Review
BibTex RIS Cite

Role of β phase on Corrosion Beheviour of AZ Series Mg Alloys

Year 2018, Volume: 6 Issue: 4, 1139 - 1162, 01.08.2018
https://doi.org/10.29130/dubited.416767

Abstract

Although there are numerous studies to understand the corrosion mechanisms of AZ series Mg alloys, the views on the role of β-phase in the corrosion of these alloys are contradictory. This review focuces on the influence of micro alloying elements and the solidification rate on the β phase structure, affecting the corrosion of AZ series Mg alloys. Additionally, the oxide film-β phase relationship on the surface of the alloys also are evaluated on their corrosion properties. The results showed that the β phase in AZ series Mg alloys play two-side role; enhancing or inhibiting the corrosion depending on the size and amount of β phase. In the literature, the β phase inhibits the corrosion by barier effect or vice versa promotes corrosion by microgalvaning coupling, which are attributed to the differences in production methods and consequent β phase structure which is why some researchers have come to the contradictorily conclusions.

References

  • [1] H.E. Friedrich and B.L. Mordike, Magnesium Technology: Metallurgy, Design Data, Applications, 1. Baskı, Berlin, Almanya: Springer-Verlag Berlin Heidelberg, 2006, pp. 677.
  • [2] A.A. Luo and A.K. Sachdev “Applications of magnesium alloys in automotive engineering,” Advances in Wrought Magnesium Alloys, Cambridge, UK: Woodhead Publishing, 2012, pp. 393-426.
  • [3] M.Ö. Pekgüleryüz, K.U. Kainer and A.A. Kaya, “Fundamentals of magnsium alloy metallurgy,” Philadelpia: Woodhead Publishing, 2013.
  • [4] M.V. Manuel, A. Singh, M. Alderman and N.R. Neelameggham, Magnesium Technology 2015, 1. Baskı, USA: Wiley Publishing, 2015, pp. 301-347.
  • [5] F. Witte, V. Kaese, H. Haferkamp, E. Switzer, A. Meyer-Lindenberg, C.J. Wirth and H. Windhagen, “In vivo corrosion of four magnesium alloys and the associated bone response,” Biomaterials, vol. 26, no. 17, pp. 3557-3563, 2005.
  • [6] M.P. Staiger, A.M. Pietak, J. Huadmai and G. Dias, “Magnesium and its alloys as orthopedic biomaterials: a review,” Biomaterials, vol. 27, no. 9, pp. 1728-1734, 2006.
  • [7] G.E.J. Poinern, S. Brundavanam and D. Fawcett, “Biomedical magnesium alloys: a review of material properties, surface modifications and potential as a biogradable orthopaedic implant,” American Journal of Biomedical Engineering, vol. 2, no. 6, pp. 218-240, 2012.
  • [8] H. Waizy, J.M. Seitz and J. Reifenrath, “Biodegradable magnesium implants for orthopedic applications,” American Journal of Biomedical Engineering,” vol. 48, no. 1, pp. 39-50, 2013.
  • [9] S. Agarwal, J. Curtin, B. Duffy and S. Jaiswal, “Biodegradable magnesium alloys for orthopaedic applications: A review on corrosion, biocompatibility and surface modifications,” Materials Science and Engineering, vol. 68, pp. 948-963, 2016.
  • [10] H. Gerengi, E. Kaya, M. Cabrini, “Saf magnezyumun biyobozunur malzeme olarak kullanılma potansiyeli,” İleri Teknoloji Bilimleri Dergisi, c. 6, ss. 9-25, 2017.
  • [11] C. Blawert, N. Hort and K.U. Kainer, “Automotive applications of magnesium and its alloys,” Transactions of the Indian of Metals, vol. 57, no. 4, pp. 397-408, 2004.
  • [12] J.E. Gray and B. Luan, “Protective coatings on magnesium and its alloys-a critical review,” Journal of Alloys and Compounds, vol. 336, no. 1-2, pp. 88-113, 2002.
  • [13] H. Hornberger, S. Virtanen and A.R. Boccaccini, “Biomedical coatings on magnesium alloys-A review,” Acta Biomaterialia, vol. 8, no. 7, pp. 2442-2455, 2012.
  • [14] F. Hehmann, F.H. Froes and W. Young, “Rapid solidification of aluminium, magnesium and titanium,” Journal of Metals, vol. 39, no. 8, pp. 14-21, 1987.
  • [15] O. Lunder, J.E. Lein, T.K. Aune and K. Nisancioglu, “The role of magnesium aluminuim (Mg17Al12) phase in the corrosion of magnesium alloy AZ91,” Journal Corrosion, vol. 45, no. 9, pp. 741-748, 1989.
  • [16] M. Anık, P. Avcı, A. Tanverdi, I. Çelikyürek, B. Baksan and R. Güler, “Effect of the eutectic phase mixture on the anodic behavior of alloy AZ91,” Materials and Design, vol. 27, no. 5, pp. 347-355, 2006.
  • [17] A. Pardo, M.C. Merino, A.E. Coy, F. Viejo, R. Arrabal and S. Felıú Jr., “Influence of microstructure and composition on the corrosion behaviour of Mg/Al alloys in chloride media,” Electrochimica Acta, vol. 53 no. 27, pp. 7890-7902, 2008.
  • [18] S. Candan, M. Unal, M. Turkmen, E. Koc, Y. Turen and E. Candan, “Improvement of mechanical and corrosion properiıes of magnesium alloy by lead addition,” Materials Science & Engineering A, vol. 501, no. 1-2, pp. 115-118, 2009.
  • [19] S.A. Salman, R. Ichino ve M. Okido, “A Comparative electrochemical study of AZ31 and AZ91magnesium alloy,” International Journal of Corrosion, vol. 2010, pp. 1-7, 2010.
  • [20] J. Wang, S. Huang, S. Guo, Y. Wei, F. Pan, “Effects of cooling rate on microstructure, mechanical and corrosion properties of Mg-Zn-Ca alloy,” Transactions of Nonferrous Metals Society of China, vol. 23, pp.1930-1935, 2013.
  • [21] S. Candan, M. Unal, E. Koc, Y. Turen and E. Candan, “Effect of titanium additions on mechanical and corrosion behaviours of AZ91 magnesium alloy,” Journal of Alloys and Compounds, vol. 672, pp. 197-203, 2011.
  • [22] A. Samaniego, I. Llorente and S.Jr. Feliu, “Combined effect of composition and surface condition on corrosion behaviour of magnesium alloys AZ31 and AZ61,” Corrosion Science, vol. 68, pp. 66-71, 2013.
  • [23] I.B. Singh, M. Singh and S. Das, “A comparative corrosion behavior of Mg, AZ31 and AZ91 alloys in 3.5% NaCl solution,” Journal of Magnesium and Alloys, vol. 3, no. 2, pp. 142-148, 2015.
  • [24] S. Candan, M. Celik and E. Candan, “Effectiveness of Ti-micro alloying in relation to cooling rate on corrosion of AZ91 Mg Alloy,” Journal of Alloys and Compounds, vol. 672, pp. 197-203, 2016.
  • [25] S. Candan and E. Candan “A Comparative study on corrosion of Mg-Al-Zn alloys,”. Transactions of Nonferrous Metals Society of China, In Press, 2018.
  • [26] Y.L. Cheng, T.W. Qin, H.M. Wang and Z. Zhang, “Comparison of corrosion behaviors of AZ31, AZ91, AM60 and ZK60 magnesium,” Transactions of Nonferrous Metals Society of China, vol. 19, no. 3, pp. 517-524, 2009.
  • [27] L. Wang, T. Shinohara and B.P. Zhang, “Electrochemical behaviour of AZ61 magnesium alloy in dilute NaCl solutions,” Materials and Design, vol. 33, pp. 345-349, 2012.
  • [28] Y. Guangyin, S. Yangshan and D. Wenjiang, “Effects of Sb addition on the microstructure and mechanical properties of AZ91 magnesium alloy,” Scripta Materialia, vol. 43, no. 11, pp. 1009-1013, 2000.
  • [29] F. Yu, W. Guohua and Z. Chunquan, “Influence of cerium on the microstructure, mechanical properties and corrosion resistance of magnesium alloys,” Materials Science and Engineering A, vol. 433, no. 1-2, pp. 208-215, 2006.
  • [30] G. Song, A. Atrens, X. Wu and Bo. Zhang, “Corrosion behaviour of AZ21, AZ501 and AZ91 in sodium chloride,” Corrosion Science, vol. 40, no. 10, pp. 1769-1791, 1998.
  • [31] E. Koç, “Biyoçözünür magnezyum alaşımlarının korozyona bağlı mekanik davranışlarının araştırılması,” Doktora Tezi, Metal Eğitimi Anabilim Dalı, Karabük Üniversitesi, Karabük, Türkiye, 2013.
  • [32] A. Tanverdi, “Effect of solidification rate and Si and Y additions on corrosion behavior of AZ91 Mg alloy,” Ph.D. Thesis, Institute of Science and Technology, Osmangazi University, Eskisehir, Turkey, 2005.
