Research Article
BibTex RIS Cite

Effect of Pulse Repetition and Peak Power of Nd:YAG Laser for Surface Treatment on Ti–6Al–4V Alloy

Year 2015, Volume: 3 Issue: 1, 210 - 218, 30.01.2015

Abstract

Titanium and titanium alloys have led to a diversified range of successful application in various fields including the medical and aerospace industry due to the high strength to weight ratio and excellent corrosion resistance. Several techniques have been considered to achieve reliable welds and treatments for the fabrication of components in these industries. Among these techniques, laser welding can provide a significant benefit for the welding of titanium alloys because of its precision and rapid processing capability. The Nd:YAG laser parameters, such as pulse shape, energy, duration, welding speed, peak power and frequency of repetition, influence directly or synergistically the quality of pulsed seam welds and it’s morphology. In this study, 1.5 mm thick Ti6Al4V Titanium alloy sheet surface have been treated by SigmaLaser®300 type Nd:YAG pulsed laser. The influence of peak power and pulse frequency on weld quality, seam morphology and effects to the surface have been investigated. The seam quality has been characterized in terms of weld morphology and micro hardness.

References

  • S.H. Wang, M.D. Wei, L.W. Tsay. Tensile properties of LBW welds in Ti–6Al–4V alloy at evaluated temperatures below 450 ◦C. Mater. Lett. 57 (2003): 1815–1823.
  • G. Casalino, F. Curcio, F. Memola, C. Minutolo. Investigation on Ti6Al4V laser welding using statistical and Taguchi approaches. J. Mater. Process. Technol. 167 (2005): 422–428.
  • M. Akbari, S. Saedodin, D. Toghraie, R.S. Razavi, F. Kowsari. Experimental and numerical investigation of temperature distribution and melt pool geometry during pulsed laser welding of Ti6Al4V alloy. Optics &Laser Technology 59 (2014): 52–59.
  • E. Akman, A. Demir, T. Canel,T. Sınmazcelik. Laser welding of Ti6Al4V titanium alloys. J Mater Process Technol 209 (2009): 3705–3713.
  • J.E. Blackburn, CM. Allen, PA. Hilton, L. Li, MI. Hoque, KH. Khan. Modulated Nd: YAG laser welding of Ti–6Al–4V. Sci Technol Weld Joining. 15 (2010): 433–440.
  • S. Zhao, G. Yu, H. Xiuli, H. Yaowu. Microstructural and mechanical characteristics of laser welding of Ti6Al4V and lead metal. Journal of Materials Processing Technology 212 (2012): 1520– 1527.
  • Y.F. Tzeng. Process characterisation of pulsed Nd:YAG laser seam welding. Int. J. Adv. Manuf. Technol. 16 (2000): 10–18.
  • Y.F. Tzeng. Parametric analysis of the pulsed Nd:YAG laser seam-welding process. J. Mater. Process. Technol. 102 (2000): 40–47.
  • J. Weldingh, JK. Kristensen. Very deep penetration laser welding—techniques and limitations. In: Proceedings of 8th NOLAMP Conference. 2001, Copenhagen, Denmark.
  • T.Y. Kuo, SL. Jeng. Porosity reduction in Nd–YAG laser welding of stainless steel and inconel alloy by using a pulsed wave. J. Phys. D: Appl. Phys. 38 (2005): 722–728.
  • S. Sundaresan, RGD. Janaki.. Use of magnetic arc oscillation for grain refinement of gas tungsten arc welds in alpha–beta titanium alloys. Sci. Technol. Weld. Join. 4 (1999): 151–160.
  • V.K. Balla, J. Soderlind, S. Bose, A. Bandyopadhyay. Microstructure, mechanical and wear properties of laser surface melted Ti6Al4V alloy. Journal of the mechanical behavior of biomedical materials. 32 (2014) 335-344.
  • Q. Yunlian, D. Ju, H. Quan, Z. Liying.. Electron beam welding, laser beam welding and gas tungsten arc welding of titanium sheets. Mater. Sci. Eng. A280 (2000): 177–181.
  • P. Wanjara, M. Brochu, M. Jahazi. Thin gauge titanium manufacturing using multiple-pass-electron beam welding. Mater. Manuf. Proc. 21 (2006): 439–451.
  • V.C. Kumar.. Process parameters influencing melt profile and hardness of pulsed laser treated Ti–6Al–4V. Surf. Coat. Technol. 201 (2006): 3174–3180.

Nd:YAG Lazer ile Ti–6Al–4V Alaşımı Yüzey İşlemlerinde Atış Tekrarı ve Pik Gücünün Etkisi

Year 2015, Volume: 3 Issue: 1, 210 - 218, 30.01.2015

Abstract

Titanyum ve Titanyum alaşımları, yüksek mukavemet, düşük ağırlık oranı ve mükemmel korozyon direnci sebebiyle, medikal ve havacılık endüstrisi dahil olmak üzere birçok alanda başarıyla kullanılmaktadır. Bu alanlarda yapılan üretimler için uygulanan kaynak ve iyileştirme işlemleri için birçok teknik mevcuttur. Bu teknikler arasında, lazer kaynağı hassas ve hızlı işlem kabiliyeti sayesinde Titanyum alaşımları için çok önemli avantajlar sağlamaktadır. Darbe ya da atış şekli, enerji, süre, kaynak hızı, pik gücü ve frekans gibi Nd:YAG lazer parametereleri, doğrudan ya da dolaylı olarak kaynak dikiş kalitesini ve morfolojisini etkilemektedir. Bu çalışmada, 1.5 mm kalınlığında Ti6Al4V Titanyum alaşımı levha yüzeyi SigmaLaser®300 Nd:YAG tipi lazer kaynak cihazıyla işlenmiştir. Pik gücü ve frekans değerlerinin kaynak kalitesine, dikiş morfolojisine ve numune yüzeylerine etkisi incelenmiştir. Dikiş kalitesi, morfoloji ve mikro sertlik değerleri bakımından karekterize edilmiştir.

