Review
BibTex RIS Cite

Pestisit indüklü kardiyak toksisite araştırmalarında zebra balığı (Danio rerio)

Year 2019, Volume: 7 Issue: 3, 1417 - 1430, 31.07.2019
https://doi.org/10.29130/dubited.528427

Abstract

Çevresel kirleticiler, karasal ve
sucul ekosistemlerde bozulmalara sebep olmalarının yanı sıra pek çok sağlık
sorununa da yol açmaktadır. Pestisitler, devamlı kullanımla çevreye yayılan,
hareket eden, farklı çevre fazlarında karşılaştıkları hedef dışı organizmalarda
biyolojik etki gösteren kirleticiler olarak bilinmektedir. Pestisitlerin
kardiyovasküler hastalıklarla da ilişkili oldukları düşünülmektedir. Bu
kimyasalların kalpte meydana getirebilecekleri olası etkilerin araştırılmasında
laboratuvar çalışmalarının önemi büyüktür. Zebra balığı (Danio rerio), kardiyak toksisite çalışmalarında gerek embriyonik
gerekse ergin dönemde araştırıcılara sayısız kolaylık sağlayan bir model
organizma olarak kabul edilmektedir. Pestisitlerin kalp üzerindeki toksik
etkilerinin ortaya konması ve etki mekanizmalarının araştırılmasında son
yıllarda zebra balıkları sıklıkla kullanılmaktadır. Bu derlemede, pestisit
maruziyetine bağlı ortaya çıkan kalp anomalilerinin değerlendirilmesinde neden
son yıllarda zebra balığının model sistem olarak kabul edildiğine ayrıntıları
ile değinilmiştir.

References

  • [1] M. Arias-Estévez, E. López-Periago, E. Martínez-Carballo, J. Simal-Gándara, J. C. Mejuto, and L. García-Río, “The mobility and degradation of pesticides in soils and the pollution of groundwater resources,” Agriculture, Ecosystems & Environment, vol. 123, no. 4, pp. 247-260, 2008.
  • [2] D. Mozaffarian, P. W. Wilson and W. B. Kannel, “Beyond established and novel risk factors: lifestyle risk factors for cardiovascular disease,” Circulation, vol. 117, no. 23, pp. 3031-3038, 2008.
  • [3] A. Lukaszewicz-Hussain, “Role of oxidative stress in organophosphate insecticide toxicity–Short review,” Pesticide Biochemistry and Physiology, vol. 98, no. 2, pp. 145-150, 2010.
  • [4] A. Wahab, R. Hod, N. H. Ismail and N. Omar, “The effect of pesticide exposure on cardiovascular system: a systematic review,”, International Journal of Community Medicine and Public Health, vol. 3, no. 1, pp. 1-10, 2016.
  • [5] D. T. Wigle, T. E. Arbuckle, M. C. Turner, A. Bérubé, Q. Yang, S. Liu and D. Krewski, “Epidemiologic evidence of relationships between reproductive and child health outcomes and environmental chemical contaminants,” Journal of Toxicology and Environmental Health, Part B, vol. 11, pp. 373-517, 2008.
  • [6] S. Mostafalou and M. Abdollahi, “Pesticides and human chronic diseases: evidences, mechanisms, and perspectives,” Toxicology and Applied Pharmacology, 268(2): 157-177, 2013.
  • [7] S. L. Carmichael, W. Yang, E. Roberts, S. E. Kegley, A. M. Padula, P. B. English, E. J. Lammer and G. M. Shaw, “Residential agricultural pesticide exposures and risk of selected congenital heart defects among offspring in the San Joaquin Valley of California,” Environmental Research, 135: 133-138, 2014.
  • [8] N. Georgiadis, K. Tsarouhas, C. Tsitsimpikou, A. Vardavas, R. Rezaee, I. Germanakis, A. Tsatsakis, D. Stagos and D. Kouretas, “Pesticides and cardiotoxicity. Where do we stand?,” Toxicology and Applied Pharmacology, vol. 353 pp. 1-14, 2018.
  • [9] J. Greene, Pesticide regulation handbook: a guide for users. Boca Raton: CRC Press, 2018.
  • [10] A. Biondi, V. Mommaerts, G. Smagghe, E. Vinuela, L. Zappala and N. Desneux, “The non‐target impact of spinosyns on beneficial arthropods,” Pest Management Science, vol. 68, no. 12, pp. 1523-1536, 2012.
  • [11] B. Clasen, V. L. Loro, R. Cattaneo, B. Moraes, T. Lópes, L. A. de Avila, R. Zanella, G. B. Reimche and B. Baldisserotto, “Effects of the commercial formulation containing fipronil on the non-target organism Cyprinus carpio: Implications for rice− fish cultivation,” Ecotoxicology and Environmental Safety, vol. 77, pp. 45-51, 2012.
  • [12] S. Chatterjee, P. Basak, M. Chaklader, P. Das, J. A. Pereira, S. Chaudhuri and S. Law, “Pesticide induced alterations in marrow physiology and depletion of stem and stromal progenitor population: an experimental model to study the toxic effects of pesticide,” Environmental Toxicology, vol.29, no.1, pp. 84-97, 2014.
  • [13] S. P. Pandey and B. Mohanty, “The neonicotinoid pesticide imidacloprid and the dithiocarbamate fungicide mancozeb disrupt the pituitary–thyroid axis of a wildlife bird,” Chemosphere, vol. 122, pp. 227-234, 2015.
  • [14] W. Darwiche, S. Delanaud, S. Dupont, H. Ghamlouch, W. Ramadan, W. Joumaa, W. Bach and J. Gay‐Quéheillard, “Impact of prenatal and postnatal exposure to the pesticide chlorpyrifos on the contraction of rat ileal muscle strips: involvement of an inducible nitric oxide synthase dependent pathway,” Neurogastroenterology & Motility, vol. 29, no. 2: e12918, 2017.
