Research Article
BibTex RIS Cite

Analysis of the Effects of Electrical Materials on Induction Motor Stator and Rotor Core Weight using Analytical and Finite Element Method

Year 2020, Volume: 8 Issue: 1, 137 - 145, 31.01.2020

Abstract



Induction motors have made great progress in terms of both power and efficiency from past to present. The most important reasons for this development are the improvement of the properties of the materials used in the stator and rotor cores and the reduction of the lost power values of the materials. Many different electrical materials are used in the stator and rotor core parts of induction motors and the properties of these magnetic materials are different. These differences are reflected in the performance of the induction motor (especially in iron losses). The iron losses occurring in the stator and rotor parts vary depending on the used material. In addition, the used materials have a critical effect on the weight of the stator and rotor core. In this study, the weight calculation of the stator and rotor core, which is one of the most important parts of induction motors, is calculated and the analytical results are compared with the results obtained by finite element method (FEM). The parameters which have effect on core weight are analyzed. It has been investigated how different materials and their properties affect the motor core weight. However, it has been shown how different materials affect motor efficiency.

References

  • [1] Y.L. Karnavas and I.D. Chasiotis, “Influence of Soft Magnetic Materials Application to Squirrel Cage Induction Motor Design and Performance,” Engineering Journal, vol. 21, no. 1, pp. 193-206, 2017.
  • [2] J. Muhlethaler, J. Biela, J.W. Kolar and A. Ecklebe, “Core Losses under the DC Bias Condition Based on Steinmetz Parameters,” IEEE Transactions on Power Electronics, vol. 27, no. 2, pp. 953-963, 2012.
  • [3] S. Yue, Q. Yang, Y. Li and C. Zhang, “Core Loss Calculation for Magnetic Materials Employed in SMPS under Rectangular Voltage Excitations,” AIP Advances, vol. 8, no. 056121, pp. 1-6, 2018.
  • [4] W.A. Pluta, “Core Loss Models in Electrical Steel Sheets with Different Orientation,” Przeglad Elektrotechniczny (Electrical Review), vol. R. 87, no. 9b/2011, pp. 37-42, 2011.
  • [5] K. Chwastek, “Prediction of Loss in Non-Oriented Steel Laminations,” Przeglad Elektrotechniczny (Electrical Review), vol. R. 88, no. 5a/2012, pp. 5-9, 2012.
  • [6] T. Sato and M. Enokizono, “Evaluation of Stator Core Loss of High Speed Motor by using Thermography Camera,” AIP Advances, vol. 8, no. 047609, pp. 1-11, 2018.
  • [7] I. Boldea and S.A. Nasar, The Induction Machine Handbook, Boca Raton, USA: CRC Press LLC, Chapter 15, 2002, pp. 1-31.
  • [8] M.V. Deshpande, Design and Testing of Electrical Machines, New Delhi, India: PHI Learning Private Limited, 2010, pp. 1-510.
  • [9] J. Pyrhonen, T. Jokinen and V. Hrabovcova, Design of Rotating Electrical Machines, United Kingdom: John Wiley & Sons Ltd, 2008, pp. 1-531.
  • [10] K.M.V. Murthy, Computer-Aided Design of Electrical Machines, Giriraj Lane, Sultan Bazar: BS Publications, pp. 1-335, 2008.
  • [11] J. Kartigeyan and M. Ramaswamy, “Magnetic Materials for Rotating Electrical Machines: A Selection Perspective,” International Journal of Applied Engineering Research, vol. 13, no. 2, pp. 1506-1513, 2018.
  • [12] Ö. Özdemir, “Malzemelerin Fiziksel Özellikleri, Manyetik Özellikler,” Ders Notları, ss. 1-29.
  • [13] Anonim, (5 Mayıs 2019). [Online]. Erişim: www.cogent-power.com
  • [14] G. Paltanea, V. Manescu (Paltanea), P.C. Andrei, C. Grumeza and S. Marinescu, “Laboratory Set-Up to Evaluate the B-H Relationship in Soft Magnetic Materials,” The 10th International Symposium on Advanced Topics in Electrical Engineering, Bucharest, Romania, 23-25 March 2017, pp. 420-423.
  • [15] Y. Zhang, M.C. Cheng and P. Pillay, “A Novel Hysteresis Core Loss Model for Magnetic Laminations,” IEEE Transactions on Energy Conversion, vol. 26, no. 4, pp. 993-999, 2011.
  • [16] A. Asari, Y. Guo and J. Zhu, “Magnetic Properties Measurement of Soft Magnetic Composite Material (SOMALOY 700) by using 3-D Tester,” International Conference on Applied Physics and Engineering (ICAPE2016), 08 August 2017, pp. 1-10.
  • [17] Anonim, (5 Mayıs 2019). [Online]. Erişim: https://www.stanz-und-lasertechnik.de/en/leistungen/elektroblechqualitaeten-uebersicht.html
  • [18] O. Bouaziz, I. Jaafar and F.B. Ammar, “Performance Analysis of Radial and Axial Flux PMSM Based on 3D FEM Modeling,” Turkish Journal of Electrical Engineering & Computer Sciences, vol. 26, pp. 1587–1598, 2018.
  • [19] Y.L. Karnavas, I.D. Chasiotis and S.K. Amoutzidis, “Design Considerations and Analysis of In-Wheel Permanent Magnet Synchronous Motors for Electric Vehicle Applications using FEM,” ISEF 2015-XVII International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering, Valencia, Spain, 10-12 September 2015, pp. 1-8.
  • [20] Anonim, (5 Mayıs 2019). [Online]. Erişim: www.bomatec.com
  • [21] T. Lazaridis, “General Design Data of a Three Phase Induction Machine 90 kW–Squirrel Cage Rotor,” Technical Report, pp. 1-15, 2016.
  • [22] Ansys Maxwell 2D Field Simulator User’s Guide, Motors-Three Phase Induction Machine, 2019.

