Research Article
BibTex RIS Cite

Mo/n-Si Schottky Diyotların Akım-Voltaj ve Kapasite-Voltaj Karakteristiklerinin Analizi

Year 2019, Volume: 7 Issue: 3, 2142 - 2155, 31.07.2019
https://doi.org/10.29130/dubited.544197

Abstract

Bu çalışmada Mo/n-Si Schottky diyotların bazı elektriksel özellikleri incelendi. Diyotlar, Molibdenin (Mo) n-tipi Silisyum (Si) üzerine manyetik saçtırma yöntemi kullanılarak biriktirilmesiyle üretildi. Akım-voltaj (I-V) ve kapasite-voltaj (C-V) ölçümleri oda sıcaklığında alındı. İdealite faktörü (n=1,48), sıfır beslem engel yüksekliği (  b0=0,72 eV), seri direnç (Rs=2,02 k) gibi temel diyot parametreleri I-V verileri kullanılarak elde edildi. Ayrıca engel yüksekliği ve katkılama yoğunluğu (ND) değerleri 1kHz-3MHz frekans aralığında C-V ölçümlerinden belirlendi. I-V ve C-V ölçümlerinden elde edilen  b değerleri karşılaştırıldı. Her iki yöntemden elde edilen engel yüksekliği değerlerinin farklılığı, engel yüksekliğinin homojen olmayışı olgusuna ve geleneksel I-V ve C-V yöntemlerinin farklı tabiatına atfedildi. 