  • [15] K. Gundogan, H. Donmez-Altuntas, Z. Hamurcu, I. H. Akbudak, M. Sungur, N. Bitgen, G. Baskol and F. Bayram, “Evaluation of chromosomal DNA damage, cytotoxicity, cytostasis, oxidative DNA damage and their relationship with endocrine hormones in patients with acute organophosphate poisoning,” Mutation Research/Genetic Toxicology and Environmental Mutagenesis, vol. 825, pp. 1-7, 2018.
  • [16] H. Nagami, Y. Nishigaki, S. Matsushima, T. Matsushita, S. Asanuma, N. Yajima, M. Usuda and M. Hirosawa, “Hospital-based survey of pesticide poisoning in Japan, 1998–2002,” International Journal of Occupational and Environmental Health, vol. 11, no. 2, pp. 180-184, 2005.
  • [17] N. J. Osborne, R. Cairns, A. H. Dawson, K. M. Chitty and N. A. Buckley, “Epidemiology of coronial deaths from pesticide ingestion in Australia,” International Journal of Hygiene and Environmental Health, vol. 220, no. 2, pp. 478-484, 2017.
  • [18] R. N. Benjamin, T. David, R. Iyadurai and K. S. Jacob, “Suicidal nonorganophosphate poisoning in a tertiary hospital in South India: nature, prevalence, risk factors,” Indian Journal of Psychological Medicine, vol. 40, no. 1, pp. 47-51, 2018.
  • [19] C. Roper and R. L. Tanguay, “Zebrafish as a Model for Developmental Biology and Toxicology,” William Slikker, Merle G. Paule, Cheng Wang (Eds.), Handbook of Developmental Neurotoxicology Second Edition, 2018, pp. 143-151, Academic Press.
  • [20] K. Bambino and J. Chu, “Zebrafish in toxicology and environmental health,” In Current Topics in Developmental Biology, vol. 124, pp. 331-367, 2017.
  • [21] K. Howe, M. D. Clark, C. F. Torroja, J. Torrance, C. Berthelot, M. Muffato, ... S. McLaren, “The zebrafish reference genome sequence and its relationship to the human genome,” Nature, vol. 496, no. 7446, pp. 498-503, 2013.
  • [22] S. Scholz, S. Fischer, U. Gündel, E. Küster, T. Luckenbach and D. Voelker, “The zebrafish embryo model in environmental risk assessment—applications beyond acute toxicity testing,” Environmental Science and Pollution Research, vol. 15, no. 5, pp. 394-404, 2008.
  • [23] S. Tran, A. Facciol, R. Gerlai, “The zebrafish, a novel model organism for screening compounds affecting acute and chronic ethanol-induced effects,” International Review of Neurobiology, vol. 126, pp. 467-484, 2016.
  • [24] K. Y. Lee, G. H. Jang, C. H. Byun, M. Jeun, P. C. Searson, K. H. Lee, “Zebrafish models for functional and toxicological screening of nanoscale drug delivery systems: Promoting preclinical applications,” Bioscience Reports, vol. 37, no. 3, pp. BSR20170199, 2017.
  • [25] C. A. MacRae and R. T. Peterson, “Zebrafish as tools for drug discovery,” Nature Reviews Drug Discovery, vol. 14, no. 10, 721-731, 2015.
  • [26] D. Beis and D. Y. R Stainier, “In vivo cell biology: following the zebrafish trend,” Trends in Cell Biology, vol. 16, no. 2, pp. 105-112, 2006.
  • [27] C. B. Kimmel, W. W. Ballard, S. R. Kimmel, B. Ullmann and T. F. Schilling, “Stages of embryonic development of the zebrafish,” Developmental dynamics, vol. 203, no. 3, pp. 253-310, 1995.
  • [28] E. Lammer, G. J. Carr, K. Wendler, J. M. Rawlings, S. E. Belanger and T. Braunbeck, “ Is the fish embryo toxicity test (FET) with the zebrafish (Danio rerio) a potential alternative for the fish acute toxicity test?.” Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, vol. 149, no. 2, pp. 196-209, 2009.
  • [29] J. H. Postlethwait, Y. L. Yan, M. A. Gates, S. Horne, A. Amores, A. Brownlie, ... C. Goutel, “Vertebrate genome evolution and the zebrafish gene map,” Nature Genetics, vol. 18, no. 4, pp. 345-349, 1998.
  • [30] U. Langheinrich, “Zebrafish: a new model on the pharmaceutical catwalk,” Bioessays, vol. 25, no. 9, pp. 904-912, 2003.
  • [31] D. J. Milan, T. A. Peterson, J. N. Ruskin, R. T. Peterson, C. A. MacRae, “Drugs that induce repolarization abnormalities cause bradycardia in zebrafish,” Circulation, vol. 107, no. 10, pp. 1355-1358, 2003.
  • [32] A. Hill, N. Mesens, M. Steemans, J. J. Xu and M. D. Aleo, “Comparisons between in vitro whole cell imaging and in vivo zebrafish-based approaches for identifying potential human hepatotoxicants earlier in pharmaceutical development,” Drug Metabolism Reviews, vol. 44, no. 1, pp. 127-140, 2012.
  • [33] K. Kikuchi, J. E. Holdway, A. A. Werdich, R. M. Anderson, Y. Fang, G. F. Egnaczyk, T. Evans, C. A. MacRae, D. Y. R. Stainier and K. D. Poss, “Primary contribution to zebrafish heart regeneration by gata4+ cardiomyocytes,” Nature, vol. 464, no. 7288, pp. 601-605, 2010.
