Research Article
BibTex RIS Cite

P300 Tabanlı Beyin Bilgisayar Arayüzü Sistemlerinde Uyaranlar Arası Sürenin ve Uyaran Yapısının Performansa Etkisi

Year 2019, Volume: 7 Issue: 3, 1834 - 1846, 31.07.2019
https://doi.org/10.29130/dubited.562610

Abstract

Elektroensefalografi temelli beyin
bilgisayar arayüzü sistemleri kas sistemini kullanamayan hastalar için dış
dünya ile iletişimini mümkün kılmaktadır. EEG temelli beyin bilgisayar arayüzü
sistemleri için çeşitli beyin sinyal aktiviteleri kullanılmaktadır. Olay odaklı
potansiyellerden bir tanesi olan P300 sinyali beyin bilgisayar arayüzü
sistemleri için elverişli bir beyin sinyalidir. P300 tabanlı bir beyin
bilgsayar arayüzü için en önemli performans parametrelerinden birisi
sınıflandırma doğruluk oranıdır. Bu çalışmada satır sütun temelli P300
heceletici yapısındaki değişiklikle daha yüksek doğruluk oranı ile elde
edilmesi hedeflenmiştir. P300 heceleticisi matris yapısında ve uyaranların
aralık süreleri üzerinde değişiklikler yapılmıştır. Bundan önceki bir çok
çalışma P300 heceletici yapısındaki uyaran renk ve biçimlerindeki
değişiklikler  ile yapılmıştır. Uyaran
yapısı ve uyaran aralık sürelerindeki değişikleri kıyaslayıcı P300
heceleticileri ile ilgili çalışmalar yeterli seviyede değildir. Bu çalışmada
dört farklı yapıdaki satır sütun bazlı P300 heceletici kullanılarak deneyler
yapılmıştır. Deneyler ile toplanan EEG kayıtları ön işlemden geçirildikten
sonra adımsal doğrusal ayrışım analizi ile sınıflandırılmıştır. Sınıflandırma
neticesinde bu çalışmada karşılaştırılan heceleticilerden; 4x4 satır sütın
bazlı P300 heceleticinin 150 ms uyaran aralık süresine sahip olan yapıdaki
formu, ortalama doğruluk oranı %84,76 ile en yüksek olarak tespit edilmiştir. En
düşük performans ise; 6x6 satır sütın bazlı P300 heceleticinin 300 ms uyaranlar
arası geçiş süresine sahip modunda %50,48 olarak gözlenmiştir. Bu çalışma,
satır sütun bazlı P300 heceleticisinin uyaran matris yapısındaki değişikliği ve
farklı uyaran aralık sürelerinde yapılan deneylerle yüksek doğruluk oranı ile
elde edilebileceğini göstermiştir.