References

  • [1] E. H. Rhoderick, R. H. Williams, Metal-Semiconductor Contacts, 2nd ed., Oxford Clarendon, 1988. [2] S. J. Fonash, S. Ashok, R. Singh, “Effect of ion-beam sputter damage on Schottky barrier formation in silicon,” Applied Physics Letters, vol. 39, no. 5, pp. 423-425, 1981. [3] S. Miyamato, “Frequency-conductance characteristic of the sputtered Mo-n/Si Schottky barrier,” Japanese Journal of Applied Physics, vol. 16, no. 1, pp. 101-109, 1977. [4] O. Y. Olikh, “Non-monotonic -Ray influence on Mo/n-Si Schottky barrier structure properties,” IEEE Transactions on Nuclear Science, vol. 60, no. 1, pp. 394-401, 2013. [5] A. N. Saxena, “Hafnium-silicon Schottky barriers: Large barrier height on p-type silicon ohmic behavior on n-type silicon,” Applied Physics Letters, vol. 19, no. 3, pp. 71-73, 1971. [6] C. R. Crowell, J. C. Sarace, S. M. Sze, “Tungsten-semiconductor Schottky barrier diodes,” Trans. Met. Soc. AIME, vol. 233, pp. 478-481, 1965. [7] J. K. Miller, S. M. Sze, M. J. Griece, Electrochemical Society, Spring Meeting, Electron Division, vol. 4, pp. 1, 1965. [8] G. Kano, M. Inoue, J. Matsuno, S. J. J. Takayanagi, “Molybdenum-silicon Schottky barrier,” Journal of Applied Physics, vol. 37, no. 8, pp. 2985-2987, 1966. [9] R. A. Zettler, A. M. Cowley, “PN-junction-Schottky barrier hybrid diode,” IEEE Transactions on Electron Devices, vol. 16, no. 1, pp. 58-63, 1969. [10] K. Sato, Y. J. J. Yasumura, “Study of forward I-V plot for Schottky diodes with high series resistance,” Journal of Applied Physics, vol. 58, no. 9, pp. 3655-3657, 1985. [11] A. G. Milnes, D. L. Feucht, Metal-Semiconductor Junctions, New York: McGrath Academic Press, 1973. [12] D. Kahng, “Conduction properties of the Au/n-type Si Schottky barrier,” Solid State Electronics, vol. 6, no. 3, pp. 281, 1963. [13] C. R. Crowell, S. M. Sze, “Current transport in metal-semiconductor barriers,” Solid State Electronics, vol. 9, no. 11-12, pp. 1035-1048, 1966. [14] M. S. P. Reddy, A. Ashok Kumar, V. Rajagopal Reddy, J. S. Jang, “Electrical transport characteristics of Ni/Pd/n-GaN Schottky barrier diodes as a function of temperature,” Thin Solid Films, vol. 519, no. 11, pp. 3844-3850, 2011. [15] A. A. M. Farag, B. Gündüz, F. Yakuphanoğlu, W. A. Farooq, “Controlling of electrical characteristics of Al/p-Si Schottky diode by tris ( 8-hydroxyquinolinato) aluminum organic film,” Synthetic Metals, vol. 160, no. 23-24, pp. 2559-2563, 2010. [16] A. Tataroğlu, “Comparative study of the electrical properties of Au/n-Si (MS) and Au/Si3N4/nSi (MIS) Schottky diodes,” Chinese Physics B, vol. 22, no. 6, pp. 068402, 2013. [17] S. M. Sze, Physics of Semiconductor Devices. 2nd ed., John Wiley&Sons, New York, 1981. [18] S. K. Cheung and N. W. Cheung, “Extraction of Schottky diode parameters from forward current-voltage characteristics,” Applied Physics Letters, vol. 49, no. 2, pp. 85-87, 1986. [19] B. L. Sharma, Metal-Semiconductor Schottky Barrier Junctions and Their Applications, Plenum PressNew-York, 1984, pp. 370. [20] S. Chand, J. Kumar, “Effects of barrier height distribution on the behavior of a Schottky diode,” Journal of Applied Physics, vol. 82, no. 10, pp. 5005-5010, 1997. [21] H. J. Werner, H. H. Gütter, “Barrier inhomogeneities of Schottky contacts,” Journal of Applied Physics, vol. 69, no. 3, pp. 1522-1533, 1991. [22] R. T Tung, A. F. J. Levi, J. P. Sullivan, F. Schrey, “Schottky barrier inhomogeneity at epitaxial NiSi2 interface on Si (100),” Physical Review Letters, vol. 66, no. 1, pp. 72-75, 1991. [23] H. Norde, “A modified forward I-V plot for Schottky diodes with high series resistance,” Journal of Applied Physics, vol. 50, no. 7, pp. 5052-5053, 1979. [24] K. E. Bohlin, “Generalized Norde plot including determination of the ideality factor,” Journal of Applied Physics, vol. 60, no. 3, pp. 1223-1224, 1986. [25] S. Duman, B. Gürbulak, S. Doǧan, A. Türüt, “Electrical characteristics and inhomogeneous barrier analysis of Au-Be/p-InSe:Cd Schottky barrier diodes,’’ Microelectron Engineering, vol. 86, no. 1, pp. 106–110, 2009. [26] H. Uslu, Ş. Altındal, U. Aydemir, İ. Dökme, I. M. Afandiyeva, “The interface states and series resistance effects on the forward and reverse bias