  • [33] G. Song, A. Atrens and M. Dargusch “Influence of microstructure on the corrosion of die cast AZ91D,” Corrosion Science, vol. 41, no. 2, pp. 249-273, 1999.
  • [34] G. Wu, Y. Fan, H. Gao, C. Zhai and Y.P. Zhu, “The effect of Ca and rare earth elements on the microstructure, mechanical properties and corrosion behaviour of AZ91D,” Materials Science and Engineering: A, vol. 408, no. 1-2, pp. 255-263, 2005.
  • [35] X. Zhou, Y. Huang, Z. Wei, Q. Chen and F. Gan, “Improvement of corrosion resistance of AZ91D magnesium alloy by holmium addition,” Corrosion Science, vol. 48, no. 12, pp. 4223-4233, 2006.
  • [36] ASM Handbook, Corrosion, 13. Baskı, Ohio, USA: ASM International, 1987, pp. 704
  • [37] G. Song and A. Atrens, “Corrosion mechanisms of magnesium alloys,” Advence Engineering Materials, vol. 1, no. 1, pp. 11-33, 1999.
  • [38] R. Zeng, J. Zhang, W. Huang, W. Dietzel, K.U. Kainer, C. Blawert and K. Wei, “Review of studies on corrosion of magnesium alloys,” Transactions of Nonferrous Metals Societyof China, vol. 16, no. 2, pp. 763-771, 2006.
  • [39] K.W. Guo, “A review of magnesium/magnesium alloys corrosion and its protection,” Recent Patents on Corrosion Science, vol. 2, pp. 13-21, 2010.
  • [40] A.Atrens, G.L. Song, F. Cao, Z. Shi and P.K. Bowen, “Advances in Mg corrosion and research suggestions,” Jornal of Magnesium and Alloys, vol. 1, no. 3, pp. 177-200, 2013.
  • [41] A. Atrens, N. Winzer and W. Dietzel, “Stress corrosion cracking of magnesium alloys,” Advanced Engineering Materials, vol. 13, no. 1-2, pp. 11-18, 2011.
  • [42] K. Gusieva, C.H.J. Davies, J.R. Scully and N. Birbilis, “Corrosion of magnesium alloys: the role of alloying,” J. International Materials Reviews, vol. 60, no. 3, pp. 169-194, 2015.
  • [43] M. Esmaily, J.E. Svensson, S. Fajardo, N. Birbilis, G.S. Frankel, S. Virtanen, R. Arrabal, S. Thomas and L.G. Johansson, “Fundamentals and advances in magnesium alloy corrosion,” Progress in Materials Science, vol. 89, pp. 92-193, 2017.
  • [44] G.L. Maker and J. Kruger, “Corrosion of magnesium,” International Material Review, vol. 38, no. 3, pp. 138-153, 1993.
  • [45] G. Song and Atrens, A., “Understanding magnesium corrosion”, Advenced Engineering Materials, vol. 5, no. 12, pp. 837-858, 2003.
  • [46] G. Song, C. Blawert, W. Dietzel and A. Atrens, “A study on stress corroion cracking and hydrogen embrittlement of AZ31 magnesium alloy,” Materials Science Engineering A, vol. 399, no. 1-2, pp. 308-317, 2005.
  • [47] R. Zeng, W. Zhou, E. Han and W. Ke, “Effect of pH value on corrosion of as-extruded AM60 magnesium alloy,” Acta Metallurgica Sinica, vol. 41, no. 3, pp. 307-311, 2005.
  • [48] D. Eliezer, P. Uzan and E. Aghion, “Effect of second phases on the corrosion behaviour of magnesium alloys,” Material Science Forum, vol. 419-422, pp. 857-866, 2003.
  • [49] L.F. Guo, T.M. Yue and H.C. Man, “Excimer laser surface treatment of magnesium alloy WE43 for corrosion resistance improvement,” Journel of Materials Science, vol. 40, no. 13, pp. 3531-3533, 2005.
  • [50] Y. Yun, Z. Dong, N. Lee, Y. Lui, D. Xue, X. Guo, J. Kuhlmann, A. Doepke, H.B. Halsall, W. Heineman, S. Sundaramurthy, J.M. Schulz, Z. Yin, V., Shanov, D. Hurd, P. Nagy, W. Li and C. Fox, “Revolutionizing biodegradable metals,” Materials Today, vol. 12, no. 10, pp. 22-32, 2009.
  • [51] Z., Tong, W. Zhang, J. Li and F. Cheng, “Initial laws of atmospheric galvanic corrosion for magnesium alloys,” The Chinese Journal of Nonferrous Metal, vol. 14, no. 4, pp. 554-561, 2004.
  • [52] N. Winzer, A. Atrens, C. Song, E. Ghali, W. Dietzel, K.U. Kainer, N. Hort and C. Blawert, “A critical review of the stress corroison cracking (SCC) of magnesium alloys,” Advenced Engineering Materials, vol. 7, no. 8, pp. 659-693, 2005.
  • [53] A. Atrens and W. Dietzel, “The negative difference effect and unipositive Mg+,” Advanced Engineering Materials, vol. 9, no. 4, pp. 292-297, 2007.
  • [54] G. Song and A. Atrens, "Recent insights into magnesium corrosion-A framework for improved alloy performance,” Advanced Engineering Materials, vol. 9, no. 3, pp. 177-183, 2007.
  • [55] H. Feng, S. Liu, Y. Du, T. Lei, R. Zeng and T.Yuan “Effect of the second phases on corrosion behavior of the Mg-Al-Zn alloys,” Journal of Alloys and Compounds, vol. 625, pp. 2330-2338, 2017.
  • [56] T. Valente, “Grain boundary effects on the behavior of WE43 magnesium castings in simulated marine environment,” Journal Materilas Science Letters, vol. 20, no. 1, pp. 67-69, 2001.
  • [57] E. Ghali, W. Dietzel and K.U. Kainer, “General and localized corrosion of magnesium alloys: a critical review,” Journal of Materials Engineerng and Performance, vol. 13, no. 1, pp. 7-23, 2004.
  • [58] K.M. William, “Stress-Corrosion Cracking,” ASM, 251, Ohio, 1993.
  • [59] N. Winzer, A. Atrens, W. Dietzel, V.S. Raja, G. Song and K.U. Kainer, “Characterisation of stress corrosion cracking (SCC) of Mg-Al alloys,” Materials Science and Engineering A, vol. 488, no. 1-2, pp. 339-351, 2008.
  • [60] C. Potzies and U.K. Kainer, “Fatigue of magnesium alloys,” Advenced Engineering Materials, vol. 6, no. 5, pp. 281-289, 2004.
  • [61] R.I. Stephens, C.D. Schrader and K.B. Lease, “Corrosion of AZ91E-T6 cast magnesium alloy in a 3.5 percent NaCl aqueous environment,” Journal of Engineering Material and Technology, vol. 117, no. 7, pp. 293-298, 1995.
  • [62] T.M. Yue, H.U. Ha and N.J. Musson, “Grain size effects on the mechanical properties of some squeeze cast light alloys,” Journal of Materials Science, vol. 30, no. 9, pp. 2277-2283, 1995.
  • [63] R. Zeng, E. Han, W. Ke, Y. Xu and L. Liu, “Mechanism of corrosion fatigue for as-extruded magnesium alloy AZ80,” Chinese Journal of Materials Research, vol. 18, no. 6, pp. 561-567, 2004.
  • [64] H. Baker, Alloys Phase Diagrams, 3rd. ed., USA: ASM Handbook,1998.
  • [65] H.Y. Choi and W.J. Kim, “The improvement of corrosion resistance of AZ91 magnesium alloy through development of dense and tight network structure of Al-rich α phase by addition of a trace amount of Ti,” Journal of Alloys and Compounds, vol. 696, pp. 736-745, 2017.
  • [66] E, Koc, B.K. Mathan, M. Unal, E. Candan, “Influence of zinc on the microstructure, mechanical properties and in vitro corrosion behavior of magnesium-zinc binary alloys,” Journal of Alloys and Compounds, vol. 648, pp. 291-296, 2015.
  • [67] M.D. Nave, A.K. Dahle and D.H. St. John, “The role of zinc in the eutectic solidification of magnesium‐aluminium‐zinc alloys,” Magnesium Technology 2000, 1rd ed., Tennessee, USA, Wiley Publishing, 2000, ch. 5, pp. 243-250.
  • [68] A.K. Dahle, Y.C. Lee, M.D. Nave, P.L. Schaffer and D.H. StJohn, “Development of the as-cast microstructure in magnesium-aluminium alloys,” Journal of Light Metals, vol. 1, no. 1, pp. 61-72, 2001.
  • [69] A. Srinivasan, S. Ningshen, U.K. Mudali, U.T.S. Pillai and B.C. Pai, “Influence of Si and Sb additions on the corrosion behavior of AZ91 magnesium alloy,” Intermetallics, vol. 15, no. 12, pp. 1511-1517, 2007.
  • [70] W. Liu, F. Cao, L. Zhong, L. Zheng, B. Jia, Z. Zhang and J. Zhang, “Influence of rare earth element Ce and La addition on corrosion behavior of AZ91 magnesium alloy,” Matererials and Corrosion, vol. 60, no. 10, pp. 795-803, 2009.
  • [71] D. Wenwen, S. Yangshan, M. Xuegang, X. Feng, Z. Min and W. Dengyun, “Microstructure and mechanical properties of Mg–Al based alloy with calcium and rare earth additions,” Materials Science and Engineering A, vol. 356, no. 1-2, pp. 1-7, 2003.
