Research Article
BibTex RIS Cite

Improving of a Response Surface Methodology for the Simultaneous Prediction of Emission and Performance in a Diesel Engine Working with Waste Tire Pyrolysis Oil

Year 2019, Volume: 7 Issue: 3, 1261 - 1278, 31.07.2019
https://doi.org/10.29130/dubited.546020

Abstract

References

  • [1] M. Ebrahimi and S. A. Jazayeri, "Effect of hydrogen addition on RCCI combustion of a heavy duty diesel engine fueled with landfill gas and diesel oil", International Journal Of Hydrogen Energy, vol. 44, s. 14, pp. 7607–7615, 2019.
  • [2] K. S. S. Y. Rao and B. B. Krishna, "Modeling diesel engine fueled with tamanu oil - Diesel blend by hybridizing neural network with firefly algorithm", Renewable Energy, vol 134, pp. 1200–1212, 2019.
  • [3] Ü. Ağbulut and S. Sarıdemir, "A general view to converting fossil fuels to cleaner energy source by adding nanoparticles", International Journal Of Ambient Energy, pp. 1–6, 2019.
  • [4] Ü. Ağbulut, "Turkey’s electricity generation problem and nuclear energy policy", Energy Sources, Part A: Recovery, Utilization, And Environmental Effects, pp. 2281–2298, 2019.
  • [5] G. Ospina, M. Selim, S. Omari, M. Ali and A. Hussien, "Engine roughness and exhaust emissions of a diesel engine fueled with three biofuels", Renewable Energy, vol. 134, pp. 1465–1472, 2019.
  • [6] Ü. Ağbulut and H. Bakır, "The Investigation on Economic and Ecological Impacts of Tendency to Electric Vehicles Instead of Internal Combustion Engines", Duzce University Journal Of Science And Technology, vol. 7, s. 1, pp. 25–36, 2019.
  • [7] M. A. Asokan, S. S. Prabu, P. K. K. Bade, V. M. Nekkanti and S. S. G. Gutta, "Performance, combustion and emission characteristics of juliflora biodiesel fuelled DI diesel engine", Energy, vol. 173, pp. 883–892, 2019.
  • [8] U. Rajak, P. Nashine and T. N. Verma, "Assessment of diesel engine performance using spirulina microalgae biodiesel", Energy, vol. 166, pp. 1025–1036, 2019.
  • [9] A. Hasan and I. Dincer, "Comparative assessment of various gasification fuels with waste tires for hydrogen production", International Journal Of Hydrogen Energy, 2019.
  • [10] U. Z. Baskovic, R. Vihar, T. Seljak and T. Katrasnik, "Feasibility analysis of 100% tire pyrolysis oil in a common rail Diesel engine", Energy, vol. 137, pp. 980–990, 2017.
  • [11] R. Vihar, T. Seljak, S. R. Opresnik and T. Katrasnik, "Combustion characteristics of tire pyrolysis oil in turbo charged compression ignition engine", Fuel, vol. 150, pp. 226–235, 2015.
  • [12] S. Uslu and M. B. Celik, "Prediction of engine emissions and performance with artificial neural networks in a single cylinder diesel engine using diethyl ether", Engineering Science And Technology, An International Journal, pp. 0–7, 2018.
  • [13] K. P. Singh, S. Gupta, A. K. Singh and S. Sinha, "Optimizing adsorption of crystal violet dye from water by magnetic nanocomposite using response surface modeling approach", Journal Of Hazardous Materials, vol. 186, s. 2–3, pp. 1462–1473, 2011.
  • [14] C. Esonye, O. D. Onukwuli and A. U. Ofoefule, "Optimization of methyl ester production from Prunus Amygdalus seed oil using response surface methodology and Artificial Neural Networks", Renew. Energy, vol. 130, pp. 61–72, 2019.
  • [15] W. Subramonian, T. Y. Wu and S. P. Chai, "An application of response surface methodology for optimizing coagulation process of raw industrial effluent using Cassia obtusifolia seed gum together with alum", Industrial Crops & Products, vol. 70, pp. 107–115, 2015.
  • [16] Y. Singh, A. Sharma, S. Tiwari and A. Singla, "Optimization of diesel engine performance and emission parameters employing cassia tora methyl esters-response surface methodology approach", Energy, vol. 168, pp. 909–918, 2019.
  • [17] G. Khoobbakht, M. Karimi and K. Kheiralipour, "Effects of biodiesel-ethanol-diesel blends on the performance indicators of a diesel engine: A study by response surface modeling", Applied Thermal Engineering, vol. 148, pp. 1385–1394, 2019.
  • [18] V. S. Yaliwal, N. R. Banapurmath, V. N. Gaitonde and M. D. Malipatil, "Simultaneous optimization of multiple operating engine parameters of a biodiesel-producer gas operated compression ignition (CI) engine coupled with hydrogen using response surface methodology", Renewable Energy, vol. 139, pp. 944–959, 2019.