  • [34] T. S. Wu, Y. T. Lin, Y. T. Huang, Y. C. Cheng, F. Y. Yu and B. H. Liu, “Disruption of liver development and coagulation pathway by ochratoxin A in embryonic zebrafish,” Toxicology and Applied Pharmacology, vol. 340, pp. 1-8, 2018.
  • [35] H. C. Peng, Y. H. Wang, C. C. Wen, W. H. Wang, C. C. Cheng, Y. H. Chen, “Nephrotoxicity assessments of acetaminophen during zebrafish embryogenesis,” Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, vol. 151, no. 4, pp. 480-486, 2010.
  • [36] J. H. He, S. Y. Guo, F. Zhu, J. J. Zhu, Y. X. Chen, C. J. Huang, J. M. Gao, Q. X. Dong, Y. X. Xuan and C. Q. Li, “A zebrafish phenotypic assay for assessing drug-induced hepatotoxicity,” Journal of Pharmacological and Toxicological Methods, vol. 67, no. 1, pp. 25-32, 2013.
  • [37] J. Chen, R. L. Tanguay, T. L. Tal, Z. Gai, X. Ma, C. Bai, S. C. Tilton, D. Jin, D. Yang, C. Huang and Q. Dong, “Early life perfluorooctanesulphonic acid (PFOS) exposure impairs zebrafish organogenesis,” Aquatic Toxicology, vol. 150, pp. 124-132, 2014.
  • [38] C. Thisse and L. I. Zon, “Organogenesis--heart and blood formation from the zebrafish point of view,” Science, vol. 295, no. 5554, pp. 457-462, 2002.
  • [39] B. Chaudhry, S. Ramsbottom and D. J. Henderson, “Genetics of cardiovascular development,” Progress in Molecular Biology and Translational Science, vol. 124, pp. 19-41, 2014.
  • [40] R. N. Wilkinson, C. Jopling, F. J. van Eeden, “Zebrafish as a model of cardiac disease,” Progress in Molecular Biology and Translational Science, vol. 124, pp. 65-91, 2014.
  • [41] A. Asnani and R. T. Peterson, “The zebrafish as a tool to identify novel therapies for human cardiovascular disease,” Disease Models & Mechanisms, vol. 7, no. 7, pp. 763-767, 2014.
  • [42] B. Pelster and W. W. Burggren, “Disruption of hemoglobin oxygen transport does not impact oxygen-dependent physiological processes in developing embryos of zebra fish (Danio rerio),” Circulation Research, vol. 79, no. 2, pp. 358-362, 1996.
  • [43] N. Hu, D. Sedmera, H. J. Yost, E. B. Clark, “Structure and function of the developing zebrafish heart,” The Anatomical Record: An Official Publication of the American Association of Anatomists, vol. 260, no. 2, pp. 148-157, 2000.
  • [44] D. Y. R. Stainier, “Zebrafish genetics and vertebrate heart formation,” Nature Reviews Genetics, vol. 2, no. 1, pp. 39-48, 2001.
  • [45] M. G. Grant, V. L. Patterson, D. T. Grimes and R. D. Burdine, “Modeling syndromic congenital heart defects in zebrafish,” Current Topics in Developmental Biology, vol. 124, pp. 1-40, 2017.
  • [46] A. O. Verkerk and C. A. Remme, “Zebrafish: a novel research tool for cardiac (patho) electrophysiology and ion channel disorders,” Frontiers in Physiology, vol. 3, pp. 255, 2012.
  • [47] M. Vornanen and M. Hassinen, “Zebrafish heart as a model for human cardiac electrophysiology,” Channels, vol. 10, no. 2, pp. 101-110, 2016.
  • [48] P. Hodgson, J. Ireland and B. Grunow, “Fish, the better model in human heart research? Zebrafish heart aggregates as a 3D spontaneously cardiomyogenic in vitro model system,” Progress in Biophysics and Molecular Biology, vol. 138, pp. 132-141, 2018.
  • [49] B. G. Bruneau, “The developmental genetics of congenital heart disease,” Nature, vol. 451, no. 7181, pp. 943-948, 2008.
  • [50] G. E. Lyons, “Vertebrate heart development,” Current Opinion in Genetics & Development, vol. 6, no. 4, pp. 454-460, 1996.
  • [51] C. J. van Opbergen, S. M. van der Voorn, M. A. Vos, T. P. de Boer and T. A. van Veen, “Cardiac Ca2+ signalling in zebrafish: Translation of findings to man,” Progress in Biophysics and Molecular Biology, vol. 138, pp. 45-58, 2018.
  • [52] J. N. Chen, P. Haffter, J. Odenthal, E. Vogelsang, M. Brand, F. J. Van Eeden, M. Furutani-Seiki M. Granato, M. Hammerschmidt, Y. J. Jiang, D. A. Kane, R. N. Kalsh, M. C. Mullins and C. Nusslein-Volhard, “Mutations affecting the cardiovascular system and other internal organs in zebrafish,” Development, vol. 123, no.1, pp. 293-302, 1996.
  • [53] C. M. Rocheleau, S. J. Bertke, C. C. Lawson, P. A. Romitti, W. T. Sanderson, S. Malik, P. J. Lupo, T A. Desrosiers, E. Bell, C. Druschel and A. Correa, “Maternal occupational pesticide exposure and risk of congenital heart defects in the National Birth Defects Prevention Study,” Birth Defects Research Part A: Clinical and Molecular Teratology, vol. 103, no. 10, pp. 823-833, 2015.
  • [54] Y. Kimya, “Fetal kalp hastalıklarının prenatal tanısı,” Turkiye Klinikleri Journal of Gynecology and Obstetrics, vol. 12, no. 5, pp. 399-412, 2002.