  • [72] J. Zhang, X. Niua, X. Qiua, K. Liu, C. Nan, D. Tang and J. Meng, “Effect of yttrium-rich metal on the microstructures, mechanical properties and corrosion behavior of die cast AZ91 alloy,” Journal of Alloys and Compounds, vol. 471, no. 1-2, pp. 322-330, 2009.
  • [73] A.D. Südholz, N. Birbilis, C.J. Bettles and M.A. Gibson, “Corrosion behavior of Mg alloy AZ91E with atypical alloying additions,” Journal of Alloys and Compounds, vol. 471, no. 1-2, pp. 109-115, 2009.
  • [74] Q. Wang, W. Chen, X. Zeng, Y. Lu, W. Ding and Y. Zh, “Effect of Ca addition on the microstructure and mechanical properties of AZ91 magnesium alloy,” Journal of Materials Science, vol. 36, no. 12, pp. 3035-3040, 2001.
  • [75] Y. Guangyin, S. Yangshan and D. Wenjiang, “Effects of bismuth and antimony additions on the microstructure and mechanical properties of AZ91 magnesium alloy,” Materials Science and Engineering: A, vol. 308, no. 1-2, pp. 38-44, 2001.
  • [76] K. Hirai, H. Somekawa, Y. Takigawa and K. Higashi, “Effects of Ca and Sr addition on mechanical properties of a cast AZ91 magnesium alloy at room and elevated temperature,” Materials Science and Engineering A, vol. 403, no. 1-2, pp. 276-280, 2005.
  • [77] W. Guohua, F. Yu, G. Hongtao, Z.Z. Chunquan and Y. Ping, “The effect of Ca and rare earth additions on the microstructure, mechanical properties and corrosion behavior of AZ91D,” Materials Science & Engineering A, vol. 408, no. 1-2, pp. 255-263, 2005.
  • [78] F. Yu, W. Guohua, G. Hongtao, L. Guanqun and Z. Chunquan, “Influence of lanthanum on the microstructure, mechanical property and corrosion resistance of magnesium alloy,” Journal of Materials Science, vol. 41, no. 17, pp. 5409-5416, 2006.
  • [79] S. J. Yao, D. Q. Yi, S. Yang, X. H. Cang and W. X. Li, “Effect of Sc on microstructures and corrosion properties of AZ91,” Materials Science Forum, vol. 546-549, pp. 139-142, 2007.
  • [80] M. Liu, S. Zanna, H. Ardelean, I. Frateur, P. Schmutz, G.L. Song, A. Atrens and P. Marcus, “A first quantitative XPS study of the surface films formed, by exposure to water, on Mg and on the Mg-Al intermetallics: Al3Mg2 and Mg17Al12,” Corrosion Science, vol. 51, no. 5, pp. 1115-1127, 2009.
  • [81] W.C. Kim, N.D. Nam, J.G. Kim and J.I. Lee, “Effect of strontium on corrosion properties of AZ91 magnesium alloy,” Electrochemical and Solid-State Letters, vol. 14, no. 11, pp. C21-C24, 2011.
  • [82] X. Ai and G. Quan, “Effect of Ti on the mechanical properties and corrosion of cast AZ91 magnesium alloy,” The Open Materials Science Journal, vol. 6, pp. 6-13, 2012.
  • [83] A. Boby, A. Srinivasan, U.T.S. Pillai and B.C. Pai, “Mechanical characterization and corrosion behavior of newly designed Sn and Y added AZ91 alloy,” Materials and Design, vol. 88, pp. 871-879, 2015.
  • [84] H.Y. Choi and W.J. Kim, “Development of the highly corrosion resistant AZ31 magnesium alloy by the addition of a trace amount of Ti,” Journal of Alloys and Compounds, vol. 664, pp. 25-37, 2016.
  • [85] H.Y. Choi and W.J. Kim, “Significant effects of adding trace amounts of Ti on the microstructure and corrosion properties of Mg–6Al–1Zn magnesium alloy,” Journal of Alloys and Compounds, vol. 614, pp. 49-55, 2014.
  • [86] J.H. Nordlien, K. Nişancıoglu, S. Ono and N. Masuko, “Morphology and structure of water-formed oxides on ternary MgAl alloys,” Journal of the Electrochemical Socity, vol. 144, no. 2, pp. 461-466, 1997.
  • [87] A.D. Südholz, “On the development of magnesium alloys with improved corrosion resistance,” PhD Thesis, Materials Engineering, Monash University, Melbourne, VIS, Australia, 2010.
  • [88] Q.A. Li, Q. Zhang, C.Q. Li and Y.G. Wang, “Effects of Bi on mechanical properties of magnesium alloy AZ81,” Advanced Materials Research, vol. 284-286, pp. 1693-1696, 2011.
  • [89] W. Zhou, N.N. Aung and Y. Sun, “Effect of antimony, bismuth and calcium addition on corrosion and electrochemical behaviour of AZ91 magnesium alloy,” Corrosion Science, vol. 51, no. 2, pp. 403-408, 2009.
  • [90] Y. Fan, G. Wu and C. Zhai, "Influence of cerium on the microstructure, mechanical properties and corrosion resistance of magnesium alloy," Materials Science & Engineering A, vol. 433, no. 1-2, pp. 208-215, 2006.
  • [91] F. Mert, C. Blawert, K. U. Kainer and N. Hort, “Influence of cerium additions on the corrosion behaviour of high pressure die cast AM50 alloy,” Corrosion Science, vol. 65, pp. 145-151, 2012.
  • [92] M. Bornapour, M. Celikin, M. Cerruti and M. Pekgüleryüz, “Magnesium implant alloy with low levels of strontium and calcium: the third element effect and phase selection improve bio-corrosion resistance and mechanical performance,” Materials Science and Engineering: C, vol. 35, pp. 279-282, 2014.
  • [93] T.A. Leil, N. Hort, W. Dietzel, C. Blawert, Y. Huang, K.U. Kainer and K.P. Rao, “Microstructure and corrosion behaviour of Mg-Sn-Ca alloys after extrusion,” Transactions of Nonferrous Metals Society of China, vol. 19, no. 1, pp. 40-44, 2009.
  • [94] Y. Tamura, Y. Sugimoto, H. Soda and A. McLean, “Structure and mechanical properties of Mg-Ca and Mg-Ca-Zr alloys,” Journal of The Japan Institute of Light Metals, vol. 63, no. 8, pp. 279-285, 2013.
  • [95] P. Zhao, Q. Wang, C. Zhai and Y. Zhu “Effects of strontium and titanium on the microstructure, tensile properties and creep behavior of AM50 alloy,” Materials Science and Engineering A, vol. 444, no. 1-2, pp. 318-326, 2007.
  • [96] N.D. Nam, W.C. Kim, J.G. Kim, K.S. Shin and H.C. Jung, “Corrosion resistance of Mg-5Al-xSr alloys,” Journal of Alloys and Compounds, vol. 509, no. 14, pp. 4839-4847, 2011.
  • [97] M.C. Zhao, Y.L. Deng and X.M. Zhang, “Strengthening and improvement of ductility without loss of corrosion performance in a magnesium alloy by homogenizing annealing,” Scripta Materialia, vol. 58, pp. 560-563, 2008.
  • [98] H. Kuşdemir, “AZ91 magnezyum alaşımının korozyon davranışları üzerine ilave alaşım elementlerinin etkisi,” Yüksek Lisans Tezi, Metal Eğitimi Anabilim Dalı, Karabük Üniversitesi, Karabük, Türkiye, 2008.
  • [99] G. Ünver, “AZ91 magnezyum alaşımına Ti ve Cr alaşım elementlerinin ilavesinin özelliklere etkisinin incelenemesi,” Yüksek Lisans Tezi, Fen Bilimleri Enstitüsü, Sakarya Üniversitesi, Sakarya, Tüekiye, 2011.
  • [100] C. Lin and X. Li “Role of CO2 in the initial stage of atmospheric corrosion of AZ91 magnesium alloy in the presence of NaCl,” Rare Metals, vol. 25, no. 2, pp. 190-196, 2006.
  • [101] M. Esmaily, D.B. Blucher, J.E. Svensson, M. Halvarsson and L.G. Johansson, “New insights into the corrosion of magnesium alloys -the role of aluminum,” Scripta Materialia, vol. 115, pp. 91-95, 2016.
  • [102] T.S. Shih, J.B. Liu and P.S. Wei “Oxide films on magnesium and magnesium alloys,” Materials Chemistry and Physics, vol. 104, pp. 497-504, 2007.
  • [103] S. Jr. Feliu, J.C. Galván, A. Pardo, M.C. Merino and R. Arrabal, “Native air-formed oxide film and its effect on magnesium alloys corrosion,” The Open Corrosion Journal, vol. 3, pp. 80-91, 2010.
  • [104] F. Czerwinski, “Oxidation characteristics of magnesium alloys,” JOM, vol. 64, no. 12, pp. 1477-1483, 2012.
  • [105] M. Çelik, “AZ91 magnezyum alaşımlarında soğuma hızlarının mekanik ve korozyon özelliklerine etkisinin incelenmesi,” Yüksek Lisans Tezi, Makine ve İmalat Mühendisliği Anabilim Dalı, Bilecik Şeyh Edebali Üniversitesi, Bilecik, Türkiye, 2014.