References

  • [1] J. R. Wolpaw, N. Birbaumer, D. J. McFarland, G. Pfurtscheller, and T. M. Vaughan, “Brain computer interfaces for communication and control,” Clin. Neurophysiol., vol. 113, no. 6, pp. 767-791, 2002.
  • [2] B. He, Z. Liu, “Multimodal functional neuroimaging: Integrating functional MRI and EEG/MEG,” IEEE Rev. Biomed. Eng., vol. 1, pp. 23-40, 2008.
  • [3] J. d. R. Millán, J. Carmena, “Invasive or noninvasive: Understanding brain-machine interface technology,” Eng. Med. Biol. Mag., vol. 29, pp. 16-22, 2010.
  • [4] Z. Oralhan, M. Tokmakci, “The Effect of Duty Cycle and Brightness Variation of Visual Stimuli on SSVEP in Brain Computer Interface Systems,” IETE Journal of Research, vol. 62, no. 6, pp. 795-803, 2016.
  • [5] N. Birbaumer, A. Kubler, N. Ghanayim, T. Hinterberger, J. Perelmouter, J. Kaiser, I. Iversen, B. Kotchoubey, N. Neumann, and H. Flor, “The thought translation device (TTD) for completely paralyzed patients,” IEEE Trans. Rehab. Eng., vol. 8, no. 2, pp. 190-193, 2000.
  • [6] G. Townsend, J. Shanahan, D. B. Ryan, E. W. Sellers, “A general P300 brain–computer interface presentation paradigm based on performance guided constraints,” Neurosci. Lett., vol. 531, no. 2, pp. 63-68, 2012.
  • [7] S. Sutton, M. Braren, J. Zubin, E. R. John, “Evoked-potential correlates of stimulus uncertainty,” Science, vol. 150, no. 3700, pp. 1187-1188, 1965.
  • [8] F. Nijboer, E. W. Sellers, J. Mellinger, M. A. Jordan, T. Matuz, A. Furdea, J. R. Wolpaw, “A P300-based brain–computer interface for people with amyotrophic lateral sclerosis,” Clinical neurophysiology, vol. 119, no. 8, pp. 1909-1916, 2008.
  • [9] S. G. Horovitz, P. Skudlarski, J. C. Gore, “Correlations and dissociations between BOLD signal and P300 amplitude in an auditory oddball task: a parametric approach to combining fMRI and ERP,” Magnetic resonance imaging, vol. 20, no. 4, pp. 319-325, 2002.
  • [10] A. Furdea, S. Halder, D. J. Krusienski, D. Bross, F. Nijboer, N. Birbaumer, A. Kübler, “An auditory oddball (P300) spelling system for brain‐computer interfaces,” Psychophysiology, vol. 46, no. 3, pp. 617-625, 2009.
  • [11] S. J. Radlo, C. M. Janelle, D. A. Barba, S.G. Frehlich, “Perceptual decision making for baseball pitch recognition: using P300 latency and amplitude to index attentional processing,” Research quarterly for exercise and sport, vol. 72 no. 1, pp. 22-31, 2001.
  • [12] L. Farwell, E. Donchin, “Talking off the top of your head: Toward a mental prosthesis utilizing event-related brain potentials,” Electroencephalogr. Clin. Neurophysiol. vol. 70, no. 6, pp. 510-523, 1988.
  • [13] C. Guger, S. Daban, E. Sellers, C. Holzner, G. Krausz, R. Carabalona, G. Edlinger, “How many people are able to control a P300-based brain–computer interface (BCI)?,” Neuroscience letters, vol. 462, no. 1, pp. 94-98, 2009.
  • [14] E. W. Sellers, D. J. Krusienski, D. J. McFarland, T. M. Vaughan, J. R. Wolpaw, “A P300 event-related potential brain–computer interface (BCI): the effects of matrix size and inter stimulus interval on performance,” Biological psychology, vol. 73, no. 3, pp. 242-252, 2006.
  • [15] M. Salvaris, F. Sepulveda, “Visual modifications on the P300 speller BCI paradigm,” Journal of neural engineering, vol. 6, no. 4, pp. 046011, 2009.
  • [16] G. Townsend, B. K. LaPallo, C. B. Boulay, D. J. Krusienski, G. E. Frye, C. Hauser, E. W. Sellers, “A novel P300-based brain–computer interface stimulus presentation paradigm: moving beyond rows and columns,” Clinical Neurophysiology, vol. 121, no. 7, pp. 1109-1120, 2010.
  • [17] P. Meinicke, M. Kaper, F. Hoppe, M. Heumann, H. Ritter "Improving transfer rates in brain computer interfacing: A case study," Neural Information Processing Systems (NIPS), pp. 1107-1114, 2002.
  • [18] L. Averbuch‐Heller, C. Helmchen, A. K. Horn, R. J. Leigh, J. A. Büttner‐Ennever, “Slow vertical saccades in motor neuron disease: correlation of structure and function,” Annals of Neurology: Official Journal of the American Neurological Association and the Child Neurology Society, vol. 44, no. 4, pp. 641-648, 1998. [19] A. J. Suminski, D. C. Tkach, N. G. Hatsopoulos, “Exploiting multiple sensory modalities in brain-machine interfaces,” Neural Networks, vol. 22, no. 9, pp. 1224-1234, 2009.
  • [20] D. S. Klobassa, T. M. Vaughan, P. Brunner, N. E. Schwartz, J. R. Wolpaw, C. Neuper, E. W. Sellers, “Toward a high-throughput auditory P300-based brain–computer interface,” Clinical Neurophysiology, vol. 120, no. 7, pp. 1252-1261, 2009.
  • [21] A. Kübler A. Furdea, S. Halder, E. M. Hammer, F. Nijboer, B. Kotchoubey, “A brain–computer interface controlled auditory event‐related potential (P300) spelling system for locked‐in patients,” Annals of the New York Academy of Sciences, vol. 1157, no. 1, pp. 90-100, 2009.
  • [22] B. Z. Allison, J. A. Pineda "ERP's evoked by different matrix sizes: implications for a brain computer interface (BCI) system," IEEE Trans. Neural. Syst. Rehab. Eng., vol. 11, no. 2 pp. 110-113, 2003.
  • [23] U. Hoffmann J. M. Vesin T. Ebrahimi K. Diserens "An efficient P300-based brain-computer interface for disabled subjects," J. Neurosci. Methods, vol. 167, no. 1, pp. 115-125, 2008.

