Research Article
BibTex RIS Cite

Self -Assembled Monolayers with Peptide Nucleic Acid (PNA) Probe to Develop Electrochemical Biosensors

Year 2019, Volume: 7 Issue: 3, 1806 - 1812, 31.07.2019
https://doi.org/10.29130/dubited.558155

Abstract

Alkanethiol
self-assembled monolayers (SAMs) with Peptide Nucleic Acid (PNA) were proposed
as a novel probe design in electrochemical biosensors. This paper investigates
the optimization of PNA probe by using two different concentrations of SAMs,
immobilization temperature, and two-stage immobilization process. Alkanethiol
self-assembled monolayers with PNA probe immobilization and cDNA (complementary
DNA) hybridization were measured via AC voltammetry method. The small negative
shift in formal potential (-17 mV) was occurred after cDNA hybridization at
high ionic strength concentration.

References

  • [1]. J. Wang, “Electrochemical nucleic acid biosensors”, Analytica Chimica Acta, vol. 469, pp. 63–7, 2002.
  • [2]. D. Grieshaber, R. MacKenzie, J. Vörös, E. Reimhult, “Electrochemical Biosensors - Sensor Principles and Architectures”, Sensors, vol. 8, pp. 1400-1458, 2008.
  • [3]. G. Hernandez-Vargas, J. E. Sosa-Hernández, S. Saldarriaga-Hernandez, A. M. Villalba-Rodríguez, R. Parra-Saldivar, H. M. N. Iqbal, “Electrochemical Biosensors: A Solution to Pollution Detection with Reference to Environmental Contaminants”, Biosensors, vol. 8, pp. 29, 2018.
  • [4]. H. Aoki, P. Buelmann, and Y. Umezawa, “Electrochemical Detection of a One-Base Mismatch in an Oligonucleotide Using Ion-Channel Sensors with Self-Assembled PNA Monolayers”, Electroanalysis, vol. 12, no. 16, pp. 1272-1276, 2000.
  • [5]. J. D. Bartl, M. Stutzmann, A. Cattani-Scholz, M. Tornow, “Synthesis and Optimization of Organic Sensing Platforms for Label-free DNA Detection”, Proceedings of the 12th IEEE International Conference on Nano/Micro Engineered and Molecular Systems, 2017, pp. 118-121.
  • [6]. P. Teengam, W. Siangproh , A. Tuantranont , C. S. Henry, T. Vilaivan, O. Chailapakul, “Electrochemical paper-based peptide nucleic acid biosensor for detecting human papillomavirus”, Analytica Chimica Acta, vol. 952, pp. 32-40, 2017.
  • [7]. O. Brandt and J. D. Hoheisel, “Peptide nucleic acids on microarrays and other biosensors”, TRENDS in Biotechnology, vol. 22, no.12, pp. 617-622, 2004.
  • [8]. S. Reisberg, L.A. Dang, Q.A. Nguyen, B. Piro, V. Noel, P.E. Nielsen, L.A. Le, M.C. Pham, “Label-free DNA electrochemical sensor based on a PNA-functionalized conductive polymer”, Talanta, vol. 76, pp. 206-210, 2008.
  • [9]. J. Justin Gooding and N. Darwish, “The Rise Of Self-Assembled Monolayers For Fabricating Electrochemical Biosensors—An Interfacial Perspective”, The Chemical Record, vol. 12, pp. 92–105, 2012.
  • [10]. B. Kazakeviciene, G. Valincius, G. Niaura, M. Kazemekaite, J. Straukas, V. Razumas, “Electron transfer through ferrocene-terminated self-assembled monolayers”, Biologija, no. 4, pp. 13-16, 2003.
  • [11]. J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo, and G. M. Whitesides, “Self-Assembled Monolayers of Thiolates on Metals as a Form of Nanotechnology”, Chem. Rev., vol. 105, pp. 1103-1169, 2005.
  • [12]. P. Diao, M. Guo, D. Jiang, Z. Jia, X. Cui, D. Gu, R. Tong, B. Zhong, “Fractional coverage of defects in self-assembled thiol monolayers on gold”, Journal of electroanalytical chemistry, vol. 480, pp. 59-63, 2000.
  • [13]. Y. Yourdshahyan and A. M. Rappe, “Structure and energetics of alkanethiol adsorption on the Au(111) surface”, J. Chem. Phys., vol.117, no.2, pp. 826-833, 2002.
  • [14]. K. Tsugimura, H. Ohnuki, H. Endo, D. Tsuya, M. Izumi, “Protein-G-based human immunoglobulin G biosensing by electrochemical impedance spectroscopy”, Jpn. J. Appl. Phys., vol. 55, 02BE06, 2016.
  • [15]. Z. B. Bahsi Oral, "Application of mixed self-assembled monolayers (Mixed SAMs) for nucleic acid detection", Measurement, vol. 94, pp. 1-4, 2016.
  • [16]. M. Y. Ho, P. Li, P. Estrela, S. Goodchild, P. Migliorato, “Detection of molecular interactions with modified ferrocene self-assembled monolayers”, J. Phys. Chem., vol. 114, pp. 10661-10665, 2010.
  • [17]. O'Connor S.D., Olsen G.T., Creager S.E., “A Nernstian electron source model for the ac voltammetric response of a reversible surface redox reaction using large-amplitude ac voltages”, J. Electroanal. Chem., vol. 466, pp. 197-202, 1999.
  • [18]. P.A. Lewis, Z.J. Donhauser, B. A. Mantooth, R.K. Smith, L.A. Bumm, K.F. Kelly, P.S. Weiss, “Control and placement of molecules via self-asembly”, Nanotechnology, vol. 12, pp. 231-237, 2001.
  • [19]. Creager S.E., Rowe G.K., “Ion Solvation and Double-Layer Effects on Redox Reactions in Self-Assembled Monolayers. Alkanethiolates and Ferrocenylalkanethiolates on Gold”, J. Electroanal. Chem., vol. 420, pp. 291-299, 1997.