Elektriksel Malzemelerin Asenkron Motor Stator ve Rotor Nüve Ağırlığı Üzerindeki Etkilerinin Analitik ve Sonlu Elemanlar Yöntemi ile Analizi

Year 2020, Volume: 8 Issue: 1, 137 - 145, 31.01.2020

Abstract

Asenkron motorlar geçmişten günümüze kadar hem güç hem de verim açısından büyük aşama kaydetmişlerdir. Bu gelişimin en önemli nedenleri arasında stator ve rotor nüvesinde kullanılan malzemelerin özelliklerinin iyileştirilmesi, malzemelerin kayıp güç değerlerinin azaltılması gibi kritik noktalar ön plana çıkmaktadır. Asenkron motorların stator ve rotor nüve kısımlarında çok farklı elektriksel malzemeler kullanılmaktadır ve bu manyetik malzemelerin özellikleri birbirlerinden farklıdır. Bu farklılıklar asenkron motorun performansında, özellikle demir kayıplarında kendisini göstermektedir. Stator ve rotor kısımlarında meydana gelen demir kayıpları tamamen kullanılan malzemeye göre değişmektedir. Ayrıca kullanılan malzemeler stator ve rotor nüve ağırlığında da kritik bir etkiye sahiptir. Bu çalışmada asenkron motorların en önemli parçalarından biri olan stator ve rotor nüvesinin ağırlık hesabı yapılmış ve analitik olarak elde edilen sonuçlar sonlu elemanlar yöntemi (SEY) ile bulunan sonuçlar ile karşılaştırılmıştır. Nüve ağırlığına etkisi olan parametrelerin analizleri yapılmıştır. Nüve kısımlarında kullanılan farklı malzemelerin ve bunların özelliklerinin motor nüve ağırlığını nasıl etkilediği incelenmiştir. Bununla birlikte farklı malzemelerin motor verimini nasıl etkilediği gösterilmiştir.