I-V, C-V and G/ω-V characteristics of Al-TiW-Pd 2Si/n-Si Schottky barrier diodes,’’ Journal of Alloys and Compounds, vol. 503, no. 1, pp. 96–102, 2010. [27] A. M. Goodman, “Metal-semiconductor barrier height measurement by the differential capacitance method-one carrier system,” Journal of Applied Physics, vol. 34, no. 2, pp. 329-338, 1963. [28] İ. M. Afandiyeva, İ. Dökme, Ş. Altındal, M. M. Bülbül, A. Tataroğlu, “Frequency and voltage effects on the dielectric properties and electrical conductivity of Al-TiW-Pd2Si/n-Si structure,” Microelectronic Engineering, vol. 85, no. 2, pp. 247-252, 2008. [29] A. Chelkowski, Dielectric Physics, Elsevier, Amsterdam, 1980, pp. 97-105. [30] P. S. Ho, E. S. Yang, H. L. Evans, and X. Wu, “Electronic states at silicide-silicon interfaces,” Physical Review Letters, vol. 56, no. 2, pp. 177-180, 1986. [31] X. Wu, M. T. Schmidt, E. S. Yang, “Control of the Schottky barrier using an ultrathin interface metal layer,” Applied Physics Letters, vol. 54, no. 3, pp. 268-270, 1989. [32] E. H. Nicollian, J. R. Brews, MOS Physics and Technology. Wiley, New York, 1982, pp. 255. [33] E. Özavcı, “Au/n-GaAs Schottky diyotların hazırlanması ve akım iletim mekanizmalarının geniş bir sıcaklık aralığında incelenmesi,” Doktora Tezi, Fizik Bölümü, Gazi Üniversitesi, Fen Bilimleri Enstitüsü, Ankara, Türkiye, 2014. [34] Ç. Bilkan, “Polimer ara yüzey tabakalı ve tabakasız Schottky engel diyotların elektriksel karakteristiklerinin karşılaştırılması,” Doktora Tezi, Fizik Bölümü, Gazi Üniversitesi, Fen Bilimleri Enstitüsü, Ankara, Türkiye, 2016. [35] Ç. Ş. Güçlü, A. F. Özdemir, Ş. Altındal, “Double exponantial I-V characteristics and double Gaussian distribution of barrier heights in (Au/Ti)/Al2O3/n-GaAs (MIS) type Schottky barrier diodes in wide temperature range,” Applied Physics A, vol. 22, pp. 1032, 2016. [36] A. Singh, “Characterization of interface states at Ni/nCdF2 Schottky barrier type diodes and the effect of CdF2 surface preparation,” Solid State Electronics, vol. 28, no. 3, pp. 223-232, 1985. [37] E. H. Rhoderick, “Metal-semiconductor contacts,” Solid-State and Electron Devices, vol. 129, no. 1, pp. 1, 1982. [38] P. Chattopadhyay and B. RayChaudhuri, “Frequency dependence of forward capacitancevoltage charactersitics of Schottky barrier diodes,” Solid State Electronics, vol. 36, no. 4, pp. 605-610. 1993. [39] M. M. Bülbül, S. Zeyrek, “Frequency dependent capacitance and conductance-voltage characteristics of Al/Si3N4/p-Si (100) MIS diodes,’’ Microelectronic Engineering, vol. 83, no. 11-12, pp. 2522–2526, 2006. [40] A. F. Özdemir, D. A. Aldemir, A. Kökce, Ş. Altındal, “Electrical properties of Al/conducting polymer (P2ClAn)/p-Si/Al contacts,’’ Synthetic Metal, vol.159, no. 14, pp. 1427-1432, 2009. [41] D. Korucu, A. Türüt, R. Turan, Ş. Altındal, “Origin of forward bias capacitance peak and intersection behavior of C and G/ of Ag/p-InP Schottky barrier diodes,’’ Material Science and Semiconductor Processing, vol. 16, no. 2, pp. 344–351, 2013. [42] S. Zeyrek, E. Acaroǧlu, Ş. Altındal, S. Birdoǧan, M. M. Bülbül, “The effect of series resistance and interface states on the frequency dependent C-V and G/-V characteristics of Al/perylene/p-Si MPS type Schottky barrier diodes,’’ Current Applied Physics, vol. 13, no.7, 1225– 1230. 2013. [43] R. V. Reddy, A. Umapathi, L. D. Rao, “Effect of annealing on the electronic parameters of Au/poly(ethylmethacrylate)/n-InP Schottky diode with organic interlayer,” Current Applied Physics, vol. 13, no. 8, pp. 1604-1610, 2013. [44] Y. P. Song, R. L. Van Meirhaeghe, W. H. Laflere, F. Carden, “On the difference in apparent barrier height as obtained from capacitance-voltage and current-voltage-temperature measurements on Al/p-InP Schottky barriers,” Solid State Electronics, vol. 29, no. 6, pp. 633-638, 1986. [45] R. T. Tung, “Recent advances in Schottky barrier concepts,” Materials Science and Engineering: R: Reports, vol. 35, no. 1-3, pp. 1-138, 2001. [46] H. Takano, M. Kimura, T. Ando, S. Niemcharoen, Y. Yasumura, K. Sato, “Optical response of planar Mo/n-Si/Mo structures with long neutral region and Schottky barriers at both ends,” Solid-State Electronics, vol. 44, no. 12, pp. 2161-2164, 2000.