  • [55] S. Ulusoy, “Siyanotik ve asiyanotik konjenital kalp hastalığı olan çocuklarda hemostatik değişiklikler,” Uzmanlık Tezi, T.C. Sağlık Bakanlığı Haseki Eğitim ve Araştırma Hastanesi Çocuk Sağlığı ve Hastalıkları Kliniği, İstanbul, 80 s, 2008.
  • [56] P. G. Kopf and M. K. Walker, “Overview of developmental heart defects by dioxins, PCBs, and pesticides,” Journal of Environmental Science and Health, Part C, vol. 27, no. 4, pp. 276-285, 2009.
  • [57] D. Bernstein, “Evaluation of the cardiovascular system,” In: Behrman RE, Kliegman RM, Jenson HB, [eds.], Nelson Textbook of Pediatrics, 17th ed., Philadelphia: Saunders, 2004, pp.1481-1488.
  • [58] O. F. Tekbas, “Environmental Factors and Cardiovascular Diseases,” TAF Preventive Medicine Bulletin, vol. 7, no. 5, pp. 435-444, 2008.
  • [59] P. McGrath and C. Q. Li, “Zebrafish: a predictive model for assessing drug-induced toxicity,” Drug Discovery Today, vol. 13, pp. 394-401, 2008.
  • [60] D. Sedmera, M. Reckova, A. deAlmeida, M. Sedmerova, M. Biermann, J. Volejnik, A. Sarre, E. Raddatz, R. A. McCarthy, R. G. Gourdie, R. P. Thompson, “Functional and morphological evidence for a ventricular conduction system in zebrafish and Xenopus hearts,” American Journal of Physiology-Heart and Circulatory Physiology, vol. 284, no. 4, pp. H1152-H1160, 2003.
  • [61] D. J. Milan, I. L. Jones, P. T. Ellinor, C. A. MacRae, “In vivo recording of adult zebrafish electrocardiogram and assessment of drug-induced QT prolongation,” American Journal of Physiology-Heart and Circulatory Physiology, vol. 291, no. 1, pp. H269-H273, 2006.
  • [62] J. J. Zhu, Y. Q. Xu, J. H. He, H. P. Yu, C. J. Huang, J. M. Gao, Q. X. Dong, Y. X. Xuan and C. Q. Li, “Human cardiotoxic drugs delivered by soaking and microinjection induce cardiovascular toxicity in zebrafish,” Journal of Applied Toxicology, vol. 34, no. 2, pp. 139-148, 2014.
  • [63] Z. Z. Zakaria, F. M. Benslimane, G. K. Nasrallah, S. Shurbaji, N. N. Younes, F. Mraiche, S. I. Da’as and H. C. Yalcin, “Using Zebrafish for Investigating the Molecular Mechanisms of Drug-Induced Cardiotoxicity,” BioMed Research International, vol.4, pp.10, 2018.
  • [64] C. C. Lin, M. N. Hui and S. H. Cheng, “Toxicity and cardiac effects of carbaryl in early developing zebrafish (Danio rerio) embryos,” Toxicology and Applied Pharmacology, vol. 222, no. 2, pp. 159-168, 2007.
  • [65] R. Oliveira, I. Domingues, C. K. Grisolia and A. M. Soares, “Effects of triclosan on zebrafish early-life stages and adults,” Environmental Science and Pollution Research, vol. 16, no. 6, pp. 679-688, 2009.
  • [66] X. Mu, S. Pang, X. Sun, J. Gao, J. Chen, X. Chen, X. Li and C. Wang, “Evaluation of acute and developmental effects of difenoconazole via multiple stage zebrafish assays,” Environmental Pollution, vol. 175, pp. 147-157, 2013.
  • [67] F. L. Watson, H. Schmidt, Z. K. Turman, N. Hole, H. Garcia, J. Gregg, J. Tilghman and E. A. Fradinger, “Organophosphate pesticides induce morphological abnormalities and decrease locomotor activity and heart rate in Danio rerio and Xenopus laevis,” Environmental Toxicology and Chemistry, vol. 33, no. 6, pp. 1337-1345, 2014.
  • [68] H. C. Liu, T. Y. Chu, L. L. Chen, W. J. Gui, G. N. Zhu, “The cardiovascular toxicity of triadimefon in early life stage of zebrafish and potential implications to human health,” Environmental Pollution, vol. 231, pp. 1093-1103, 2017.
  • [69] K. Li, J. Q. Wu, L. L. Jiang, L. Z. Shen, J. Y. Li, Z. H. He, P. Wei, Z. Lv and M. F. He, “Developmental toxicity of 2, 4-dichlorophenoxyacetic acid in zebrafish embryos,” Chemosphere, vol. 171, pp. 40-48, 2017.
  • [70] H. Liu, T. Chu, L. Chen, W. Gui, G. Zhu, “In vivo cardiovascular toxicity induced by acetochlor in zebrafish larvae,” Chemosphere, vol. 181, pp. 600-608, 2017.
  • [71] M. Li, X. Liu and X. Feng, “Cardiovascular toxicity and anxiety-like behavior induced by deltamethrin in zebrafish (Danio rerio) larvae,” Chemosphere, vol. 219, pp. 155-164, 2019.
  • [72] S. Altenhofen, D. D. Nabinger, P. E. R. Bitencourt and C. D. Bonan, “Dichlorvos alters morphology and behavior in zebrafish (Danio rerio) larvae,” Environmental Pollution, vol. 245, pp. 1117-1123, 2019.
Year 2019, Volume: 7 Issue: 3, 1417 - 1430, 31.07.2019
https://doi.org/10.29130/dubited.528427

Abstract

References

  • [1] M. Arias-Estévez, E. López-Periago, E. Martínez-Carballo, J. Simal-Gándara, J. C. Mejuto, and L. García-Río, “The mobility and degradation of pesticides in soils and the pollution of groundwater resources,” Agriculture, Ecosystems & Environment, vol. 123, no. 4, pp. 247-260, 2008.