  • [19] R. Sakthivel, K. Ramesh, S. J. J. Marshal and K. K. Sadasivuni, "Prediction of performance and emission characteristics of diesel engine fuelled with waste biomass pyrolysis oil using response surface methodology", Renewable Energy, vol. 136, pp. 91–103, 2019.
  • [20] M. G. Nayak and A. P. Vyas, "Optimization of microwave-assisted biodiesel production from Papaya oil using response surface methodology", Renewable Energy, vol. 138, pp. 18–28, 2019.
  • [21] V. Krishnamoorthy, R. Dhanasekaran, D. Rana, S. Saravanan and B. R. Kumar, "A comparative assessment of ternary blends of three bio-alcohols with waste cooking oil and diesel for optimum emissions and performance in a CI engine using response surface methodology", Energy Conversion And Management, vol. 156, pp. 337–357, 2018.
  • [22] D. Oğuzhan, "The experimental investigation of utilization of scrap tire derived pyrolytic fuel in a diesel engine", 2012.
  • [23] E. R. Umeki, C. F. de Oliveira, R. B. Torres and R. G. dos Santos, "Physico-chemistry properties of fuel blends composed of diesel and tire pyrolysis oil", Fuel, vol. 185, pp. 236–242, 2016.
  • [24] S. Murugan, M. C. Ramaswamy and G. Nagarajan, "The use of tyre pyrolysis oil in diesel engines", Waste Management, vol. 28, s. 12, pp. 2743–2749, 2008.
  • [25] Y. Kobashi, S. Hirako, A. Matsumoto and K. Naganuma, "Flash boiling spray of diesel fuel mixed with ethane and its effects on premixed diesel combustion", Fuel, vol. 237, pp. 686–693, 2019.
  • [26] R. Vihar, U. Z. Baskovic, T. Seljak and T. Katrasnik, "Combustion and emission formation phenomena of tire pyrolysis oil in a common rail Diesel engine", Energy Conversion And Management, vol. 149, pp. 706–721, 2017.
  • [27] S. Kumar and P. Dinesha, "Optimization of engine parameters in a bio diesel engine run with honge methyl ester using response surface methodology", Measurement, vol. 125, pp. 224–231, 2018.
  • [28] Y. Singh, A. Sharma, G. K. Singh, A. Singla and N. K. Singh, "Optimization of performance and emission parameters of direct injection diesel engine fuelled with pongamia methyl esters-response surface methodology approach", Industrial Crops & Products, vol. 126, pp. 218–226, 2018.
  • [29] "Minitab Statistical Software", .
  • [30] L. V. Candioti, M. M. De Zan, M. S. Camara and H. C. Goicoechea, "Experimental design and multiple response optimization. Using the desirability function in analytical methods development", Talanta, vol. 124, pp. 123–138, 2014.
  • [31] S. Patel, A. K. Azad and M. Khan, "Numerical investigation for predicting diesel engine performance and emission using different fuels", Energy Procedia, vol. 160, pp. 834–841, 2019.
  • [32] S. Jaichandar and K. Annamalai, "Effects of open combustion chamber geometries on the performance of pongamia biodiesel in a DI diesel engine", Fuel, vol. 98, pp. 272–279, 2012.
  • [33] P. Shivakumar and B. R.Shrinivasa, "Artificial Neural Network based prediction of performance and emission characteristics of a variable compression ratio CI engine using WCO as a biodiesel at different injection timings", Applied Energy, vol. 88, s. 7, pp. 2344–2354, 2011.
  • [34] V. S. Hariharan and K. V. Reddy, "Effect of Injection Pressure on Diesel Engine Performance with Sea Lemon Oil", Indian Journal Of Science And Technology, vol. 4, s. 8, 2011.
  • [35] A. Sharma and S. Murugan, "Potential for using a tyre pyrolysis oil-biodiesel blend in a diesel engine at different compression ratios", Energy Conversion And Management, vol. 93, pp. 289–297, 2015.
  • [36] S. Uslu and M. B. Celik, "Experimental investigation of the effects of diethyl ether- diesel fuel blends on engine parameters in a low power diesel engine", International Journal Of Engineering Sciences & Research Technology, vol. 7, s. 5, pp. 1–13, 2018.
  • [37] S. Frigo, M. Seggiani, M. Puccini and S. Vitolo, "Liquid fuel production from waste tyre pyrolysis and its utilisation in a Diesel engine", Fuel, vol. 116, pp. 399–408, 2014.
  • [38] S. M. Palash, M. A. Kalam, H. H. Masjuki, B. M. Masum, I. M. Rizwanul Fattah and M. Mofijur, "Impacts of biodiesel combustion on NOx emissions and their reduction approaches", Renewable And Sustainable Energy Reviews, vol. 23, pp. 473–490, 2013.
  • [39] R. Raghu and G. Ramadoss, "Optimization of injection timing and injection pressure of a DI diesel engine fueled with preheated rice bran oil", International Journal Of Energy and Environment, vol 2. s. 4, pp. 661–670, 2011.