Analysis of Current-Voltage and Capacitance-Voltage Characteristics of Mo/n-Si Schottky Diodes

Year 2019, Volume: 7 Issue: 3, 2142 - 2155, 31.07.2019
https://doi.org/10.29130/dubited.544197

Abstract

In this work, we have investigated the some electrical properties of Mo/n-Si Schottky diodes in detail. These diodes were fabricated by magnetic sputtering of Mo on n-Si. The current-voltage (I-V) and capacitance-voltage (C-V) measurements were taken at room temperature. Basic parameters such as ideality factor (n=1,48), zerobias barrier height (b0=0,72 eV), series resistance (Rs=2,02 k) values were obtained by using I-V data. Also, barrier height and doping concentration (ND) values were determined from C-V measurements between 1 kHz and 3 MHz frequency values. The barrier height values obtained from I-V and C-V measurements were found as different. This case attributed to barrier height inhomogeneity and different natures of conventional I-V and C-V methods. 

References

  • [1] E. H. Rhoderick, R. H. Williams, Metal-Semiconductor Contacts, 2nd ed., Oxford Clarendon, 1988. [2] S. J. Fonash, S. Ashok, R. Singh, “Effect of ion-beam sputter damage on Schottky barrier formation in silicon,” Applied Physics Letters, vol. 39, no. 5, pp. 423-425, 1981. [3] S. Miyamato, “Frequency-conductance characteristic of the sputtered Mo-n/Si Schottky barrier,” Japanese Journal of Applied Physics, vol. 16, no. 1, pp. 101-109, 1977. [4] O. Y. Olikh, “Non-monotonic -Ray influence on Mo/n-Si Schottky barrier structure properties,” IEEE Transactions on Nuclear Science, vol. 60, no. 1, pp. 394-401, 2013. [5] A. N. Saxena, “Hafnium-silicon Schottky barriers: Large barrier height on p-type silicon ohmic behavior on n-type silicon,” Applied Physics Letters, vol. 19, no. 3, pp. 71-73, 1971. [6] C. R. Crowell, J. C. Sarace, S. M. Sze, “Tungsten-semiconductor Schottky barrier diodes,” Trans. Met. Soc. AIME, vol. 233, pp. 478-481, 1965. [7] J. K. Miller, S. M. Sze, M. J. Griece, Electrochemical Society, Spring Meeting, Electron Division, vol. 4, pp. 1, 1965. [8] G. Kano, M. Inoue, J. Matsuno, S. J. J. Takayanagi, “Molybdenum-silicon Schottky barrier,” Journal of Applied Physics, vol. 37, no. 8, pp. 2985-2987, 1966. [9] R. A. Zettler, A. M. Cowley, “PN-junction-Schottky barrier hybrid diode,” IEEE Transactions on Electron Devices, vol. 16, no. 1, pp. 58-63, 1969. [10] K. Sato, Y. J. J. Yasumura, “Study of forward I-V plot for Schottky diodes with high series resistance,” Journal of Applied Physics, vol. 58, no. 9, pp. 3655-3657, 1985. [11] A. G. Milnes, D. L. Feucht, Metal-Semiconductor Junctions, New York: McGrath Academic Press, 1973. [12] D. Kahng, “Conduction properties of the Au/n-type Si Schottky barrier,” Solid State Electronics, vol. 6, no. 3, pp. 281, 1963. [13] C. R. Crowell, S. M. Sze, “Current transport in metal-semiconductor barriers,” Solid State Electronics, vol. 9, no. 11-12, pp. 1035-1048, 1966. [14] M. S. P. Reddy, A. Ashok Kumar, V. Rajagopal Reddy, J. S. Jang, “Electrical transport characteristics of Ni/Pd/n-GaN Schottky barrier diodes as a function of temperature,” Thin Solid Films, vol. 519, no. 11, pp. 3844-3850, 2011. [15] A. A. M. Farag, B. Gündüz, F. Yakuphanoğlu, W. A. Farooq, “Controlling of electrical characteristics of Al/p-Si Schottky diode by tris ( 8-hydroxyquinolinato) aluminum organic film,” Synthetic Metals, vol. 160, no. 23-24, pp. 2559-2563, 2010. [16] A. Tataroğlu, “Comparative study of the electrical properties of Au/n-Si (MS) and Au/Si3N4/nSi (MIS) Schottky diodes,” Chinese Physics B, vol. 22, no. 6, pp. 068402, 2013. [17] S. M. Sze, Physics of Semiconductor Devices. 