  • [2] D. Mozaffarian, P. W. Wilson and W. B. Kannel, “Beyond established and novel risk factors: lifestyle risk factors for cardiovascular disease,” Circulation, vol. 117, no. 23, pp. 3031-3038, 2008.
  • [3] A. Lukaszewicz-Hussain, “Role of oxidative stress in organophosphate insecticide toxicity–Short review,” Pesticide Biochemistry and Physiology, vol. 98, no. 2, pp. 145-150, 2010.
  • [4] A. Wahab, R. Hod, N. H. Ismail and N. Omar, “The effect of pesticide exposure on cardiovascular system: a systematic review,”, International Journal of Community Medicine and Public Health, vol. 3, no. 1, pp. 1-10, 2016.
  • [5] D. T. Wigle, T. E. Arbuckle, M. C. Turner, A. Bérubé, Q. Yang, S. Liu and D. Krewski, “Epidemiologic evidence of relationships between reproductive and child health outcomes and environmental chemical contaminants,” Journal of Toxicology and Environmental Health, Part B, vol. 11, pp. 373-517, 2008.
  • [6] S. Mostafalou and M. Abdollahi, “Pesticides and human chronic diseases: evidences, mechanisms, and perspectives,” Toxicology and Applied Pharmacology, 268(2): 157-177, 2013.
  • [7] S. L. Carmichael, W. Yang, E. Roberts, S. E. Kegley, A. M. Padula, P. B. English, E. J. Lammer and G. M. Shaw, “Residential agricultural pesticide exposures and risk of selected congenital heart defects among offspring in the San Joaquin Valley of California,” Environmental Research, 135: 133-138, 2014.
  • [8] N. Georgiadis, K. Tsarouhas, C. Tsitsimpikou, A. Vardavas, R. Rezaee, I. Germanakis, A. Tsatsakis, D. Stagos and D. Kouretas, “Pesticides and cardiotoxicity. Where do we stand?,” Toxicology and Applied Pharmacology, vol. 353 pp. 1-14, 2018.
  • [9] J. Greene, Pesticide regulation handbook: a guide for users. Boca Raton: CRC Press, 2018.
  • [10] A. Biondi, V. Mommaerts, G. Smagghe, E. Vinuela, L. Zappala and N. Desneux, “The non‐target impact of spinosyns on beneficial arthropods,” Pest Management Science, vol. 68, no. 12, pp. 1523-1536, 2012.
  • [11] B. Clasen, V. L. Loro, R. Cattaneo, B. Moraes, T. Lópes, L. A. de Avila, R. Zanella, G. B. Reimche and B. Baldisserotto, “Effects of the commercial formulation containing fipronil on the non-target organism Cyprinus carpio: Implications for rice− fish cultivation,” Ecotoxicology and Environmental Safety, vol. 77, pp. 45-51, 2012.
  • [12] S. Chatterjee, P. Basak, M. Chaklader, P. Das, J. A. Pereira, S. Chaudhuri and S. Law, “Pesticide induced alterations in marrow physiology and depletion of stem and stromal progenitor population: an experimental model to study the toxic effects of pesticide,” Environmental Toxicology, vol.29, no.1, pp. 84-97, 2014.
  • [13] S. P. Pandey and B. Mohanty, “The neonicotinoid pesticide imidacloprid and the dithiocarbamate fungicide mancozeb disrupt the pituitary–thyroid axis of a wildlife bird,” Chemosphere, vol. 122, pp. 227-234, 2015.
  • [14] W. Darwiche, S. Delanaud, S. Dupont, H. Ghamlouch, W. Ramadan, W. Joumaa, W. Bach and J. Gay‐Quéheillard, “Impact of prenatal and postnatal exposure to the pesticide chlorpyrifos on the contraction of rat ileal muscle strips: involvement of an inducible nitric oxide synthase dependent pathway,” Neurogastroenterology & Motility, vol. 29, no. 2: e12918, 2017.
  • [15] K. Gundogan, H. Donmez-Altuntas, Z. Hamurcu, I. H. Akbudak, M. Sungur, N. Bitgen, G. Baskol and F. Bayram, “Evaluation of chromosomal DNA damage, cytotoxicity, cytostasis, oxidative DNA damage and their relationship with endocrine hormones in patients with acute organophosphate poisoning,” Mutation Research/Genetic Toxicology and Environmental Mutagenesis, vol. 825, pp. 1-7, 2018.
  • [16] H. Nagami, Y. Nishigaki, S. Matsushima, T. Matsushita, S. Asanuma, N. Yajima, M. Usuda and M. Hirosawa, “Hospital-based survey of pesticide poisoning in Japan, 1998–2002,” International Journal of Occupational and Environmental Health, vol. 11, no. 2, pp. 180-184, 2005.
  • [17] N. J. Osborne, R. Cairns, A. H. Dawson, K. M. Chitty and N. A. Buckley, “Epidemiology of coronial deaths from pesticide ingestion in Australia,” International Journal of Hygiene and Environmental Health, vol. 220, no. 2, pp. 478-484, 2017.
  • [18] R. N. Benjamin, T. David, R. Iyadurai and K. S. Jacob, “Suicidal nonorganophosphate poisoning in a tertiary hospital in South India: nature, prevalence, risk factors,” Indian Journal of Psychological Medicine, vol. 40, no. 1, pp. 47-51, 2018.
  • [19] C. Roper and R. L. Tanguay, “Zebrafish as a Model for Developmental Biology and Toxicology,” William Slikker, Merle G. Paule, Cheng Wang (Eds.), Handbook of Developmental Neurotoxicology Second Edition, 2018, pp. 143-151, Academic Press.