Atık Lastik Piroliz Yağı ile Çalışan Bir Dizel Motorda Emisyon ve Performansın Eşzamanlı Tahminine Yönelik Bir Cevap Yüzey Metodunun Geliştirilmesi

Year 2019, Volume: 7 Issue: 3, 1261 - 1278, 31.07.2019
https://doi.org/10.29130/dubited.546020

Abstract

Günümüzde, artan enerji tüketimi, fosil
yakıt rezervlerinin azalması ve katı emisyon standartlarından dolayı alternatif
temiz yakıt çalışmaları son derece önemli hale gelmiştir. Bununla birlikte,
atık ürünlerin alternatif yakıt olarak değerlendirilmesi hayati önem
taşımaktadır. Atıkların dizel motorlarda alternatif yakıt olarak
değerlendirilmesi adına atık lastik piroliz yağı (ALPY) önemli bir yakıt
türüdür. Bu çalışmada, dizel yakıt ile farklı oranlarda karıştırılarak
hazırlanan ALPY-dizel yakıt karışımlarının (ALPY20, ALPY40 ve ALPY60)
kullanıldığı tek silindirli dizel bir motorda püskürtme basıncı (205 bar, 225
bar ve 245 bar) ve motor yükü (50%, 75% ve 100%) değişimlerinin etkileri
deneysel olarak incelenmiş ve yanıt yüzey metodolojisi (RSM) kullanılarak
analiz edilmiştir. Test sayılarının dizaynı ve analizi için sırasıyla deney
tasarımı (DOE) ve varyans analizi (ANOVA) kullanılmıştır. Analiz için püskürtme
basıncı, yakıt karışım oranı ve motor yükü giriş parametreleri olarak
seçilirken, fren efektif verim (FEV), egzoz gaz sıcaklığı (EGS), azot oksitler
(NO
x), karbon monoksit (CO), hidrokarbon (HC) ve is emisyonları
çıkış parametreleri olarak seçilmiştir. FEV, EGS, CO, HC, NO
x ve is değerlerini
tahmin etmek ve optimizasyon yapmak için RSM denklemleri ve RSM optimizasyonu uygulanmıştır.
Analiz sonuçlarına göre, optimum çalışma parametreleri %30.51 ALPY oranı, 225
bar püskürtme basıncı ve %62.12 motor yükü olarak tespit edilmiştir. Bu optimum
şartlarda elde edilen sonuçlar ise FEV, EGS, CO, HC, NO
x ve is için
sırasıyla %26.89, 399.31 ℃, %0.19, 9.09 ppm, 474.73 ppm ve %24.40 olarak
bulunmuştur. Bu çalışma, RSM'nin farklı yakıt karışımları kullanılan düşük
güçlü bir dizel motorun emisyon ve performans değerlerini tahmin etmede etkili
ve güvenilir bir yöntem olduğunu göstermektedir.
tedir.