AZ Serisi Mg Alaşımlarının Korozyon Davranışlarında β-Fazının Rolü

Year 2018, Volume: 6 Issue: 4, 1139 - 1162, 01.08.2018
https://doi.org/10.29130/dubited.416767

Abstract

AZ serisi Mg alaşımlarının korozyon mekanizmalarını anlamaya yönelik literatürde birçok çalışma bulunmasına
rağmen, bu alaşımların korozyonunda β fazının rolü üzerindeki görüşler çelişkilidir. Dolaysıyla bu derleme
çalışmasında, AZ serisi Mg alaşımlarının korozyonu üzerine mikro alaşımlama elementlerinin ve katılaşma
hızının β fazı yapısına olan etkileri irdelenmiştir. Ayrıca, alaşımların korozyon özelliklerinde yüzeyde oluşan
oksit filmi-β fazı ilişkisi de değerlendirilmiştir.
Sonuçlar, AZ serisi Mg alaşımlarındaki β fazının boyutuna ve miktarına bağlı olarak hem korozyonu arttırıcı
hem de engelleyici rol oynadığını göstermiştir. Literatürde, bazı araştırmacıların neden β fazının bariyer etkisi ile
korozyonu engellediğini veya bazılarının tam tersi neden β fazının mikrogalvanik çift oluşturarak galvanik
korozyonu arttırdığı konusundaki çelişkili değerlendirmelerin üretim yöntemlerinden ve buna bağlı β fazı
yapısındaki farklılıklardan kaynaklandığı sonucuna varılmıştır.