  • [20] K. Bambino and J. Chu, “Zebrafish in toxicology and environmental health,” In Current Topics in Developmental Biology, vol. 124, pp. 331-367, 2017.
  • [21] K. Howe, M. D. Clark, C. F. Torroja, J. Torrance, C. Berthelot, M. Muffato, ... S. McLaren, “The zebrafish reference genome sequence and its relationship to the human genome,” Nature, vol. 496, no. 7446, pp. 498-503, 2013.
  • [22] S. Scholz, S. Fischer, U. Gündel, E. Küster, T. Luckenbach and D. Voelker, “The zebrafish embryo model in environmental risk assessment—applications beyond acute toxicity testing,” Environmental Science and Pollution Research, vol. 15, no. 5, pp. 394-404, 2008.
  • [23] S. Tran, A. Facciol, R. Gerlai, “The zebrafish, a novel model organism for screening compounds affecting acute and chronic ethanol-induced effects,” International Review of Neurobiology, vol. 126, pp. 467-484, 2016.
  • [24] K. Y. Lee, G. H. Jang, C. H. Byun, M. Jeun, P. C. Searson, K. H. Lee, “Zebrafish models for functional and toxicological screening of nanoscale drug delivery systems: Promoting preclinical applications,” Bioscience Reports, vol. 37, no. 3, pp. BSR20170199, 2017.
  • [25] C. A. MacRae and R. T. Peterson, “Zebrafish as tools for drug discovery,” Nature Reviews Drug Discovery, vol. 14, no. 10, 721-731, 2015.
  • [26] D. Beis and D. Y. R Stainier, “In vivo cell biology: following the zebrafish trend,” Trends in Cell Biology, vol. 16, no. 2, pp. 105-112, 2006.
  • [27] C. B. Kimmel, W. W. Ballard, S. R. Kimmel, B. Ullmann and T. F. Schilling, “Stages of embryonic development of the zebrafish,” Developmental dynamics, vol. 203, no. 3, pp. 253-310, 1995.
  • [28] E. Lammer, G. J. Carr, K. Wendler, J. M. Rawlings, S. E. Belanger and T. Braunbeck, “ Is the fish embryo toxicity test (FET) with the zebrafish (Danio rerio) a potential alternative for the fish acute toxicity test?.” Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, vol. 149, no. 2, pp. 196-209, 2009.
  • [29] J. H. Postlethwait, Y. L. Yan, M. A. Gates, S. Horne, A. Amores, A. Brownlie, ... C. Goutel, “Vertebrate genome evolution and the zebrafish gene map,” Nature Genetics, vol. 18, no. 4, pp. 345-349, 1998.
  • [30] U. Langheinrich, “Zebrafish: a new model on the pharmaceutical catwalk,” Bioessays, vol. 25, no. 9, pp. 904-912, 2003.
  • [31] D. J. Milan, T. A. Peterson, J. N. Ruskin, R. T. Peterson, C. A. MacRae, “Drugs that induce repolarization abnormalities cause bradycardia in zebrafish,” Circulation, vol. 107, no. 10, pp. 1355-1358, 2003.
  • [32] A. Hill, N. Mesens, M. Steemans, J. J. Xu and M. D. Aleo, “Comparisons between in vitro whole cell imaging and in vivo zebrafish-based approaches for identifying potential human hepatotoxicants earlier in pharmaceutical development,” Drug Metabolism Reviews, vol. 44, no. 1, pp. 127-140, 2012.
  • [33] K. Kikuchi, J. E. Holdway, A. A. Werdich, R. M. Anderson, Y. Fang, G. F. Egnaczyk, T. Evans, C. A. MacRae, D. Y. R. Stainier and K. D. Poss, “Primary contribution to zebrafish heart regeneration by gata4+ cardiomyocytes,” Nature, vol. 464, no. 7288, pp. 601-605, 2010.
  • [34] T. S. Wu, Y. T. Lin, Y. T. Huang, Y. C. Cheng, F. Y. Yu and B. H. Liu, “Disruption of liver development and coagulation pathway by ochratoxin A in embryonic zebrafish,” Toxicology and Applied Pharmacology, vol. 340, pp. 1-8, 2018.
  • [35] H. C. Peng, Y. H. Wang, C. C. Wen, W. H. Wang, C. C. Cheng, Y. H. Chen, “Nephrotoxicity assessments of acetaminophen during zebrafish embryogenesis,” Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, vol. 151, no. 4, pp. 480-486, 2010.
  • [36] J. H. He, S. Y. Guo, F. Zhu, J. J. Zhu, Y. X. Chen, C. J. Huang, J. M. Gao, Q. X. Dong, Y. X. Xuan and C. Q. Li, “A zebrafish phenotypic assay for assessing drug-induced hepatotoxicity,” Journal of Pharmacological and Toxicological Methods, vol. 67, no. 1, pp. 25-32, 2013.
  • [37] J. Chen, R. L. Tanguay, T. L. Tal, Z. Gai, X. Ma, C. Bai, S. C. Tilton, D. Jin, D. Yang, C. Huang and Q. Dong, “Early life perfluorooctanesulphonic acid (PFOS) exposure impairs zebrafish organogenesis,” Aquatic Toxicology, vol. 150, pp. 124-132, 2014.
  • [38] C. Thisse and L. I. Zon, “Organogenesis--heart and blood formation from the zebrafish point of view,” Science, vol. 295, no. 5554, pp. 457-462, 2002.
  • [39] B. Chaudhry, S. Ramsbottom and D. J. Henderson, “Genetics of cardiovascular development,” Progress in Molecular Biology and Translational Science, vol. 124, pp. 19-41, 2014.
  • [40] R. N. Wilkinson, C. Jopling, F. J. van Eeden, “Zebrafish as a model of cardiac disease,” Progress in Molecular Biology and Translational Science, vol. 124, pp. 65-91, 2014.
