Research Article
BibTex RIS Cite

Evulation of Antimutagenic Activity of Ni(II) Complexes with Unsymmetric Schiff Bases

Year 2020, Volume: 8 Issue: 1, 608 - 616, 31.01.2020
https://doi.org/10.29130/dubited.575747

Abstract

In this work, Ni(II) complexes with unsymmetric
Schiff bases
(NiL1, NiL2, NiL3, NiL4)
were
prepared by a two-stage method reported by one of us recently for
investigate antimutagenic properties.
Sodium azide-induced antimutagenic effect in
lymphocytes was determined by sister chromatid exchange (SCE) and micronucleus
(MN) methods.
It has been determined that the synthesized compounds have antimutagenic
properties and reduce the mutagenicity caused by sodium azide (NaN3)
which is used as a positive control.

References

  • [1] C. M. da Silva, D. L. da Silva, L.V. Modolo, R. B. Alves, M. A. de Resende, C. V. B. Martins and A. de Fatima, ‘‘Schiff bases: A short review of their antimicrobial activities,’’ Journal of Advanced Research, vol. 2, pp. 1-8, 2011.
  • [2] B. Katarzyna and E. L. Chruscınska, ‘‘Schiff bases-interesting range of applications in various fields of science,’’ Chemik International, vol. 68, no. 2, pp. 129-138, 2014.
  • [3] A. K. Gupta and R. Pal, ‘‘Dehydroacetic acid based Schiff’s bases and their metal complexes: A review,’’ World Journal of Pharmaceutical Sciences, vol. 4, no. 1, pp. 386-425, 2015.
  • [4] S. Kumar, D. N. Dhar and P. N. Saxena, ‘‘Applications of metal complexes of Schiff bases-a review,’’ Journal of Scientific and Industrial Research, vol. 68, no. 3, pp. 181-187, 2009.
  • [5] P. Anand, V. M. Patil, V. K. Sharma, R. L. Khosa and N. Masand, ‘‘Schiff bases: A review on biological insights,’’ International Journal of Drug Discovery and Development, vol. 3, no. 3, pp. 851-868, 2012. [6] O. A. M. Ali, S. M. El-Medani, M. R. A. Serea and A. S. Sayed, ‘‘Unsymmetrical Schiff base (ON) ligand on complexation with some transition metal ions: Synthesis, spectral characterization, antibacterial, fluorescence and thermal studies,’’ Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy, vol. 136, pp. 651-660, 2015.
  • [7] K. Turhan, S. A. Ozturkcan, Z. Turgut, M. Karadayi and M. Gulluce, ‘‘Protective properties of five newly synthesized cyclic compounds against sodium azide and N-methyl-N0-nitroN-nitrosoguanidine genotoxicity,’’ Toxicology and Industrial Health, vol. 28, no. 7, pp. 605-613, 2012.
  • [8] N. Sarı, N. Pişkin, H. Öğütcü and N. K. Yetim, ‘‘Spectroscopic characterization of novel d-aminoacid-Schiff bases and their Cr(III) and Ni(II) complexes as antimicrobial agents,’’ Medicinal Chemistry Research, vol. 22, no. 2, pp. 580-587, 2012.
  • [9] S. Meghdadi, M. Amirnasr, M. Majedi, M. Bagheri, A. Amiri, S. Abbasi and K. Mereiter, ‘‘Template synthesis, and X-ray crystal structures of copper(II) and nickel(II) complexes of new unsymmetrical tetradentate Schiff base ligands. Electrochemistry, antibacterial properties, and metal ion effect on hydrolysis-recondensation of the ligand,’’ Inorganica Chimica Acta, vol. 437, pp. 64-69, 2015.