2nd ed., John Wiley&Sons, New York, 1981. [18] S. K. Cheung and N. W. Cheung, “Extraction of Schottky diode parameters from forward current-voltage characteristics,” Applied Physics Letters, vol. 49, no. 2, pp. 85-87, 1986. [19] B. L. Sharma, Metal-Semiconductor Schottky Barrier Junctions and Their Applications, Plenum PressNew-York, 1984, pp. 370. [20] S. Chand, J. Kumar, “Effects of barrier height distribution on the behavior of a Schottky diode,” Journal of Applied Physics, vol. 82, no. 10, pp. 5005-5010, 1997. [21] H. J. Werner, H. H. Gütter, “Barrier inhomogeneities of Schottky contacts,” Journal of Applied Physics, vol. 69, no. 3, pp. 1522-1533, 1991. [22] R. T Tung, A. F. J. Levi, J. P. Sullivan, F. Schrey, “Schottky barrier inhomogeneity at epitaxial NiSi2 interface on Si (100),” Physical Review Letters, vol. 66, no. 1, pp. 72-75, 1991. [23] H. Norde, “A modified forward I-V plot for Schottky diodes with high series resistance,” Journal of Applied Physics, vol. 50, no. 7, pp. 5052-5053, 1979. [24] K. E. Bohlin, “Generalized Norde plot including determination of the ideality factor,” Journal of Applied Physics, vol. 60, no. 3, pp. 1223-1224, 1986. [25] S. Duman, B. Gürbulak, S. Doǧan, A. Türüt, “Electrical characteristics and inhomogeneous barrier analysis of Au-Be/p-InSe:Cd Schottky barrier diodes,’’ Microelectron Engineering, vol. 86, no. 1, pp. 106–110, 2009. [26] H. Uslu, Ş. Altındal, U. Aydemir, İ. Dökme, I. M. Afandiyeva, “The interface states and series resistance effects on the forward and reverse bias I-V, C-V and G/ω-V characteristics of Al-TiW-Pd 2Si/n-Si Schottky barrier diodes,’’ Journal of Alloys and Compounds, vol. 503, no. 1, pp. 96–102, 2010. [27] A. M. Goodman, “Metal-semiconductor barrier height measurement by the differential capacitance method-one carrier system,” Journal of Applied Physics, vol. 34, no. 2, pp. 329-338, 1963. [28] İ. M. Afandiyeva, İ. Dökme, Ş. Altındal, M. M. Bülbül, A. Tataroğlu, “Frequency and voltage effects on the dielectric properties and electrical conductivity of Al-TiW-Pd2Si/n-Si structure,” Microelectronic Engineering, vol. 85, no. 2, pp. 247-252, 2008. [29] A. Chelkowski, Dielectric Physics, Elsevier, Amsterdam, 1980, pp. 97-105. [30] P. S. Ho, E. S. Yang, H. L. Evans, and X. Wu, “Electronic states at silicide-silicon interfaces,” Physical Review Letters, vol. 56, no. 2, pp. 177-180, 1986. [31] X. Wu, M. T. Schmidt, E. S. Yang, “Control of the Schottky barrier using an ultrathin interface metal layer,” Applied Physics Letters, vol. 54, no. 3, pp. 268-270, 1989. [32] E. H. Nicollian, J. R. Brews, MOS Physics and Technology. Wiley, New York, 1982, pp. 255. [33] E. Özavcı, “Au/n-GaAs Schottky