  • [41] A. Asnani and R. T. Peterson, “The zebrafish as a tool to identify novel therapies for human cardiovascular disease,” Disease Models & Mechanisms, vol. 7, no. 7, pp. 763-767, 2014.
  • [42] B. Pelster and W. W. Burggren, “Disruption of hemoglobin oxygen transport does not impact oxygen-dependent physiological processes in developing embryos of zebra fish (Danio rerio),” Circulation Research, vol. 79, no. 2, pp. 358-362, 1996.
  • [43] N. Hu, D. Sedmera, H. J. Yost, E. B. Clark, “Structure and function of the developing zebrafish heart,” The Anatomical Record: An Official Publication of the American Association of Anatomists, vol. 260, no. 2, pp. 148-157, 2000.
  • [44] D. Y. R. Stainier, “Zebrafish genetics and vertebrate heart formation,” Nature Reviews Genetics, vol. 2, no. 1, pp. 39-48, 2001.
  • [45] M. G. Grant, V. L. Patterson, D. T. Grimes and R. D. Burdine, “Modeling syndromic congenital heart defects in zebrafish,” Current Topics in Developmental Biology, vol. 124, pp. 1-40, 2017.
  • [46] A. O. Verkerk and C. A. Remme, “Zebrafish: a novel research tool for cardiac (patho) electrophysiology and ion channel disorders,” Frontiers in Physiology, vol. 3, pp. 255, 2012.
  • [47] M. Vornanen and M. Hassinen, “Zebrafish heart as a model for human cardiac electrophysiology,” Channels, vol. 10, no. 2, pp. 101-110, 2016.
  • [48] P. Hodgson, J. Ireland and B. Grunow, “Fish, the better model in human heart research? Zebrafish heart aggregates as a 3D spontaneously cardiomyogenic in vitro model system,” Progress in Biophysics and Molecular Biology, vol. 138, pp. 132-141, 2018.
  • [49] B. G. Bruneau, “The developmental genetics of congenital heart disease,” Nature, vol. 451, no. 7181, pp. 943-948, 2008.
  • [50] G. E. Lyons, “Vertebrate heart development,” Current Opinion in Genetics & Development, vol. 6, no. 4, pp. 454-460, 1996.
  • [51] C. J. van Opbergen, S. M. van der Voorn, M. A. Vos, T. P. de Boer and T. A. van Veen, “Cardiac Ca2+ signalling in zebrafish: Translation of findings to man,” Progress in Biophysics and Molecular Biology, vol. 138, pp. 45-58, 2018.
  • [52] J. N. Chen, P. Haffter, J. Odenthal, E. Vogelsang, M. Brand, F. J. Van Eeden, M. Furutani-Seiki M. Granato, M. Hammerschmidt, Y. J. Jiang, D. A. Kane, R. N. Kalsh, M. C. Mullins and C. Nusslein-Volhard, “Mutations affecting the cardiovascular system and other internal organs in zebrafish,” Development, vol. 123, no.1, pp. 293-302, 1996.
  • [53] C. M. Rocheleau, S. J. Bertke, C. C. Lawson, P. A. Romitti, W. T. Sanderson, S. Malik, P. J. Lupo, T A. Desrosiers, E. Bell, C. Druschel and A. Correa, “Maternal occupational pesticide exposure and risk of congenital heart defects in the National Birth Defects Prevention Study,” Birth Defects Research Part A: Clinical and Molecular Teratology, vol. 103, no. 10, pp. 823-833, 2015.
  • [54] Y. Kimya, “Fetal kalp hastalıklarının prenatal tanısı,” Turkiye Klinikleri Journal of Gynecology and Obstetrics, vol. 12, no. 5, pp. 399-412, 2002.
  • [55] S. Ulusoy, “Siyanotik ve asiyanotik konjenital kalp hastalığı olan çocuklarda hemostatik değişiklikler,” Uzmanlık Tezi, T.C. Sağlık Bakanlığı Haseki Eğitim ve Araştırma Hastanesi Çocuk Sağlığı ve Hastalıkları Kliniği, İstanbul, 80 s, 2008.
  • [56] P. G. Kopf and M. K. Walker, “Overview of developmental heart defects by dioxins, PCBs, and pesticides,” Journal of Environmental Science and Health, Part C, vol. 27, no. 4, pp. 276-285, 2009.
  • [57] D. Bernstein, “Evaluation of the cardiovascular system,” In: Behrman RE, Kliegman RM, Jenson HB, [eds.], Nelson Textbook of Pediatrics, 17th ed., Philadelphia: Saunders, 2004, pp.1481-1488.
  • [58] O. F. Tekbas, “Environmental Factors and Cardiovascular Diseases,” TAF Preventive Medicine Bulletin, vol. 7, no. 5, pp. 435-444, 2008.
  • [59] P. McGrath and C. Q. Li, “Zebrafish: a predictive model for assessing drug-induced toxicity,” Drug Discovery Today, vol. 13, pp. 394-401, 2008.
  • [60] D. Sedmera, M. Reckova, A. deAlmeida, M. Sedmerova, M. Biermann, J. Volejnik, A. Sarre, E. Raddatz, R. A. McCarthy, R. G. Gourdie, R. P. Thompson, “Functional and morphological evidence for a ventricular conduction system in zebrafish and Xenopus hearts,” American Journal of Physiology-Heart and Circulatory Physiology, vol. 284, no. 4, pp. H1152-H1160, 2003.
  • [61] D. J. Milan, I. L. Jones, P. T. Ellinor, C. A. MacRae, “In vivo recording of adult zebrafish electrocardiogram and assessment of drug-induced QT prolongation,” American Journal of Physiology-Heart and Circulatory Physiology, vol. 291, no. 1, pp. H269-H273, 2006.