References

  • [1] Y.L. Karnavas and I.D. Chasiotis, “Influence of Soft Magnetic Materials Application to Squirrel Cage Induction Motor Design and Performance,” Engineering Journal, vol. 21, no. 1, pp. 193-206, 2017.
  • [2] J. Muhlethaler, J. Biela, J.W. Kolar and A. Ecklebe, “Core Losses under the DC Bias Condition Based on Steinmetz Parameters,” IEEE Transactions on Power Electronics, vol. 27, no. 2, pp. 953-963, 2012.
  • [3] S. Yue, Q. Yang, Y. Li and C. Zhang, “Core Loss Calculation for Magnetic Materials Employed in SMPS under Rectangular Voltage Excitations,” AIP Advances, vol. 8, no. 056121, pp. 1-6, 2018.
  • [4] W.A. Pluta, “Core Loss Models in Electrical Steel Sheets with Different Orientation,” Przeglad Elektrotechniczny (Electrical Review), vol. R. 87, no. 9b/2011, pp. 37-42, 2011.
  • [5] K. Chwastek, “Prediction of Loss in Non-Oriented Steel Laminations,” Przeglad Elektrotechniczny (Electrical Review), vol. R. 88, no. 5a/2012, pp. 5-9, 2012.
  • [6] T. Sato and M. Enokizono, “Evaluation of Stator Core Loss of High Speed Motor by using Thermography Camera,” AIP Advances, vol. 8, no. 047609, pp. 1-11, 2018.
  • [7] I. Boldea and S.A. Nasar, The Induction Machine Handbook, Boca Raton, USA: CRC Press LLC, Chapter 15, 2002, pp. 1-31.
  • [8] M.V. Deshpande, Design and Testing of Electrical Machines, New Delhi, India: PHI Learning Private Limited, 2010, pp. 1-510.
  • [9] J. Pyrhonen, T. Jokinen and V. Hrabovcova, Design of Rotating Electrical Machines, United Kingdom: John Wiley & Sons Ltd, 2008, pp. 1-531.
  • [10] K.M.V. Murthy, Computer-Aided Design of Electrical Machines, Giriraj Lane, Sultan Bazar: BS Publications, pp. 1-335, 2008.
  • [11] J. Kartigeyan and M. Ramaswamy, “Magnetic Materials for Rotating Electrical Machines: A Selection Perspective,” International Journal of Applied Engineering Research, vol. 13, no. 2, pp. 1506-1513, 2018.
  • [12] Ö. Özdemir, “Malzemelerin Fiziksel Özellikleri, Manyetik Özellikler,” Ders Notları, ss. 1-29.
  • [13] Anonim, (5 Mayıs 2019). [Online]. Erişim: www.cogent-power.com
  • [14] G. Paltanea, V. Manescu (Paltanea), P.C. Andrei, C. Grumeza and S. Marinescu, “Laboratory Set-Up to Evaluate the B-H Relationship in Soft Magnetic Materials,” The 10th International Symposium on Advanced Topics in Electrical Engineering, Bucharest, Romania, 23-25 March 2017, pp. 420-423.
  • [15] Y. Zhang, M.C. Cheng and P. Pillay, “A Novel Hysteresis Core Loss Model for Magnetic Laminations,” IEEE Transactions on Energy Conversion, vol. 26, no. 4, pp. 993-999, 2011.
  • [16] A. Asari, Y. Guo and J. Zhu, “Magnetic Properties Measurement of Soft Magnetic Composite Material (SOMALOY 700) by using 3-D Tester,” International Conference on Applied Physics and Engineering (ICAPE2016), 08 August 2017, pp. 1-10.
  • [17] Anonim, (5 Mayıs 2019). [Online]. Erişim: https://www.stanz-und-lasertechnik.de/en/leistungen/elektroblechqualitaeten-uebersicht.html
  • [18] O. Bouaziz, I. Jaafar and F.B. Ammar, “Performance Analysis of Radial and Axial Flux PMSM Based on 3D FEM Modeling,” Turkish Journal of Electrical Engineering & Computer Sciences, vol. 26, pp. 1587–1598, 2018.
  • [19] Y.L. Karnavas, I.D. Chasiotis and S.K. Amoutzidis, “Design Considerations and Analysis of In-Wheel Permanent Magnet Synchronous Motors for Electric Vehicle Applications using FEM,” ISEF 2015-XVII International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering, Valencia, Spain, 10-12 September 2015, pp. 1-8.
  • [20] Anonim, (5 Mayıs 2019). [Online]. Erişim: www.bomatec.com
  • [21] T. Lazaridis, “General Design Data of a Three Phase Induction Machine 90 kW–Squirrel Cage Rotor,” Technical Report, pp. 1-15, 2016.
  • [22] Ansys Maxwell 2D Field Simulator User’s Guide, Motors-Three Phase Induction Machine, 2019.
There are 22 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Asım Gökhan Yetgin 0000-0003-3971-0504