References

  • [1] H.E. Friedrich and B.L. Mordike, Magnesium Technology: Metallurgy, Design Data, Applications, 1. Baskı, Berlin, Almanya: Springer-Verlag Berlin Heidelberg, 2006, pp. 677.
  • [2] A.A. Luo and A.K. Sachdev “Applications of magnesium alloys in automotive engineering,” Advances in Wrought Magnesium Alloys, Cambridge, UK: Woodhead Publishing, 2012, pp. 393-426.
  • [3] M.Ö. Pekgüleryüz, K.U. Kainer and A.A. Kaya, “Fundamentals of magnsium alloy metallurgy,” Philadelpia: Woodhead Publishing, 2013.
  • [4] M.V. Manuel, A. Singh, M. Alderman and N.R. Neelameggham, Magnesium Technology 2015, 1. Baskı, USA: Wiley Publishing, 2015, pp. 301-347.
  • [5] F. Witte, V. Kaese, H. Haferkamp, E. Switzer, A. Meyer-Lindenberg, C.J. Wirth and H. Windhagen, “In vivo corrosion of four magnesium alloys and the associated bone response,” Biomaterials, vol. 26, no. 17, pp. 3557-3563, 2005.
  • [6] M.P. Staiger, A.M. Pietak, J. Huadmai and G. Dias, “Magnesium and its alloys as orthopedic biomaterials: a review,” Biomaterials, vol. 27, no. 9, pp. 1728-1734, 2006.
  • [7] G.E.J. Poinern, S. Brundavanam and D. Fawcett, “Biomedical magnesium alloys: a review of material properties, surface modifications and potential as a biogradable orthopaedic implant,” American Journal of Biomedical Engineering, vol. 2, no. 6, pp. 218-240, 2012.
  • [8] H. Waizy, J.M. Seitz and J. Reifenrath, “Biodegradable magnesium implants for orthopedic applications,” American Journal of Biomedical Engineering,” vol. 48, no. 1, pp. 39-50, 2013.
  • [9] S. Agarwal, J. Curtin, B. Duffy and S. Jaiswal, “Biodegradable magnesium alloys for orthopaedic applications: A review on corrosion, biocompatibility and surface modifications,” Materials Science and Engineering, vol. 68, pp. 948-963, 2016.
  • [10] H. Gerengi, E. Kaya, M. Cabrini, “Saf magnezyumun biyobozunur malzeme olarak kullanılma potansiyeli,” İleri Teknoloji Bilimleri Dergisi, c. 6, ss. 9-25, 2017.
  • [11] C. Blawert, N. Hort and K.U. Kainer, “Automotive applications of magnesium and its alloys,” Transactions of the Indian of Metals, vol. 57, no. 4, pp. 397-408, 2004.
  • [12] J.E. Gray and B. Luan, “Protective coatings on magnesium and its alloys-a critical review,” Journal of Alloys and Compounds, vol. 336, no. 1-2, pp. 88-113, 2002.
  • [13] H. Hornberger, S. Virtanen and A.R. Boccaccini, “Biomedical coatings on magnesium alloys-A review,” Acta Biomaterialia, vol. 8, no. 7, pp. 2442-2455, 2012.
  • [14] F. Hehmann, F.H. Froes and W. Young, “Rapid solidification of aluminium, magnesium and titanium,” Journal of Metals, vol. 39, no. 8, pp. 14-21, 1987.
  • [15] O. Lunder, J.E. Lein, T.K. Aune and K. Nisancioglu, “The role of magnesium aluminuim (Mg17Al12) phase in the corrosion of magnesium alloy AZ91,” Journal Corrosion, vol. 45, no. 9, pp. 741-748, 1989.
  • [16] M. Anık, P. Avcı, A. Tanverdi, I. Çelikyürek, B. Baksan and R. Güler, “Effect of the eutectic phase mixture on the anodic behavior of alloy AZ91,” Materials and Design, vol. 27, no. 5, pp. 347-355, 2006.
  • [17] A. Pardo, M.C. Merino, A.E. Coy, F. Viejo, R. Arrabal and S. Felıú Jr., “Influence of microstructure and composition on the corrosion behaviour of Mg/Al alloys in chloride media,” Electrochimica Acta, vol. 53 no. 27, pp. 7890-7902, 2008.
  • [18] S. Candan, M. Unal, M. Turkmen, E. Koc, Y. Turen and E. Candan, “Improvement of mechanical and corrosion properiıes of magnesium alloy by lead addition,” Materials Science & Engineering A, vol. 501, no. 1-2, pp. 115-118, 2009.
  • [19] S.A. Salman, R. Ichino ve M. Okido, “A Comparative electrochemical study of AZ31 and AZ91magnesium alloy,” International Journal of Corrosion, vol. 2010, pp. 1-7, 2010.
  • [20] J. Wang, S. Huang, S. Guo, Y. Wei, F. Pan, “Effects of cooling rate on microstructure, mechanical and corrosion properties of Mg-Zn-Ca alloy,” Transactions of Nonferrous Metals Society of China, vol. 23, pp.1930-1935, 2013.
  • [21] S. Candan, M. Unal, E. Koc, Y. Turen and E. Candan, “Effect of titanium additions on mechanical and corrosion behaviours of AZ91 magnesium alloy,” Journal of Alloys and Compounds, vol. 672, pp. 197-203, 2011.
  • [22] A. Samaniego, I. Llorente and S.Jr. Feliu, “Combined effect of composition and surface condition on corrosion behaviour of magnesium alloys AZ31 and AZ61,” Corrosion Science, vol. 68, pp. 66-71, 2013.
  • [23] I.B. Singh, M. Singh and S. Das, “A comparative corrosion behavior of Mg, AZ31 and AZ91 alloys in 3.5% NaCl solution,” Journal of Magnesium and Alloys, vol. 3, no. 2, pp. 142-148, 2015.
  • [24] S. Candan, M. Celik and E. Candan, “Effectiveness of Ti-micro alloying in relation to cooling rate on corrosion of AZ91 Mg Alloy,” Journal of Alloys and Compounds, vol. 672, pp. 197-203, 2016.
  • [25] S. Candan and E. Candan “A Comparative study on corrosion of Mg-Al-Zn alloys,”. Transactions of Nonferrous Metals Society of China, In Press, 2018.
  • [26] Y.L. Cheng, T.W. Qin, H.M. Wang and Z. Zhang, “Comparison of corrosion behaviors of AZ31, AZ91, AM60 and ZK60 magnesium,” Transactions of Nonferrous Metals Society of China, vol. 19, no. 3, pp. 517-524, 2009.
  • [27] L. Wang, T. Shinohara and B.P. Zhang, “Electrochemical behaviour of AZ61 magnesium alloy in dilute NaCl solutions,” Materials and Design, vol. 33, pp. 345-349, 2012.
  • [28] Y. Guangyin, S. Yangshan and D. Wenjiang, “Effects of Sb addition on the microstructure and mechanical properties of AZ91 magnesium alloy,” Scripta Materialia, vol. 43, no. 11, pp. 1009-1013, 2000.
  • [29] F. Yu, W. Guohua and Z. Chunquan, “Influence of cerium on the microstructure, mechanical properties and corrosion resistance of magnesium alloys,” Materials Science and Engineering A, vol. 433, no. 1-2, pp. 208-215, 2006.
  • [30] G. Song, A. Atrens, X. Wu and Bo. Zhang, “Corrosion behaviour of AZ21, AZ501 and AZ91 in sodium chloride,” Corrosion Science, vol. 40, no. 10, pp. 1769-1791, 1998.
  • [31] E. Koç, “Biyoçözünür magnezyum alaşımlarının korozyona bağlı mekanik davranışlarının araştırılması,” Doktora Tezi, Metal Eğitimi Anabilim Dalı, Karabük Üniversitesi, Karabük, Türkiye, 2013.
  • [32] A. Tanverdi, “Effect of solidification rate and Si and Y additions on corrosion behavior of AZ91 Mg alloy,” Ph.D. Thesis, Institute of Science and Technology, Osmangazi University, Eskisehir, Turkey, 2005.
  • [33] G. Song, A. Atrens and M. Dargusch “Influence of microstructure on the corrosion of die cast AZ91D,” Corrosion Science, vol. 41, no. 2, pp. 249-273, 1999.
  • [34] G. Wu, Y. Fan, H. Gao, C. Zhai and Y.P. Zhu, “The effect of Ca and rare earth elements on the microstructure, mechanical properties and corrosion behaviour of AZ91D,” Materials Science and Engineering: A, vol. 408, no. 1-2, pp. 255-263, 2005.
  • [35] X. Zhou, Y. Huang, Z. Wei, Q. Chen and F. Gan, “Improvement of corrosion resistance of AZ91D magnesium alloy by holmium addition,” Corrosion Science, vol. 48, no. 12, pp. 4223-4233, 2006.
  • [36] ASM Handbook, Corrosion, 13. Baskı, Ohio, USA: ASM International, 1987, pp. 704