References

  • [1] M. Ebrahimi and S. A. Jazayeri, "Effect of hydrogen addition on RCCI combustion of a heavy duty diesel engine fueled with landfill gas and diesel oil", International Journal Of Hydrogen Energy, vol. 44, s. 14, pp. 7607–7615, 2019.
  • [2] K. S. S. Y. Rao and B. B. Krishna, "Modeling diesel engine fueled with tamanu oil - Diesel blend by hybridizing neural network with firefly algorithm", Renewable Energy, vol 134, pp. 1200–1212, 2019.
  • [3] Ü. Ağbulut and S. Sarıdemir, "A general view to converting fossil fuels to cleaner energy source by adding nanoparticles", International Journal Of Ambient Energy, pp. 1–6, 2019.
  • [4] Ü. Ağbulut, "Turkey’s electricity generation problem and nuclear energy policy", Energy Sources, Part A: Recovery, Utilization, And Environmental Effects, pp. 2281–2298, 2019.
  • [5] G. Ospina, M. Selim, S. Omari, M. Ali and A. Hussien, "Engine roughness and exhaust emissions of a diesel engine fueled with three biofuels", Renewable Energy, vol. 134, pp. 1465–1472, 2019.
  • [6] Ü. Ağbulut and H. Bakır, "The Investigation on Economic and Ecological Impacts of Tendency to Electric Vehicles Instead of Internal Combustion Engines", Duzce University Journal Of Science And Technology, vol. 7, s. 1, pp. 25–36, 2019.
  • [7] M. A. Asokan, S. S. Prabu, P. K. K. Bade, V. M. Nekkanti and S. S. G. Gutta, "Performance, combustion and emission characteristics of juliflora biodiesel fuelled DI diesel engine", Energy, vol. 173, pp. 883–892, 2019.
  • [8] U. Rajak, P. Nashine and T. N. Verma, "Assessment of diesel engine performance using spirulina microalgae biodiesel", Energy, vol. 166, pp. 1025–1036, 2019.
  • [9] A. Hasan and I. Dincer, "Comparative assessment of various gasification fuels with waste tires for hydrogen production", International Journal Of Hydrogen Energy, 2019.
  • [10] U. Z. Baskovic, R. Vihar, T. Seljak and T. Katrasnik, "Feasibility analysis of 100% tire pyrolysis oil in a common rail Diesel engine", Energy, vol. 137, pp. 980–990, 2017.
  • [11] R. Vihar, T. Seljak, S. R. Opresnik and T. Katrasnik, "Combustion characteristics of tire pyrolysis oil in turbo charged compression ignition engine", Fuel, vol. 150, pp. 226–235, 2015.
  • [12] S. Uslu and M. B. Celik, "Prediction of engine emissions and performance with artificial neural networks in a single cylinder diesel engine using diethyl ether", Engineering Science And Technology, An International Journal, pp. 0–7, 2018.
  • [13] K. P. Singh, S. Gupta, A. K. Singh and S. Sinha, "Optimizing adsorption of crystal violet dye from water by magnetic nanocomposite using response surface modeling approach", Journal Of Hazardous Materials, vol. 186, s. 2–3, pp. 1462–1473, 2011.
  • [14] C. Esonye, O. D. Onukwuli and A. U. Ofoefule, "Optimization of methyl ester production from Prunus Amygdalus seed oil using response surface methodology and Artificial Neural Networks", Renew. Energy, vol. 130, pp. 61–72, 2019.
  • [15] W. Subramonian, T. Y. Wu and S. P. Chai, "An application of response surface methodology for optimizing coagulation process of raw industrial effluent using Cassia obtusifolia seed gum together with alum", Industrial Crops & Products, vol. 70, pp. 107–115, 2015.
  • [16] Y. Singh, A. Sharma, S. Tiwari and A. Singla, "Optimization of diesel engine performance and emission parameters employing cassia tora methyl esters-response surface methodology approach", Energy, vol. 168, pp. 909–918, 2019.
  • [17] G. Khoobbakht, M. Karimi and K. Kheiralipour, "Effects of biodiesel-ethanol-diesel blends on the performance indicators of a diesel engine: A study by response surface modeling", Applied Thermal Engineering, vol. 148, pp. 1385–1394, 2019.
  • [18] V. S. Yaliwal, N. R. Banapurmath, V. N. Gaitonde and M. D. Malipatil, "Simultaneous optimization of multiple operating engine parameters of a biodiesel-producer gas operated compression ignition (CI) engine coupled with hydrogen using response surface methodology", Renewable Energy, vol. 139, pp. 944–959, 2019.
  • [19] R. Sakthivel, K. Ramesh, S. J. J. Marshal and K. K. Sadasivuni, "Prediction of performance and emission characteristics of diesel engine fuelled with waste biomass pyrolysis oil using response surface methodology", Renewable Energy, vol. 136, pp. 91–103, 2019.