Publication Date January 31, 2020
Published in Issue Year 2020 Volume: 8 Issue: 1

Cite

APA Yetgin, A. G. (2020). Elektriksel Malzemelerin Asenkron Motor Stator ve Rotor Nüve Ağırlığı Üzerindeki Etkilerinin Analitik ve Sonlu Elemanlar Yöntemi ile Analizi. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi, 8(1), 137-145.
AMA Yetgin AG. Elektriksel Malzemelerin Asenkron Motor Stator ve Rotor Nüve Ağırlığı Üzerindeki Etkilerinin Analitik ve Sonlu Elemanlar Yöntemi ile Analizi. DUBİTED. January 2020;8(1):137-145.
Chicago Yetgin, Asım Gökhan. “Elektriksel Malzemelerin Asenkron Motor Stator Ve Rotor Nüve Ağırlığı Üzerindeki Etkilerinin Analitik Ve Sonlu Elemanlar Yöntemi Ile Analizi”. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi 8, no. 1 (January 2020): 137-45.
EndNote Yetgin AG (January 1, 2020) Elektriksel Malzemelerin Asenkron Motor Stator ve Rotor Nüve Ağırlığı Üzerindeki Etkilerinin Analitik ve Sonlu Elemanlar Yöntemi ile Analizi. Düzce Üniversitesi Bilim ve Teknoloji Dergisi 8 1 137–145.
IEEE A. G. Yetgin, “Elektriksel Malzemelerin Asenkron Motor Stator ve Rotor Nüve Ağırlığı Üzerindeki Etkilerinin Analitik ve Sonlu Elemanlar Yöntemi ile Analizi”, DUBİTED, vol. 8, no. 1, pp. 137–145, 2020.
ISNAD Yetgin, Asım Gökhan. “Elektriksel Malzemelerin Asenkron Motor Stator Ve Rotor Nüve Ağırlığı Üzerindeki Etkilerinin Analitik Ve Sonlu Elemanlar Yöntemi Ile Analizi”. Düzce Üniversitesi Bilim ve Teknoloji Dergisi 8/1 (January 2020), 137-145.
JAMA Yetgin AG. Elektriksel Malzemelerin Asenkron Motor Stator ve Rotor Nüve Ağırlığı Üzerindeki Etkilerinin Analitik ve Sonlu Elemanlar Yöntemi ile Analizi. DUBİTED. 2020;8:137–145.
MLA Yetgin, Asım Gökhan. “Elektriksel Malzemelerin Asenkron Motor Stator Ve Rotor Nüve Ağırlığı Üzerindeki Etkilerinin Analitik Ve Sonlu Elemanlar Yöntemi Ile Analizi”. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi, vol. 8, no. 1, 2020, pp. 137-45.
Vancouver Yetgin AG. Elektriksel Malzemelerin Asenkron Motor Stator ve Rotor Nüve Ağırlığı Üzerindeki Etkilerinin Analitik ve Sonlu Elemanlar Yöntemi ile Analizi. DUBİTED. 2020;8(1):137-45.