  • [37] G. Song and A. Atrens, “Corrosion mechanisms of magnesium alloys,” Advence Engineering Materials, vol. 1, no. 1, pp. 11-33, 1999.
  • [38] R. Zeng, J. Zhang, W. Huang, W. Dietzel, K.U. Kainer, C. Blawert and K. Wei, “Review of studies on corrosion of magnesium alloys,” Transactions of Nonferrous Metals Societyof China, vol. 16, no. 2, pp. 763-771, 2006.
  • [39] K.W. Guo, “A review of magnesium/magnesium alloys corrosion and its protection,” Recent Patents on Corrosion Science, vol. 2, pp. 13-21, 2010.
  • [40] A.Atrens, G.L. Song, F. Cao, Z. Shi and P.K. Bowen, “Advances in Mg corrosion and research suggestions,” Jornal of Magnesium and Alloys, vol. 1, no. 3, pp. 177-200, 2013.
  • [41] A. Atrens, N. Winzer and W. Dietzel, “Stress corrosion cracking of magnesium alloys,” Advanced Engineering Materials, vol. 13, no. 1-2, pp. 11-18, 2011.
  • [42] K. Gusieva, C.H.J. Davies, J.R. Scully and N. Birbilis, “Corrosion of magnesium alloys: the role of alloying,” J. International Materials Reviews, vol. 60, no. 3, pp. 169-194, 2015.
  • [43] M. Esmaily, J.E. Svensson, S. Fajardo, N. Birbilis, G.S. Frankel, S. Virtanen, R. Arrabal, S. Thomas and L.G. Johansson, “Fundamentals and advances in magnesium alloy corrosion,” Progress in Materials Science, vol. 89, pp. 92-193, 2017.
  • [44] G.L. Maker and J. Kruger, “Corrosion of magnesium,” International Material Review, vol. 38, no. 3, pp. 138-153, 1993.
  • [45] G. Song and Atrens, A., “Understanding magnesium corrosion”, Advenced Engineering Materials, vol. 5, no. 12, pp. 837-858, 2003.
  • [46] G. Song, C. Blawert, W. Dietzel and A. Atrens, “A study on stress corroion cracking and hydrogen embrittlement of AZ31 magnesium alloy,” Materials Science Engineering A, vol. 399, no. 1-2, pp. 308-317, 2005.
  • [47] R. Zeng, W. Zhou, E. Han and W. Ke, “Effect of pH value on corrosion of as-extruded AM60 magnesium alloy,” Acta Metallurgica Sinica, vol. 41, no. 3, pp. 307-311, 2005.
  • [48] D. Eliezer, P. Uzan and E. Aghion, “Effect of second phases on the corrosion behaviour of magnesium alloys,” Material Science Forum, vol. 419-422, pp. 857-866, 2003.
  • [49] L.F. Guo, T.M. Yue and H.C. Man, “Excimer laser surface treatment of magnesium alloy WE43 for corrosion resistance improvement,” Journel of Materials Science, vol. 40, no. 13, pp. 3531-3533, 2005.
  • [50] Y. Yun, Z. Dong, N. Lee, Y. Lui, D. Xue, X. Guo, J. Kuhlmann, A. Doepke, H.B. Halsall, W. Heineman, S. Sundaramurthy, J.M. Schulz, Z. Yin, V., Shanov, D. Hurd, P. Nagy, W. Li and C. Fox, “Revolutionizing biodegradable metals,” Materials Today, vol. 12, no. 10, pp. 22-32, 2009.
  • [51] Z., Tong, W. Zhang, J. Li and F. Cheng, “Initial laws of atmospheric galvanic corrosion for magnesium alloys,” The Chinese Journal of Nonferrous Metal, vol. 14, no. 4, pp. 554-561, 2004.
  • [52] N. Winzer, A. Atrens, C. Song, E. Ghali, W. Dietzel, K.U. Kainer, N. Hort and C. Blawert, “A critical review of the stress corroison cracking (SCC) of magnesium alloys,” Advenced Engineering Materials, vol. 7, no. 8, pp. 659-693, 2005.
  • [53] A. Atrens and W. Dietzel, “The negative difference effect and unipositive Mg+,” Advanced Engineering Materials, vol. 9, no. 4, pp. 292-297, 2007.
  • [54] G. Song and A. Atrens, "Recent insights into magnesium corrosion-A framework for improved alloy performance,” Advanced Engineering Materials, vol. 9, no. 3, pp. 177-183, 2007.
  • [55] H. Feng, S. Liu, Y. Du, T. Lei, R. Zeng and T.Yuan “Effect of the second phases on corrosion behavior of the Mg-Al-Zn alloys,” Journal of Alloys and Compounds, vol. 625, pp. 2330-2338, 2017.
  • [56] T. Valente, “Grain boundary effects on the behavior of WE43 magnesium castings in simulated marine environment,” Journal Materilas Science Letters, vol. 20, no. 1, pp. 67-69, 2001.
  • [57] E. Ghali, W. Dietzel and K.U. Kainer, “General and localized corrosion of magnesium alloys: a critical review,” Journal of Materials Engineerng and Performance, vol. 13, no. 1, pp. 7-23, 2004.
  • [58] K.M. William, “Stress-Corrosion Cracking,” ASM, 251, Ohio, 1993.
  • [59] N. Winzer, A. Atrens, W. Dietzel, V.S. Raja, G. Song and K.U. Kainer, “Characterisation of stress corrosion cracking (SCC) of Mg-Al alloys,” Materials Science and Engineering A, vol. 488, no. 1-2, pp. 339-351, 2008.
  • [60] C. Potzies and U.K. Kainer, “Fatigue of magnesium alloys,” Advenced Engineering Materials, vol. 6, no. 5, pp. 281-289, 2004.
  • [61] R.I. Stephens, C.D. Schrader and K.B. Lease, “Corrosion of AZ91E-T6 cast magnesium alloy in a 3.5 percent NaCl aqueous environment,” Journal of Engineering Material and Technology, vol. 117, no. 7, pp. 293-298, 1995.
  • [62] T.M. Yue, H.U. Ha and N.J. Musson, “Grain size effects on the mechanical properties of some squeeze cast light alloys,” Journal of Materials Science, vol. 30, no. 9, pp. 2277-2283, 1995.
  • [63] R. Zeng, E. Han, W. Ke, Y. Xu and L. Liu, “Mechanism of corrosion fatigue for as-extruded magnesium alloy AZ80,” Chinese Journal of Materials Research, vol. 18, no. 6, pp. 561-567, 2004.
  • [64] H. Baker, Alloys Phase Diagrams, 3rd. ed., USA: ASM Handbook,1998.
  • [65] H.Y. Choi and W.J. Kim, “The improvement of corrosion resistance of AZ91 magnesium alloy through development of dense and tight network structure of Al-rich α phase by addition of a trace amount of Ti,” Journal of Alloys and Compounds, vol. 696, pp. 736-745, 2017.
  • [66] E, Koc, B.K. Mathan, M. Unal, E. Candan, “Influence of zinc on the microstructure, mechanical properties and in vitro corrosion behavior of magnesium-zinc binary alloys,” Journal of Alloys and Compounds, vol. 648, pp. 291-296, 2015.
  • [67] M.D. Nave, A.K. Dahle and D.H. St. John, “The role of zinc in the eutectic solidification of magnesium‐aluminium‐zinc alloys,” Magnesium Technology 2000, 1rd ed., Tennessee, USA, Wiley Publishing, 2000, ch. 5, pp. 243-250.
  • [68] A.K. Dahle, Y.C. Lee, M.D. Nave, P.L. Schaffer and D.H. StJohn, “Development of the as-cast microstructure in magnesium-aluminium alloys,” Journal of Light Metals, vol. 1, no. 1, pp. 61-72, 2001.
  • [69] A. Srinivasan, S. Ningshen, U.K. Mudali, U.T.S. Pillai and B.C. Pai, “Influence of Si and Sb additions on the corrosion behavior of AZ91 magnesium alloy,” Intermetallics, vol. 15, no. 12, pp. 1511-1517, 2007.
  • [70] W. Liu, F. Cao, L. Zhong, L. Zheng, B. Jia, Z. Zhang and J. Zhang, “Influence of rare earth element Ce and La addition on corrosion behavior of AZ91 magnesium alloy,” Matererials and Corrosion, vol. 60, no. 10, pp. 795-803, 2009.
  • [71] D. Wenwen, S. Yangshan, M. Xuegang, X. Feng, Z. Min and W. Dengyun, “Microstructure and mechanical properties of Mg–Al based alloy with calcium and rare earth additions,” Materials Science and Engineering A, vol. 356, no. 1-2, pp. 1-7, 2003.
  • [72] J. Zhang, X. Niua, X. Qiua, K. Liu, C. Nan, D. Tang and J. Meng, “Effect of yttrium-rich metal on the microstructures, mechanical properties and corrosion behavior of die cast AZ91 alloy,” Journal of Alloys and Compounds, vol. 471, no. 1-2, pp. 322-330, 2009.