  • [62] J. J. Zhu, Y. Q. Xu, J. H. He, H. P. Yu, C. J. Huang, J. M. Gao, Q. X. Dong, Y. X. Xuan and C. Q. Li, “Human cardiotoxic drugs delivered by soaking and microinjection induce cardiovascular toxicity in zebrafish,” Journal of Applied Toxicology, vol. 34, no. 2, pp. 139-148, 2014.
  • [63] Z. Z. Zakaria, F. M. Benslimane, G. K. Nasrallah, S. Shurbaji, N. N. Younes, F. Mraiche, S. I. Da’as and H. C. Yalcin, “Using Zebrafish for Investigating the Molecular Mechanisms of Drug-Induced Cardiotoxicity,” BioMed Research International, vol.4, pp.10, 2018.
  • [64] C. C. Lin, M. N. Hui and S. H. Cheng, “Toxicity and cardiac effects of carbaryl in early developing zebrafish (Danio rerio) embryos,” Toxicology and Applied Pharmacology, vol. 222, no. 2, pp. 159-168, 2007.
  • [65] R. Oliveira, I. Domingues, C. K. Grisolia and A. M. Soares, “Effects of triclosan on zebrafish early-life stages and adults,” Environmental Science and Pollution Research, vol. 16, no. 6, pp. 679-688, 2009.
  • [66] X. Mu, S. Pang, X. Sun, J. Gao, J. Chen, X. Chen, X. Li and C. Wang, “Evaluation of acute and developmental effects of difenoconazole via multiple stage zebrafish assays,” Environmental Pollution, vol. 175, pp. 147-157, 2013.
  • [67] F. L. Watson, H. Schmidt, Z. K. Turman, N. Hole, H. Garcia, J. Gregg, J. Tilghman and E. A. Fradinger, “Organophosphate pesticides induce morphological abnormalities and decrease locomotor activity and heart rate in Danio rerio and Xenopus laevis,” Environmental Toxicology and Chemistry, vol. 33, no. 6, pp. 1337-1345, 2014.
  • [68] H. C. Liu, T. Y. Chu, L. L. Chen, W. J. Gui, G. N. Zhu, “The cardiovascular toxicity of triadimefon in early life stage of zebrafish and potential implications to human health,” Environmental Pollution, vol. 231, pp. 1093-1103, 2017.
  • [69] K. Li, J. Q. Wu, L. L. Jiang, L. Z. Shen, J. Y. Li, Z. H. He, P. Wei, Z. Lv and M. F. He, “Developmental toxicity of 2, 4-dichlorophenoxyacetic acid in zebrafish embryos,” Chemosphere, vol. 171, pp. 40-48, 2017.
  • [70] H. Liu, T. Chu, L. Chen, W. Gui, G. Zhu, “In vivo cardiovascular toxicity induced by acetochlor in zebrafish larvae,” Chemosphere, vol. 181, pp. 600-608, 2017.
  • [71] M. Li, X. Liu and X. Feng, “Cardiovascular toxicity and anxiety-like behavior induced by deltamethrin in zebrafish (Danio rerio) larvae,” Chemosphere, vol. 219, pp. 155-164, 2019.
  • [72] S. Altenhofen, D. D. Nabinger, P. E. R. Bitencourt and C. D. Bonan, “Dichlorvos alters morphology and behavior in zebrafish (Danio rerio) larvae,” Environmental Pollution, vol. 245, pp. 1117-1123, 2019.
There are 72 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Sezgi Arman 0000-0002-4247-0639

Publication Date July 31, 2019
Published in Issue Year 2019 Volume: 7 Issue: 3

Cite

APA Arman, S. (2019). Pestisit indüklü kardiyak toksisite araştırmalarında zebra balığı (Danio rerio). Düzce Üniversitesi Bilim Ve Teknoloji Dergisi, 7(3), 1417-1430. https://doi.org/10.29130/dubited.528427
AMA Arman S. Pestisit indüklü kardiyak toksisite araştırmalarında zebra balığı (Danio rerio). DUBİTED. July 2019;7(3):1417-1430. doi:10.29130/dubited.528427
Chicago Arman, Sezgi. “Pestisit indüklü Kardiyak Toksisite araştırmalarında Zebra balığı (Danio Rerio)”. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi 7, no. 3 (July 2019): 1417-30. https://doi.org/10.29130/dubited.528427.
EndNote Arman S (July 1, 2019) Pestisit indüklü kardiyak toksisite araştırmalarında zebra balığı (Danio rerio). Düzce Üniversitesi Bilim ve Teknoloji Dergisi 7 3 1417–1430.
IEEE S. Arman, “Pestisit indüklü kardiyak toksisite araştırmalarında zebra balığı (Danio rerio)”, DUBİTED, vol. 7, no. 3, pp. 1417–1430, 2019, doi: 10.29130/dubited.528427.
ISNAD Arman, Sezgi. “Pestisit indüklü Kardiyak Toksisite araştırmalarında Zebra balığı (Danio Rerio)”. Düzce Üniversitesi Bilim ve Teknoloji Dergisi 7/3 (July 2019), 1417-1430. https://doi.org/10.29130/dubited.528427.
JAMA Arman S. Pestisit indüklü kardiyak toksisite araştırmalarında zebra balığı (Danio rerio). DUBİTED. 2019;7:1417–1430.
MLA Arman, Sezgi. “Pestisit indüklü Kardiyak Toksisite araştırmalarında Zebra balığı (Danio Rerio)”. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi, vol. 7, no. 3, 2019, pp. 1417-30, doi:10.29130/dubited.528427.
Vancouver Arman S. Pestisit indüklü kardiyak toksisite araştırmalarında zebra balığı (Danio rerio). DUBİTED. 2019;7(3):1417-30.