  • [20] M. G. Nayak and A. P. Vyas, "Optimization of microwave-assisted biodiesel production from Papaya oil using response surface methodology", Renewable Energy, vol. 138, pp. 18–28, 2019.
  • [21] V. Krishnamoorthy, R. Dhanasekaran, D. Rana, S. Saravanan and B. R. Kumar, "A comparative assessment of ternary blends of three bio-alcohols with waste cooking oil and diesel for optimum emissions and performance in a CI engine using response surface methodology", Energy Conversion And Management, vol. 156, pp. 337–357, 2018.
  • [22] D. Oğuzhan, "The experimental investigation of utilization of scrap tire derived pyrolytic fuel in a diesel engine", 2012.
  • [23] E. R. Umeki, C. F. de Oliveira, R. B. Torres and R. G. dos Santos, "Physico-chemistry properties of fuel blends composed of diesel and tire pyrolysis oil", Fuel, vol. 185, pp. 236–242, 2016.
  • [24] S. Murugan, M. C. Ramaswamy and G. Nagarajan, "The use of tyre pyrolysis oil in diesel engines", Waste Management, vol. 28, s. 12, pp. 2743–2749, 2008.
  • [25] Y. Kobashi, S. Hirako, A. Matsumoto and K. Naganuma, "Flash boiling spray of diesel fuel mixed with ethane and its effects on premixed diesel combustion", Fuel, vol. 237, pp. 686–693, 2019.
  • [26] R. Vihar, U. Z. Baskovic, T. Seljak and T. Katrasnik, "Combustion and emission formation phenomena of tire pyrolysis oil in a common rail Diesel engine", Energy Conversion And Management, vol. 149, pp. 706–721, 2017.
  • [27] S. Kumar and P. Dinesha, "Optimization of engine parameters in a bio diesel engine run with honge methyl ester using response surface methodology", Measurement, vol. 125, pp. 224–231, 2018.
  • [28] Y. Singh, A. Sharma, G. K. Singh, A. Singla and N. K. Singh, "Optimization of performance and emission parameters of direct injection diesel engine fuelled with pongamia methyl esters-response surface methodology approach", Industrial Crops & Products, vol. 126, pp. 218–226, 2018.
  • [29] "Minitab Statistical Software", .
  • [30] L. V. Candioti, M. M. De Zan, M. S. Camara and H. C. Goicoechea, "Experimental design and multiple response optimization. Using the desirability function in analytical methods development", Talanta, vol. 124, pp. 123–138, 2014.
  • [31] S. Patel, A. K. Azad and M. Khan, "Numerical investigation for predicting diesel engine performance and emission using different fuels", Energy Procedia, vol. 160, pp. 834–841, 2019.
  • [32] S. Jaichandar and K. Annamalai, "Effects of open combustion chamber geometries on the performance of pongamia biodiesel in a DI diesel engine", Fuel, vol. 98, pp. 272–279, 2012.
  • [33] P. Shivakumar and B. R.Shrinivasa, "Artificial Neural Network based prediction of performance and emission characteristics of a variable compression ratio CI engine using WCO as a biodiesel at different injection timings", Applied Energy, vol. 88, s. 7, pp. 2344–2354, 2011.
  • [34] V. S. Hariharan and K. V. Reddy, "Effect of Injection Pressure on Diesel Engine Performance with Sea Lemon Oil", Indian Journal Of Science And Technology, vol. 4, s. 8, 2011.
  • [35] A. Sharma and S. Murugan, "Potential for using a tyre pyrolysis oil-biodiesel blend in a diesel engine at different compression ratios", Energy Conversion And Management, vol. 93, pp. 289–297, 2015.
  • [36] S. Uslu and M. B. Celik, "Experimental investigation of the effects of diethyl ether- diesel fuel blends on engine parameters in a low power diesel engine", International Journal Of Engineering Sciences & Research Technology, vol. 7, s. 5, pp. 1–13, 2018.
  • [37] S. Frigo, M. Seggiani, M. Puccini and S. Vitolo, "Liquid fuel production from waste tyre pyrolysis and its utilisation in a Diesel engine", Fuel, vol. 116, pp. 399–408, 2014.
  • [38] S. M. Palash, M. A. Kalam, H. H. Masjuki, B. M. Masum, I. M. Rizwanul Fattah and M. Mofijur, "Impacts of biodiesel combustion on NOx emissions and their reduction approaches", Renewable And Sustainable Energy Reviews, vol. 23, pp. 473–490, 2013.
  • [39] R. Raghu and G. Ramadoss, "Optimization of injection timing and injection pressure of a DI diesel engine fueled with preheated rice bran oil", International Journal Of Energy and Environment, vol 2. s. 4, pp. 661–670, 2011.
There are 39 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Samet Uslu 0000-0001-9118-5108

