 6, p. 37934, 2016.
  • [8] Nam, N.H., D.T.M. Huong, and N.H. Luong, Synthesis and Magnetic Properties of Perovskite La1-xSrxMnO3 Nanoparticles. Ieee Transactions on Magnetics, 50 (6), 2014.
  • [9] Cullity, B.D. and C.D. Graham, Introduction to Magnetic Materials. Wiley, 2011.
  • [10] Bornstein, B.A., et al., Local Hyperthermia, Radiation-Therapy, and Chemotherapy in Patients with Local-Regional Recurrence of Breast-Carcinoma. International Journal of Radiation Oncology Biology Physics, 25 (1), p. 79-85, 1993.
  • [11] Kumar, C.S.S.R. and F. Mohammad, Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery. Advanced Drug Delivery Reviews, 63(9), p. 789-808, 2011.
  • [12] Haase, C. and U. Nowak, Role of dipole-dipole interactions for hyperthermia heating of magnetic nanoparticle ensembles. Physical Review B, 85(4), 2012.
  • [13] Kumar, S., et al., Theranostic fluorescent silica encapsulated magnetic nanoassemblies for in vitro MRI imaging and hyperthermia. Rsc Advances, 5 (66), p. 53180-53188, 2015.
  • [14] Arteaga-Cardona, F., et al., Improving the magnetic heating by disaggregating nanoparticles. Journal of Alloys and Compounds, 663, p. 636-644, 2016.
  • [15] Gupta, A.K. and M. Gupta, Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials, 26(18), p. 3995-4021, 2005.
  • [16] Cristofolini, L., et al., Hybrid Polyelectrolyte/Fe3O4 Nanocapsules for Hyperthermia Applications. Acs Applied Materials & Interfaces, 8(38), p. 25043-25050, 2016.
  • [17] Guibert, C., et al., Magnetic fluid hyperthermia probed by both calorimetric and dynamic hysteresis measurements. Journal of Magnetism and Magnetic Materials, 421, p. 384-392, 2017.
  • [18] Natividad, E., et al., New insights into the heating mechanisms and self-regulating abilities of manganite perovskite nanoparticles suitable for magnetic fluid hyperthermia. Nanoscale, 4 (13), p. 3954-62, 2012.
  • [19] Gorbenko, O.Y., et al., Synthesis, composition, and properties of the solid solutions La1 −x Ag y MnO3 + δ, promising materials for cell hyperthermia. Doklady Chemistry, 424 (1), p. 7-10, 2009.
  • [20] Pollert, E., et al., Search of new core materials for magnetic fluid hyperthermia: Preliminary chemical and physical issues. Progress in Solid State Chemistry, 37(1): p. 1-14, 2009.
  • [21] Zener, C., Interaction between the d-Shells in the Transition Metals. II. Ferromagnetic Compounds of Manganese with Perovskite Structure. Physical Review, 82 (3), p. 403-405, 1951.
  • [22] Aliev, A.M., et al., Magnetocaloric properties of La1-xKxMnO3 manganites. Journal of Experimental and Theoretical Physics, 112(3), p. 460-468, 2011.
  • [23] Ünlü, C.G., et al., Magnetocaloric effect in La 0.7 Nd x Ba (0.3-x) MnO 3 (x = 0, 0.05, 0.1) perovskite manganites. Journal of Alloys and Compounds, 704, p. 58-63, 2017.
  • [24] Cullity, B.D., Elements of X-ray diffraction. Massachusets: Addison-Wesley. 547, 1978.
There are 24 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Cumhur Gökhan Ünlü 0000-0003-2554-5886

Publication Date August 1, 2018
Published in Issue Year 2018 Volume: 6 Issue: 4

Cite

APA Ünlü, C. G. (2018). La0,7Nd0,1K0,2MnO3 Perovskit Manganit Bileşiğinin Yapısal ve Manyetik Akışkan Hipertermi Özelliğinin Araştırılması. Duzce University Journal of Science and Technology, 6(4), 1335-1343. https://doi.org/10.29130/dubited.411328
AMA Ünlü CG. La0,7Nd0,1K0,2MnO3 Perovskit Manganit Bileşiğinin Yapısal ve Manyetik Akışkan Hipertermi Özelliğinin Araştırılması. DUBİTED. August 2018;6(4):1335-1343. doi:10.29130/dubited.411328
Chicago Ünlü, Cumhur Gökhan. “La0,7Nd0,1K0,2MnO3 Perovskit Manganit Bileşiğinin Yapısal Ve Manyetik Akışkan Hipertermi Özelliğinin Araştırılması”. Duzce University Journal of Science and Technology 6, no. 4 (August 2018): 1335-43. https://doi.org/10.29130/dubited.411328.
EndNote Ünlü CG (August 1, 2018) La0,7Nd0,1K0,2MnO3 Perovskit Manganit Bileşiğinin Yapısal ve Manyetik Akışkan Hipertermi Özelliğinin Araştırılması. Duzce University Journal of Science and Technology 6 4 1335–1343.
IEEE C. G. Ünlü, “La0,7Nd0,1K0,2MnO3 Perovskit Manganit Bileşiğinin Yapısal ve Manyetik Akışkan Hipertermi Özelliğinin Araştırılması”, DUBİTED, vol. 6, no. 4, pp. 1335–1343, 2018, doi: 10.29130/dubited.411328.
ISNAD Ünlü, Cumhur Gökhan. “La0,7Nd0,1K0,2MnO3 Perovskit Manganit Bileşiğinin Yapısal Ve Manyetik Akışkan Hipertermi Özelliğinin Araştırılması”. Duzce University Journal of Science and Technology 6/4 (August 2018), 1335-1343. https://doi.org/10.29130/dubited.411328.
JAMA Ünlü CG. La0,7Nd0,1K0,2MnO3 Perovskit Manganit Bileşiğinin Yapısal ve Manyetik Akışkan Hipertermi Özelliğinin Araştırılması. DUBİTED. 2018;6:1335–1343.
MLA Ünlü, Cumhur Gökhan. “La0,7Nd0,1K0,2MnO3 Perovskit Manganit Bileşiğinin Yapısal Ve Manyetik Akışkan Hipertermi Özelliğinin Araştırılması”. Duzce University Journal of Science and Technology, vol. 6, no. 4, 2018, pp. 1335-43, doi:10.29130/dubited.411328.
Vancouver Ünlü CG. La0,7Nd0,1K0,2MnO3 Perovskit Manganit Bileşiğinin Yapısal ve Manyetik Akışkan Hipertermi Özelliğinin Araştırılması. DUBİTED. 2018;6(4):1335-43.