The Effects of Stimulus Structure and Inter Stimulus Interval in P300 based Brain Computer Interface Systems

Year 2019, Volume: 7 Issue: 3, 1834 - 1846, 31.07.2019
https://doi.org/10.29130/dubited.562610

Abstract

Electroencephalography
based brain computer interface systems provide communication with the
environmental devices for users who cannot use neuromuscular system. There are
various brain signal activities for EEG-based BCIs. P300 is a type of event
related potential and is a convenient signal type for BCI systems. One of the
most important performance parameters is the classification accuracy rate for a
P300-based BCI. In this study we aimed to obtain a higher accuracy rate with
the changes of row column based P300 speller structure. Changes were made to
the matrix structure of P300 speller and inter stimulus interval duration. our
new approach region based P300 speller. In most of previous studies are about
changes of stimlus color and shapes in row column based P300 speller. In this
research experiments with 4 different modes P300 speller were used for
character selection. The EEG recordings that collected in the experiments were
pre-processed and then classified by stepwise linear discriminant analysis.
Acording to the classification result the highest average of the classification
accuracy was reached to 84.76% in the experiments with 4x4 matrix based P300
speller with 150 ms inter stimulus interval duration. In the contrary of this
the lowest classification accuracy was observed with 6x6 matrix based P300
speller with 300 ms inter stimulus interval duration. This study showed that
the row column based P300 speller can be achieved to high accuracy rate with
changes in stimulus matrix structure and inter stimulus interval duration. 