diyotların hazırlanması ve akım iletim mekanizmalarının geniş bir sıcaklık aralığında incelenmesi,” Doktora Tezi, Fizik Bölümü, Gazi Üniversitesi, Fen Bilimleri Enstitüsü, Ankara, Türkiye, 2014. [34] Ç. Bilkan, “Polimer ara yüzey tabakalı ve tabakasız Schottky engel diyotların elektriksel karakteristiklerinin karşılaştırılması,” Doktora Tezi, Fizik Bölümü, Gazi Üniversitesi, Fen Bilimleri Enstitüsü, Ankara, Türkiye, 2016. [35] Ç. Ş. Güçlü, A. F. Özdemir, Ş. Altındal, “Double exponantial I-V characteristics and double Gaussian distribution of barrier heights in (Au/Ti)/Al2O3/n-GaAs (MIS) type Schottky barrier diodes in wide temperature range,” Applied Physics A, vol. 22, pp. 1032, 2016. [36] A. Singh, “Characterization of interface states at Ni/nCdF2 Schottky barrier type diodes and the effect of CdF2 surface preparation,” Solid State Electronics, vol. 28, no. 3, pp. 223-232, 1985. [37] E. H. Rhoderick, “Metal-semiconductor contacts,” Solid-State and Electron Devices, vol. 129, no. 1, pp. 1, 1982. [38] P. Chattopadhyay and B. RayChaudhuri, “Frequency dependence of forward capacitancevoltage charactersitics of Schottky barrier diodes,” Solid State Electronics, vol. 36, no. 4, pp. 605-610. 1993. [39] M. M. Bülbül, S. Zeyrek, “Frequency dependent capacitance and conductance-voltage characteristics of Al/Si3N4/p-Si (100) MIS diodes,’’ Microelectronic Engineering, vol. 83, no. 11-12, pp. 2522–2526, 2006. [40] A. F. Özdemir, D. A. Aldemir, A. Kökce, Ş. Altındal, “Electrical properties of Al/conducting polymer (P2ClAn)/p-Si/Al contacts,’’ Synthetic Metal, vol.159, no. 14, pp. 1427-1432, 2009. [41] D. Korucu, A. Türüt, R. Turan, Ş. Altındal, “Origin of forward bias capacitance peak and intersection behavior of C and G/ of Ag/p-InP Schottky barrier diodes,’’ Material Science and Semiconductor Processing, vol. 16, no. 2, pp. 344–351, 2013. [42] S. Zeyrek, E. Acaroǧlu, Ş. Altındal, S. Birdoǧan, M. M. Bülbül, “The effect of series resistance and interface states on the frequency dependent C-V and G/-V characteristics of Al/perylene/p-Si MPS type Schottky barrier diodes,’’ Current Applied Physics, vol. 13, no.7, 1225– 1230. 2013. [43] R. V. Reddy, A. Umapathi, L. D. Rao, “Effect of annealing on the electronic parameters of Au/poly(ethylmethacrylate)/n-InP Schottky diode with organic interlayer,” Current Applied Physics, vol. 13, no. 8, pp. 1604-1610, 2013. [44] Y. P. Song, R. L. Van Meirhaeghe, W. H. Laflere, F. Carden, “On the difference in apparent barrier height as obtained from capacitance-voltage and current-voltage-temperature measurements on Al/p-InP Schottky barriers,” Solid State Electronics, vol. 29, no. 6, pp. 633-638, 1986. [45] R. T. Tung, “Recent advances in Schottky barrier concepts,” Materials Science and Engineering: R: Reports, vol. 35, no. 1-3, pp. 1-138, 2001. [46] H. Takano, M. Kimura, T. Ando, S. Niemcharoen, Y. Yasumura, K. Sato, “Optical response of planar Mo/n-Si/Mo structures with long neutral region and Schottky barriers at both ends,” Solid-State Electronics, vol. 44, no. 12, pp. 2161-2164, 2000.
There are 1 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Çiğdem Şükriye Güçlü 0000-0001-6363-4666