  • [73] A.D. Südholz, N. Birbilis, C.J. Bettles and M.A. Gibson, “Corrosion behavior of Mg alloy AZ91E with atypical alloying additions,” Journal of Alloys and Compounds, vol. 471, no. 1-2, pp. 109-115, 2009.
  • [74] Q. Wang, W. Chen, X. Zeng, Y. Lu, W. Ding and Y. Zh, “Effect of Ca addition on the microstructure and mechanical properties of AZ91 magnesium alloy,” Journal of Materials Science, vol. 36, no. 12, pp. 3035-3040, 2001.
  • [75] Y. Guangyin, S. Yangshan and D. Wenjiang, “Effects of bismuth and antimony additions on the microstructure and mechanical properties of AZ91 magnesium alloy,” Materials Science and Engineering: A, vol. 308, no. 1-2, pp. 38-44, 2001.
  • [76] K. Hirai, H. Somekawa, Y. Takigawa and K. Higashi, “Effects of Ca and Sr addition on mechanical properties of a cast AZ91 magnesium alloy at room and elevated temperature,” Materials Science and Engineering A, vol. 403, no. 1-2, pp. 276-280, 2005.
  • [77] W. Guohua, F. Yu, G. Hongtao, Z.Z. Chunquan and Y. Ping, “The effect of Ca and rare earth additions on the microstructure, mechanical properties and corrosion behavior of AZ91D,” Materials Science & Engineering A, vol. 408, no. 1-2, pp. 255-263, 2005.
  • [78] F. Yu, W. Guohua, G. Hongtao, L. Guanqun and Z. Chunquan, “Influence of lanthanum on the microstructure, mechanical property and corrosion resistance of magnesium alloy,” Journal of Materials Science, vol. 41, no. 17, pp. 5409-5416, 2006.
  • [79] S. J. Yao, D. Q. Yi, S. Yang, X. H. Cang and W. X. Li, “Effect of Sc on microstructures and corrosion properties of AZ91,” Materials Science Forum, vol. 546-549, pp. 139-142, 2007.
  • [80] M. Liu, S. Zanna, H. Ardelean, I. Frateur, P. Schmutz, G.L. Song, A. Atrens and P. Marcus, “A first quantitative XPS study of the surface films formed, by exposure to water, on Mg and on the Mg-Al intermetallics: Al3Mg2 and Mg17Al12,” Corrosion Science, vol. 51, no. 5, pp. 1115-1127, 2009.
  • [81] W.C. Kim, N.D. Nam, J.G. Kim and J.I. Lee, “Effect of strontium on corrosion properties of AZ91 magnesium alloy,” Electrochemical and Solid-State Letters, vol. 14, no. 11, pp. C21-C24, 2011.
  • [82] X. Ai and G. Quan, “Effect of Ti on the mechanical properties and corrosion of cast AZ91 magnesium alloy,” The Open Materials Science Journal, vol. 6, pp. 6-13, 2012.
  • [83] A. Boby, A. Srinivasan, U.T.S. Pillai and B.C. Pai, “Mechanical characterization and corrosion behavior of newly designed Sn and Y added AZ91 alloy,” Materials and Design, vol. 88, pp. 871-879, 2015.
  • [84] H.Y. Choi and W.J. Kim, “Development of the highly corrosion resistant AZ31 magnesium alloy by the addition of a trace amount of Ti,” Journal of Alloys and Compounds, vol. 664, pp. 25-37, 2016.
  • [85] H.Y. Choi and W.J. Kim, “Significant effects of adding trace amounts of Ti on the microstructure and corrosion properties of Mg–6Al–1Zn magnesium alloy,” Journal of Alloys and Compounds, vol. 614, pp. 49-55, 2014.
  • [86] J.H. Nordlien, K. Nişancıoglu, S. Ono and N. Masuko, “Morphology and structure of water-formed oxides on ternary MgAl alloys,” Journal of the Electrochemical Socity, vol. 144, no. 2, pp. 461-466, 1997.
  • [87] A.D. Südholz, “On the development of magnesium alloys with improved corrosion resistance,” PhD Thesis, Materials Engineering, Monash University, Melbourne, VIS, Australia, 2010.
  • [88] Q.A. Li, Q. Zhang, C.Q. Li and Y.G. Wang, “Effects of Bi on mechanical properties of magnesium alloy AZ81,” Advanced Materials Research, vol. 284-286, pp. 1693-1696, 2011.
  • [89] W. Zhou, N.N. Aung and Y. Sun, “Effect of antimony, bismuth and calcium addition on corrosion and electrochemical behaviour of AZ91 magnesium alloy,” Corrosion Science, vol. 51, no. 2, pp. 403-408, 2009.
  • [90] Y. Fan, G. Wu and C. Zhai, "Influence of cerium on the microstructure, mechanical properties and corrosion resistance of magnesium alloy," Materials Science & Engineering A, vol. 433, no. 1-2, pp. 208-215, 2006.
  • [91] F. Mert, C. Blawert, K. U. Kainer and N. Hort, “Influence of cerium additions on the corrosion behaviour of high pressure die cast AM50 alloy,” Corrosion Science, vol. 65, pp. 145-151, 2012.
  • [92] M. Bornapour, M. Celikin, M. Cerruti and M. Pekgüleryüz, “Magnesium implant alloy with low levels of strontium and calcium: the third element effect and phase selection improve bio-corrosion resistance and mechanical performance,” Materials Science and Engineering: C, vol. 35, pp. 279-282, 2014.
  • [93] T.A. Leil, N. Hort, W. Dietzel, C. Blawert, Y. Huang, K.U. Kainer and K.P. Rao, “Microstructure and corrosion behaviour of Mg-Sn-Ca alloys after extrusion,” Transactions of Nonferrous Metals Society of China, vol. 19, no. 1, pp. 40-44, 2009.
  • [94] Y. Tamura, Y. Sugimoto, H. Soda and A. McLean, “Structure and mechanical properties of Mg-Ca and Mg-Ca-Zr alloys,” Journal of The Japan Institute of Light Metals, vol. 63, no. 8, pp. 279-285, 2013.
  • [95] P. Zhao, Q. Wang, C. Zhai and Y. Zhu “Effects of strontium and titanium on the microstructure, tensile properties and creep behavior of AM50 alloy,” Materials Science and Engineering A, vol. 444, no. 1-2, pp. 318-326, 2007.
  • [96] N.D. Nam, W.C. Kim, J.G. Kim, K.S. Shin and H.C. Jung, “Corrosion resistance of Mg-5Al-xSr alloys,” Journal of Alloys and Compounds, vol. 509, no. 14, pp. 4839-4847, 2011.
  • [97] M.C. Zhao, Y.L. Deng and X.M. Zhang, “Strengthening and improvement of ductility without loss of corrosion performance in a magnesium alloy by homogenizing annealing,” Scripta Materialia, vol. 58, pp. 560-563, 2008.
  • [98] H. Kuşdemir, “AZ91 magnezyum alaşımının korozyon davranışları üzerine ilave alaşım elementlerinin etkisi,” Yüksek Lisans Tezi, Metal Eğitimi Anabilim Dalı, Karabük Üniversitesi, Karabük, Türkiye, 2008.
  • [99] G. Ünver, “AZ91 magnezyum alaşımına Ti ve Cr alaşım elementlerinin ilavesinin özelliklere etkisinin incelenemesi,” Yüksek Lisans Tezi, Fen Bilimleri Enstitüsü, Sakarya Üniversitesi, Sakarya, Tüekiye, 2011.
  • [100] C. Lin and X. Li “Role of CO2 in the initial stage of atmospheric corrosion of AZ91 magnesium alloy in the presence of NaCl,” Rare Metals, vol. 25, no. 2, pp. 190-196, 2006.
  • [101] M. Esmaily, D.B. Blucher, J.E. Svensson, M. Halvarsson and L.G. Johansson, “New insights into the corrosion of magnesium alloys -the role of aluminum,” Scripta Materialia, vol. 115, pp. 91-95, 2016.
  • [102] T.S. Shih, J.B. Liu and P.S. Wei “Oxide films on magnesium and magnesium alloys,” Materials Chemistry and Physics, vol. 104, pp. 497-504, 2007.
  • [103] S. Jr. Feliu, J.C. Galván, A. Pardo, M.C. Merino and R. Arrabal, “Native air-formed oxide film and its effect on magnesium alloys corrosion,” The Open Corrosion Journal, vol. 3, pp. 80-91, 2010.
  • [104] F. Czerwinski, “Oxidation characteristics of magnesium alloys,” JOM, vol. 64, no. 12, pp. 1477-1483, 2012.
  • [105] M. Çelik, “AZ91 magnezyum alaşımlarında soğuma hızlarının mekanik ve korozyon özelliklerine etkisinin incelenmesi,” Yüksek Lisans Tezi, Makine ve İmalat Mühendisliği Anabilim Dalı, Bilecik Şeyh Edebali Üniversitesi, Bilecik, Türkiye, 2014.
There are 105 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Şennur Candan