References

  • [1] J. R. Wolpaw, N. Birbaumer, D. J. McFarland, G. Pfurtscheller, and T. M. Vaughan, “Brain computer interfaces for communication and control,” Clin. Neurophysiol., vol. 113, no. 6, pp. 767-791, 2002.
  • [2] B. He, Z. Liu, “Multimodal functional neuroimaging: Integrating functional MRI and EEG/MEG,” IEEE Rev. Biomed. Eng., vol. 1, pp. 23-40, 2008.
  • [3] J. d. R. Millán, J. Carmena, “Invasive or noninvasive: Understanding brain-machine interface technology,” Eng. Med. Biol. Mag., vol. 29, pp. 16-22, 2010.
  • [4] Z. Oralhan, M. Tokmakci, “The Effect of Duty Cycle and Brightness Variation of Visual Stimuli on SSVEP in Brain Computer Interface Systems,” IETE Journal of Research, vol. 62, no. 6, pp. 795-803, 2016.
  • [5] N. Birbaumer, A. Kubler, N. Ghanayim, T. Hinterberger, J. Perelmouter, J. Kaiser, I. Iversen, B. Kotchoubey, N. Neumann, and H. Flor, “The thought translation device (TTD) for completely paralyzed patients,” IEEE Trans. Rehab. Eng., vol. 8, no. 2, pp. 190-193, 2000.
  • [6] G. Townsend, J. Shanahan, D. B. Ryan, E. W. Sellers, “A general P300 brain–computer interface presentation paradigm based on performance guided constraints,” Neurosci. Lett., vol. 531, no. 2, pp. 63-68, 2012.
  • [7] S. Sutton, M. Braren, J. Zubin, E. R. John, “Evoked-potential correlates of stimulus uncertainty,” Science, vol. 150, no. 3700, pp. 1187-1188, 1965.
  • [8] F. Nijboer, E. W. Sellers, J. Mellinger, M. A. Jordan, T. Matuz, A. Furdea, J. R. Wolpaw, “A P300-based brain–computer interface for people with amyotrophic lateral sclerosis,” Clinical neurophysiology, vol. 119, no. 8, pp. 1909-1916, 2008.
  • [9] S. G. Horovitz, P. Skudlarski, J. C. Gore, “Correlations and dissociations between BOLD signal and P300 amplitude in an auditory oddball task: a parametric approach to combining fMRI and ERP,” Magnetic resonance imaging, vol. 20, no. 4, pp. 319-325, 2002.
  • [10] A. Furdea, S. Halder, D. J. Krusienski, D. Bross, F. Nijboer, N. Birbaumer, A. Kübler, “An auditory oddball (P300) spelling system for brain‐computer interfaces,” Psychophysiology, vol. 46, no. 3, pp. 617-625, 2009.
  • [11] S. J. Radlo, C. M. Janelle, D. A. Barba, S.G. Frehlich, “Perceptual decision making for baseball pitch recognition: using P300 latency and amplitude to index attentional processing,” Research quarterly for exercise and sport, vol. 72 no. 1, pp. 22-31, 2001.
  • [12] L. Farwell, E. Donchin, “Talking off the top of your head: Toward a mental prosthesis utilizing event-related brain potentials,” Electroencephalogr. Clin. Neurophysiol. vol. 70, no. 6, pp. 510-523, 1988.
  • [13] C. Guger, S. Daban, E. Sellers, C. Holzner, G. Krausz, R. Carabalona, G. Edlinger, “How many people are able to control a P300-based brain–computer interface (BCI)?,” Neuroscience letters, vol. 462, no. 1, pp. 94-98, 2009.
  • [14] E. W. Sellers, D. J. Krusienski, D. J. McFarland, T. M. Vaughan, J. R. Wolpaw, “A P300 event-related potential brain–computer interface (BCI): the effects of matrix size and inter stimulus interval on performance,” Biological psychology, vol. 73, no. 3, pp. 242-252, 2006.
  • [15] M. Salvaris, F. Sepulveda, “Visual modifications on the P300 speller BCI paradigm,” Journal of neural engineering, vol. 6, no. 4, pp. 046011, 2009.
  • [16] G. Townsend, B. K. LaPallo, C. B. Boulay, D. J. Krusienski, G. E. Frye, C. Hauser, E. W. Sellers, “A novel P300-based brain–computer interface stimulus presentation paradigm: moving beyond rows and columns,” Clinical Neurophysiology, vol. 121, no. 7, pp. 1109-1120, 2010.
  • [17] P. Meinicke, M. Kaper, F. Hoppe, M. Heumann, H. Ritter "Improving transfer rates in brain computer interfacing: A case study," Neural Information Processing Systems (NIPS), pp. 1107-1114, 2002.
  • [18] L. Averbuch‐Heller, C. Helmchen, A. K. Horn, R. J. Leigh, J. A. Büttner‐Ennever, “Slow vertical saccades in motor neuron disease: correlation of structure and function,” Annals of Neurology: Official Journal of the American Neurological Association and the Child Neurology Society, vol. 44, no. 4, pp. 641-648, 1998. [19] A. J. Suminski, D. C. Tkach, N. G. Hatsopoulos, “Exploiting multiple sensory modalities in brain-machine interfaces,” Neural Networks, vol. 22, no. 9, pp. 1224-1234, 2009.
  • [20] D. S. Klobassa, T. M. Vaughan, P. Brunner, N. E. Schwartz, J. R. Wolpaw, C. Neuper, E. W. Sellers, “Toward a high-throughput auditory P300-based brain–computer interface,” Clinical Neurophysiology, vol. 120, no. 7, pp. 1252-1261, 2009.
  • [21] A. Kübler A. Furdea, S. Halder, E. M. Hammer, F. Nijboer, B. Kotchoubey, “A brain–computer interface controlled auditory event‐related potential (P300) spelling system for locked‐in patients,” Annals of the New York Academy of Sciences, vol. 1157, no. 1, pp. 90-100, 2009.
  • [22] B. Z. Allison, J. A. Pineda "ERP's evoked by different matrix sizes: implications for a brain computer interface (BCI) system," IEEE Trans. Neural. Syst. Rehab. Eng., vol. 11, no. 2 pp. 110-113, 2003.
  • [23] U. Hoffmann J. M. Vesin T. Ebrahimi K. Diserens "An efficient P300-based brain-computer interface for disabled subjects," J. Neurosci. Methods, vol. 167, no. 1, pp. 115-125, 2008.
There are 22 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Zeki Oralhan 0000-0003-2841-6115