Elektrokimyasal Biyosensörlerin Geliştirilmesinde Alkanetiol Kendiliğinden Oluşan Tek Katmanlar ile Peptid Nükleik Asit (PNA) Probu

Year 2019, Volume: 7 Issue: 3, 1806 - 1812, 31.07.2019
https://doi.org/10.29130/dubited.558155

Abstract

Peptid Nükleik Asit (PNA) içeren alkanetiol kendiliğinden
oluşan tek katmanlar (SAM), elektrokimyasal biyosensörlerde prob olarak
önerilmiştir. Bu makale, PNA probunun optimizasyonunu iki farklı SAM konsantrasyonu,
immobilizasyon sıcaklığı ve iki aşamalı immobilizasyon prosesi kullanarak araştırmıştır.
Alkanetiol kendiliğinden oluşan tek katmanlar ile PNA prob immobilizasyonu ve
cDNA (tamamlayıcı DNA) hibridizasyonu AC voltametre metodu ile ölçülmüştür. Yüksek
iyonik kuvvet konsantrasyonunda, cDNA hibridizasyonundan sonra formal
potansiyelde küçük negatif kayma (-17 mV) meydana gelmiştir

References

  • [1]. J. Wang, “Electrochemical nucleic acid biosensors”, Analytica Chimica Acta, vol. 469, pp. 63–7, 2002.
  • [2]. D. Grieshaber, R. MacKenzie, J. Vörös, E. Reimhult, “Electrochemical Biosensors - Sensor Principles and Architectures”, Sensors, vol. 8, pp. 1400-1458, 2008.
  • [3]. G. Hernandez-Vargas, J. E. Sosa-Hernández, S. Saldarriaga-Hernandez, A. M. Villalba-Rodríguez, R. Parra-Saldivar, H. M. N. Iqbal, “Electrochemical Biosensors: A Solution to Pollution Detection with Reference to Environmental Contaminants”, Biosensors, vol. 8, pp. 29, 2018.
  • [4]. H. Aoki, P. Buelmann, and Y. Umezawa, “Electrochemical Detection of a One-Base Mismatch in an Oligonucleotide Using Ion-Channel Sensors with Self-Assembled PNA Monolayers”, Electroanalysis, vol. 12, no. 16, pp. 1272-1276, 2000.
  • [5]. J. D. Bartl, M. Stutzmann, A. Cattani-Scholz, M. Tornow, “Synthesis and Optimization of Organic Sensing Platforms for Label-free DNA Detection”, Proceedings of the 12th IEEE International Conference on Nano/Micro Engineered and Molecular Systems, 2017, pp. 118-121.
  • [6]. P. Teengam, W. Siangproh , A. Tuantranont , C. S. Henry, T. Vilaivan, O. Chailapakul, “Electrochemical paper-based peptide nucleic acid biosensor for detecting human papillomavirus”, Analytica Chimica Acta, vol. 952, pp. 32-40, 2017.
  • [7]. O. Brandt and J. D. Hoheisel, “Peptide nucleic acids on microarrays and other biosensors”, TRENDS in Biotechnology, vol. 22, no.12, pp. 617-622, 2004.
  • [8]. S. Reisberg, L.A. Dang, Q.A. Nguyen, B. Piro, V. Noel, P.E. Nielsen, L.A. Le, M.C. Pham, “Label-free DNA electrochemical sensor based on a PNA-functionalized conductive polymer”, Talanta, vol. 76, pp. 206-210, 2008.
  • [9]. J. Justin Gooding and N. Darwish, “The Rise Of Self-Assembled Monolayers For Fabricating Electrochemical Biosensors—An Interfacial Perspective”, The Chemical Record, vol. 12, pp. 92–105, 2012.
  • [10]. B. Kazakeviciene, G. Valincius, G. Niaura, M. Kazemekaite, J. Straukas, V. Razumas, “Electron transfer through ferrocene-terminated self-assembled monolayers”, Biologija, no. 4, pp. 13-16, 2003.
  • [11]. J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo, and G. M. Whitesides, “Self-Assembled Monolayers of Thiolates on Metals as a Form of Nanotechnology”, Chem. Rev., vol. 105, pp. 1103-1169, 2005.
  • [12]. P. Diao, M. Guo, D. Jiang, Z. Jia, X. Cui, D. Gu, R. Tong, B. Zhong, “Fractional coverage of defects in self-assembled thiol monolayers on gold”, Journal of electroanalytical chemistry, vol. 480, pp. 59-63, 2000.
  • [13]. Y. Yourdshahyan and A. M. Rappe, “Structure and energetics of alkanethiol adsorption on the Au(111) surface”, J. Chem. Phys., vol.117, no.2, pp. 826-833, 2002.
  • [14]. K. Tsugimura, H. Ohnuki, H. Endo, D. Tsuya, M. Izumi, “Protein-G-based human immunoglobulin G biosensing by electrochemical impedance spectroscopy”, Jpn. J. Appl. Phys., vol. 55, 02BE06, 2016.
  • [15]. Z. B. Bahsi Oral, "Application of mixed self-assembled monolayers (Mixed SAMs) for nucleic acid detection", Measurement, vol. 94, pp. 1-4, 2016.
  • [16]. M. Y. Ho, P. Li, P. Estrela, S. Goodchild, P. Migliorato, “Detection of molecular interactions with modified ferrocene self-assembled monolayers”, J. Phys. Chem., vol. 114, pp. 10661-10665, 2010.
  • [17]. O'Connor S.D., Olsen G.T., Creager S.E., “A Nernstian electron source model for the ac voltammetric response of a reversible surface redox reaction using large-amplitude ac voltages”, J. Electroanal. Chem., vol. 466, pp. 197-202, 1999.
  • [18]. P.A. Lewis, Z.J. Donhauser, B. A. Mantooth, R.K. Smith, L.A. Bumm, K.F. Kelly, P.S. Weiss, “Control and placement of molecules via self-asembly”, Nanotechnology, vol. 12, pp. 231-237, 2001.
  • [19]. Creager S.E., Rowe G.K., “Ion Solvation and Double-Layer Effects on Redox Reactions in Self-Assembled Monolayers. Alkanethiolates and Ferrocenylalkanethiolates on Gold”, J. Electroanal. Chem., vol. 420, pp. 291-299, 1997.
There are 19 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Zehra Banu Bahsi Oral 0000-0001-5513-0847