Publication Date July 31, 2019
Published in Issue Year 2019 Volume: 7 Issue: 3

Cite

APA Uslu, S. (2019). Atık Lastik Piroliz Yağı ile Çalışan Bir Dizel Motorda Emisyon ve Performansın Eşzamanlı Tahminine Yönelik Bir Cevap Yüzey Metodunun Geliştirilmesi. Duzce University Journal of Science and Technology, 7(3), 1261-1278. https://doi.org/10.29130/dubited.546020
AMA Uslu S. Atık Lastik Piroliz Yağı ile Çalışan Bir Dizel Motorda Emisyon ve Performansın Eşzamanlı Tahminine Yönelik Bir Cevap Yüzey Metodunun Geliştirilmesi. DUBİTED. July 2019;7(3):1261-1278. doi:10.29130/dubited.546020
Chicago Uslu, Samet. “Atık Lastik Piroliz Yağı Ile Çalışan Bir Dizel Motorda Emisyon Ve Performansın Eşzamanlı Tahminine Yönelik Bir Cevap Yüzey Metodunun Geliştirilmesi”. Duzce University Journal of Science and Technology 7, no. 3 (July 2019): 1261-78. https://doi.org/10.29130/dubited.546020.
EndNote Uslu S (July 1, 2019) Atık Lastik Piroliz Yağı ile Çalışan Bir Dizel Motorda Emisyon ve Performansın Eşzamanlı Tahminine Yönelik Bir Cevap Yüzey Metodunun Geliştirilmesi. Duzce University Journal of Science and Technology 7 3 1261–1278.
IEEE S. Uslu, “Atık Lastik Piroliz Yağı ile Çalışan Bir Dizel Motorda Emisyon ve Performansın Eşzamanlı Tahminine Yönelik Bir Cevap Yüzey Metodunun Geliştirilmesi”, DUBİTED, vol. 7, no. 3, pp. 1261–1278, 2019, doi: 10.29130/dubited.546020.
ISNAD Uslu, Samet. “Atık Lastik Piroliz Yağı Ile Çalışan Bir Dizel Motorda Emisyon Ve Performansın Eşzamanlı Tahminine Yönelik Bir Cevap Yüzey Metodunun Geliştirilmesi”. Duzce University Journal of Science and Technology 7/3 (July 2019), 1261-1278. https://doi.org/10.29130/dubited.546020.
JAMA Uslu S. Atık Lastik Piroliz Yağı ile Çalışan Bir Dizel Motorda Emisyon ve Performansın Eşzamanlı Tahminine Yönelik Bir Cevap Yüzey Metodunun Geliştirilmesi. DUBİTED. 2019;7:1261–1278.
MLA Uslu, Samet. “Atık Lastik Piroliz Yağı Ile Çalışan Bir Dizel Motorda Emisyon Ve Performansın Eşzamanlı Tahminine Yönelik Bir Cevap Yüzey Metodunun Geliştirilmesi”. Duzce University Journal of Science and Technology, vol. 7, no. 3, 2019, pp. 1261-78, doi:10.29130/dubited.546020.
Vancouver Uslu S. Atık Lastik Piroliz Yağı ile Çalışan Bir Dizel Motorda Emisyon ve Performansın Eşzamanlı Tahminine Yönelik Bir Cevap Yüzey Metodunun Geliştirilmesi. DUBİTED. 2019;7(3):1261-78.