Ahmet Faruk Özdemir 0000-0001-9879-9209

Durmuş Ali Aldemir 0000-0003-4819-840X

Publication Date July 31, 2019
Published in Issue Year 2019 Volume: 7 Issue: 3

Cite

APA Güçlü, Ç. Ş., Özdemir, A. F., & Aldemir, D. A. (2019). Mo/n-Si Schottky Diyotların Akım-Voltaj ve Kapasite-Voltaj Karakteristiklerinin Analizi. Duzce University Journal of Science and Technology, 7(3), 2142-2155. https://doi.org/10.29130/dubited.544197
AMA Güçlü ÇŞ, Özdemir AF, Aldemir DA. Mo/n-Si Schottky Diyotların Akım-Voltaj ve Kapasite-Voltaj Karakteristiklerinin Analizi. DUBİTED. July 2019;7(3):2142-2155. doi:10.29130/dubited.544197
Chicago Güçlü, Çiğdem Şükriye, Ahmet Faruk Özdemir, and Durmuş Ali Aldemir. “Mo/N-Si Schottky Diyotların Akım-Voltaj Ve Kapasite-Voltaj Karakteristiklerinin Analizi”. Duzce University Journal of Science and Technology 7, no. 3 (July 2019): 2142-55. https://doi.org/10.29130/dubited.544197.
EndNote Güçlü ÇŞ, Özdemir AF, Aldemir DA (July 1, 2019) Mo/n-Si Schottky Diyotların Akım-Voltaj ve Kapasite-Voltaj Karakteristiklerinin Analizi. Duzce University Journal of Science and Technology 7 3 2142–2155.
IEEE Ç. Ş. Güçlü, A. F. Özdemir, and D. A. Aldemir, “Mo/n-Si Schottky Diyotların Akım-Voltaj ve Kapasite-Voltaj Karakteristiklerinin Analizi”, DUBİTED, vol. 7, no. 3, pp. 2142–2155, 2019, doi: 10.29130/dubited.544197.
ISNAD Güçlü, Çiğdem Şükriye et al. “Mo/N-Si Schottky Diyotların Akım-Voltaj Ve Kapasite-Voltaj Karakteristiklerinin Analizi”. Duzce University Journal of Science and Technology 7/3 (July 2019), 2142-2155. https://doi.org/10.29130/dubited.544197.
JAMA Güçlü ÇŞ, Özdemir AF, Aldemir DA. Mo/n-Si Schottky Diyotların Akım-Voltaj ve Kapasite-Voltaj Karakteristiklerinin Analizi. DUBİTED. 2019;7:2142–2155.
MLA Güçlü, Çiğdem Şükriye et al. “Mo/N-Si Schottky Diyotların Akım-Voltaj Ve Kapasite-Voltaj Karakteristiklerinin Analizi”. Duzce University Journal of Science and Technology, vol. 7, no. 3, 2019, pp. 2142-55, doi:10.29130/dubited.544197.
Vancouver Güçlü ÇŞ, Özdemir AF, Aldemir DA. Mo/n-Si Schottky Diyotların Akım-Voltaj ve Kapasite-Voltaj Karakteristiklerinin Analizi. DUBİTED. 2019;7(3):2142-55.