References

  • S.H. Wang, M.D. Wei, L.W. Tsay. Tensile properties of LBW welds in Ti–6Al–4V alloy at evaluated temperatures below 450 ◦C. Mater. Lett. 57 (2003): 1815–1823.
  • G. Casalino, F. Curcio, F. Memola, C. Minutolo. Investigation on Ti6Al4V laser welding using statistical and Taguchi approaches. J. Mater. Process. Technol. 167 (2005): 422–428.
  • M. Akbari, S. Saedodin, D. Toghraie, R.S. Razavi, F. Kowsari. Experimental and numerical investigation of temperature distribution and melt pool geometry during pulsed laser welding of Ti6Al4V alloy. Optics &Laser Technology 59 (2014): 52–59.
  • E. Akman, A. Demir, T. Canel,T. Sınmazcelik. Laser welding of Ti6Al4V titanium alloys. J Mater Process Technol 209 (2009): 3705–3713.
  • J.E. Blackburn, CM. Allen, PA. Hilton, L. Li, MI. Hoque, KH. Khan. Modulated Nd: YAG laser welding of Ti–6Al–4V. Sci Technol Weld Joining. 15 (2010): 433–440.
  • S. Zhao, G. Yu, H. Xiuli, H. Yaowu. Microstructural and mechanical characteristics of laser welding of Ti6Al4V and lead metal. Journal of Materials Processing Technology 212 (2012): 1520– 1527.
  • Y.F. Tzeng. Process characterisation of pulsed Nd:YAG laser seam welding. Int. J. Adv. Manuf. Technol. 16 (2000): 10–18.
  • Y.F. Tzeng. Parametric analysis of the pulsed Nd:YAG laser seam-welding process. J. Mater. Process. Technol. 102 (2000): 40–47.
  • J. Weldingh, JK. Kristensen. Very deep penetration laser welding—techniques and limitations. In: Proceedings of 8th NOLAMP Conference. 2001, Copenhagen, Denmark.
  • T.Y. Kuo, SL. Jeng. Porosity reduction in Nd–YAG laser welding of stainless steel and inconel alloy by using a pulsed wave. J. Phys. D: Appl. Phys. 38 (2005): 722–728.
  • S. Sundaresan, RGD. Janaki.. Use of magnetic arc oscillation for grain refinement of gas tungsten arc welds in alpha–beta titanium alloys. Sci. Technol. Weld. Join. 4 (1999): 151–160.
  • V.K. Balla, J. Soderlind, S. Bose, A. Bandyopadhyay. Microstructure, mechanical and wear properties of laser surface melted Ti6Al4V alloy. Journal of the mechanical behavior of biomedical materials. 32 (2014) 335-344.
  • Q. Yunlian, D. Ju, H. Quan, Z. Liying.. Electron beam welding, laser beam welding and gas tungsten arc welding of titanium sheets. Mater. Sci. Eng. A280 (2000): 177–181.
  • P. Wanjara, M. Brochu, M. Jahazi. Thin gauge titanium manufacturing using multiple-pass-electron beam welding. Mater. Manuf. Proc. 21 (2006): 439–451.
  • V.C. Kumar.. Process parameters influencing melt profile and hardness of pulsed laser treated Ti–6Al–4V. Surf. Coat. Technol. 201 (2006): 3174–3180.
There are 15 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Ali Gursel

Publication Date January 30, 2015
Published in Issue Year 2015 Volume: 3 Issue: 1

Cite

APA Gursel, A. (2015). Effect of Pulse Repetition and Peak Power of Nd:YAG Laser for Surface Treatment on Ti–6Al–4V Alloy. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi, 3(1), 210-218.
AMA Gursel A. Effect of Pulse Repetition and Peak Power of Nd:YAG Laser for Surface Treatment on Ti–6Al–4V Alloy. DUBİTED. January 2015;3(1):210-218.
Chicago Gursel, Ali. “Effect of Pulse Repetition and Peak Power of Nd:YAG Laser for Surface Treatment on Ti–6Al–4V Alloy”. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi 3, no. 1 (January 2015): 210-18.
EndNote Gursel A (January 1, 2015) Effect of Pulse Repetition and Peak Power of Nd:YAG Laser for Surface Treatment on Ti–6Al–4V Alloy. Düzce Üniversitesi Bilim ve Teknoloji Dergisi 3 1 210–218.
IEEE A. Gursel, “Effect of Pulse Repetition and Peak Power of Nd:YAG Laser for Surface Treatment on Ti–6Al–4V Alloy”, DUBİTED, vol. 3, no. 1, pp. 210–218, 2015.
ISNAD Gursel, Ali. “Effect of Pulse Repetition and Peak Power of Nd:YAG Laser for Surface Treatment on Ti–6Al–4V Alloy”. Düzce Üniversitesi Bilim ve Teknoloji Dergisi 3/1 (January 2015), 210-218.
JAMA Gursel A. Effect of Pulse Repetition and Peak Power of Nd:YAG Laser for Surface Treatment on Ti–6Al–4V Alloy. DUBİTED. 2015;3:210–218.
MLA Gursel, Ali. “Effect of Pulse Repetition and Peak Power of Nd:YAG Laser for Surface Treatment on Ti–6Al–4V Alloy”. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi, vol. 3, no. 1, 2015, pp. 210-8.
Vancouver Gursel A. Effect of Pulse Repetition and Peak Power of Nd:YAG Laser for Surface Treatment on Ti–6Al–4V Alloy. DUBİTED. 2015;3(1):210-8.