Serdar Çim

Seren Emir This is me

Ercan Candan This is me

Publication Date August 1, 2018
Published in Issue Year 2018 Volume: 6 Issue: 4

Cite

APA Candan, Ş., Çim, S., Emir, S., Candan, E. (2018). AZ Serisi Mg Alaşımlarının Korozyon Davranışlarında β-Fazının Rolü. Duzce University Journal of Science and Technology, 6(4), 1139-1162. https://doi.org/10.29130/dubited.416767
AMA Candan Ş, Çim S, Emir S, Candan E. AZ Serisi Mg Alaşımlarının Korozyon Davranışlarında β-Fazının Rolü. DUBİTED. August 2018;6(4):1139-1162. doi:10.29130/dubited.416767
Chicago Candan, Şennur, Serdar Çim, Seren Emir, and Ercan Candan. “AZ Serisi Mg Alaşımlarının Korozyon Davranışlarında β-Fazının Rolü”. Duzce University Journal of Science and Technology 6, no. 4 (August 2018): 1139-62. https://doi.org/10.29130/dubited.416767.
EndNote Candan Ş, Çim S, Emir S, Candan E (August 1, 2018) AZ Serisi Mg Alaşımlarının Korozyon Davranışlarında β-Fazının Rolü. Duzce University Journal of Science and Technology 6 4 1139–1162.
IEEE Ş. Candan, S. Çim, S. Emir, and E. Candan, “AZ Serisi Mg Alaşımlarının Korozyon Davranışlarında β-Fazının Rolü”, DUBİTED, vol. 6, no. 4, pp. 1139–1162, 2018, doi: 10.29130/dubited.416767.
ISNAD Candan, Şennur et al. “AZ Serisi Mg Alaşımlarının Korozyon Davranışlarında β-Fazının Rolü”. Duzce University Journal of Science and Technology 6/4 (August 2018), 1139-1162. https://doi.org/10.29130/dubited.416767.
JAMA Candan Ş, Çim S, Emir S, Candan E. AZ Serisi Mg Alaşımlarının Korozyon Davranışlarında β-Fazının Rolü. DUBİTED. 2018;6:1139–1162.
MLA Candan, Şennur et al. “AZ Serisi Mg Alaşımlarının Korozyon Davranışlarında β-Fazının Rolü”. Duzce University Journal of Science and Technology, vol. 6, no. 4, 2018, pp. 1139-62, doi:10.29130/dubited.416767.
Vancouver Candan Ş, Çim S, Emir S, Candan E. AZ Serisi Mg Alaşımlarının Korozyon Davranışlarında β-Fazının Rolü. DUBİTED. 2018;6(4):1139-62.