Publication Date July 31, 2019
Published in Issue Year 2019 Volume: 7 Issue: 3

Cite

APA Bahsi Oral, Z. B. (2019). Self -Assembled Monolayers with Peptide Nucleic Acid (PNA) Probe to Develop Electrochemical Biosensors. Duzce University Journal of Science and Technology, 7(3), 1806-1812. https://doi.org/10.29130/dubited.558155
AMA Bahsi Oral ZB. Self -Assembled Monolayers with Peptide Nucleic Acid (PNA) Probe to Develop Electrochemical Biosensors. DUBİTED. July 2019;7(3):1806-1812. doi:10.29130/dubited.558155
Chicago Bahsi Oral, Zehra Banu. “Self -Assembled Monolayers With Peptide Nucleic Acid (PNA) Probe to Develop Electrochemical Biosensors”. Duzce University Journal of Science and Technology 7, no. 3 (July 2019): 1806-12. https://doi.org/10.29130/dubited.558155.
EndNote Bahsi Oral ZB (July 1, 2019) Self -Assembled Monolayers with Peptide Nucleic Acid (PNA) Probe to Develop Electrochemical Biosensors. Duzce University Journal of Science and Technology 7 3 1806–1812.
IEEE Z. B. Bahsi Oral, “Self -Assembled Monolayers with Peptide Nucleic Acid (PNA) Probe to Develop Electrochemical Biosensors”, DUBİTED, vol. 7, no. 3, pp. 1806–1812, 2019, doi: 10.29130/dubited.558155.
ISNAD Bahsi Oral, Zehra Banu. “Self -Assembled Monolayers With Peptide Nucleic Acid (PNA) Probe to Develop Electrochemical Biosensors”. Duzce University Journal of Science and Technology 7/3 (July 2019), 1806-1812. https://doi.org/10.29130/dubited.558155.
JAMA Bahsi Oral ZB. Self -Assembled Monolayers with Peptide Nucleic Acid (PNA) Probe to Develop Electrochemical Biosensors. DUBİTED. 2019;7:1806–1812.
MLA Bahsi Oral, Zehra Banu. “Self -Assembled Monolayers With Peptide Nucleic Acid (PNA) Probe to Develop Electrochemical Biosensors”. Duzce University Journal of Science and Technology, vol. 7, no. 3, 2019, pp. 1806-12, doi:10.29130/dubited.558155.
Vancouver Bahsi Oral ZB. Self -Assembled Monolayers with Peptide Nucleic Acid (PNA) Probe to Develop Electrochemical Biosensors. DUBİTED. 2019;7(3):1806-12.