Publication Date July 31, 2019
Published in Issue Year 2019 Volume: 7 Issue: 3

Cite

APA Oralhan, Z. (2019). P300 Tabanlı Beyin Bilgisayar Arayüzü Sistemlerinde Uyaranlar Arası Sürenin ve Uyaran Yapısının Performansa Etkisi. Duzce University Journal of Science and Technology, 7(3), 1834-1846. https://doi.org/10.29130/dubited.562610
AMA Oralhan Z. P300 Tabanlı Beyin Bilgisayar Arayüzü Sistemlerinde Uyaranlar Arası Sürenin ve Uyaran Yapısının Performansa Etkisi. DUBİTED. July 2019;7(3):1834-1846. doi:10.29130/dubited.562610
Chicago Oralhan, Zeki. “P300 Tabanlı Beyin Bilgisayar Arayüzü Sistemlerinde Uyaranlar Arası Sürenin Ve Uyaran Yapısının Performansa Etkisi”. Duzce University Journal of Science and Technology 7, no. 3 (July 2019): 1834-46. https://doi.org/10.29130/dubited.562610.
EndNote Oralhan Z (July 1, 2019) P300 Tabanlı Beyin Bilgisayar Arayüzü Sistemlerinde Uyaranlar Arası Sürenin ve Uyaran Yapısının Performansa Etkisi. Duzce University Journal of Science and Technology 7 3 1834–1846.
IEEE Z. Oralhan, “P300 Tabanlı Beyin Bilgisayar Arayüzü Sistemlerinde Uyaranlar Arası Sürenin ve Uyaran Yapısının Performansa Etkisi”, DUBİTED, vol. 7, no. 3, pp. 1834–1846, 2019, doi: 10.29130/dubited.562610.
ISNAD Oralhan, Zeki. “P300 Tabanlı Beyin Bilgisayar Arayüzü Sistemlerinde Uyaranlar Arası Sürenin Ve Uyaran Yapısının Performansa Etkisi”. Duzce University Journal of Science and Technology 7/3 (July 2019), 1834-1846. https://doi.org/10.29130/dubited.562610.
JAMA Oralhan Z. P300 Tabanlı Beyin Bilgisayar Arayüzü Sistemlerinde Uyaranlar Arası Sürenin ve Uyaran Yapısının Performansa Etkisi. DUBİTED. 2019;7:1834–1846.
MLA Oralhan, Zeki. “P300 Tabanlı Beyin Bilgisayar Arayüzü Sistemlerinde Uyaranlar Arası Sürenin Ve Uyaran Yapısının Performansa Etkisi”. Duzce University Journal of Science and Technology, vol. 7, no. 3, 2019, pp. 1834-46, doi:10.29130/dubited.562610.
Vancouver Oralhan Z. P300 Tabanlı Beyin Bilgisayar Arayüzü Sistemlerinde Uyaranlar Arası Sürenin ve Uyaran Yapısının Performansa Etkisi. DUBİTED. 2019;7(3):1834-46.