  • [10] M. Kalita, K. J. Tamuli, P. Barman, B. Sarma, R. Baruah, H. P. D. Boruah, ‘‘Synthesis, crystal structure, bioactivities of Ni(II), Cu(II), Co(II) and Pd(II) complexes with unsymmetrical thioether donor Schiff base: Phosphine free Pd(II) complex catalyzed Suzuki reaction,’’ Polyhedron, vol. 97, pp. 140-147, 2015.
  • [11] D. Nartop, P. Gürkan, N. Sarı and S. Çete, ‘‘Tetradentate asymmetric Schiff bases and their Ni(II) and Fe(III) complexes,’’ Journal of Coordination Chemistry, vol. 61, no. 21, pp. 3516-3524, 2008.
  • [12] D. Nartop and P. Gürkan, ‘‘Synthesis, characterization and antibacterial activities of unsymmetric diimine Schiff bases and their Fe(III) and Ni(II) complexes,’’ Chinese Journal of Inorganic Chemistry, vol. 29, no. 6, pp. 1227-1234, 2013.
  • [13] Ö. Güngör and P. Gürkan, ‘‘Synthesis and spectroscopic properties of novel asymmetric Schiff bases,’’ Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy, vol. 77, no. 1, pp. 304-311, 2010.
  • [14] Ö. Özdemir, ‘‘Novel symmetric diimine-Schiff bases and asymmetric triimine-Schiff bases as chemosensors for the detection of various metal ions,’’ Journal of Molecular Structure, vol. 1125, pp. 260-271, 2016.
  • [15] D. Nartop, Ö. Özdemir and P. Gürkan, ‘‘Synthesis, characterization and investigation of tautomeric, potentiometric and antimicrobial properties of a novel unsymmetric Schiff base and its Fe(III) and Ni(II) complexes,’’ Moroccan Journal of Chemistry, vol. 5, pp. 560-572, 2017.
  • [16] Ö. Güngör, ‘‘Intramolecular proton transfer equilibrium in salicylidene- and naphthalene-based tetraimine Schiff bases,’’ Gazi University Journal of Science, vol. 30, no. 1, pp. 191-214, 2017.
  • [17] D. Nartop, W. Clegg, R. W. Harrington, R. A. Henderson, C. Y. Will, ‘‘Binding multidentate ligands to Ni2+: Kinetic identification of preferential binding sites,’’ Dalton Transactions, pp. 3372-3382, 2014.
  • [18] W. M. El-Sayed and W. A Hussin, ‘‘Antimutagenic and antioxidant activity of novel 4-substituted phenyl-2,2′-bichalcophenes and aza-analogs,’’ Drug Design Development and Therapy, vol. 7, pp. 73-81, 2013.
  • [19] L. E. S. Fedel-Miyasato, A. S. N. Formagio, S. A. Auharek, C. A. L. Kassuya, S. D. Navarro, A. L. Cunha-Laura, A. C. D. Monreal, M. C. Vieira and R. J. Oliveira, ‘‘Antigenotoxic and antimutagenic effects of Schinus terebinthifolius Raddi in Allium cepa and Swiss mice: a comparative study,’’ Genetics and Molecular Research, vol. 13, no. 2, pp. 3411-3425, 2014.
  • [20] S. A. Öztürkcan, ‘‘Farklı ortamlarda çok bileşenli tek-kap yöntemi ile Mannıch reaksiyonu,’’ Doktora tezi, Kimya Bölümü, Yıldız Teknik Üniversitesi, İstanbul, Türkiye, 2012.
  • [21] D. E. Levin, L. J. Marnett and B. N. Ames, ‘‘Spontaneous and mutagen-induced deletions: Mechanistic studies in Salmonella tester strain TA102,’’ Proceedings of the National Academy of Sciences, vol. 81, no. 14, pp. 4457-4461, 1984.
  • [22] T. J. Makhafola, E. E. Elgorashi, L. J. McGaw, L. Verschaeve and J. N. Eloff, ‘‘The correlation between antimutagenic activity and total phenolic content of extracts of 31 plant species with high antioxidant activity,’’ BMC Complementary and Alternative Medicine, vol. 16, no. 490, pp. 1-13, 2016.
  • [23] S. Khan, F. Al-Qurainy and F. Anwar, ‘‘Sodium azide: a chemical mutagen for enhancement of agronomic traits of crop plants,’’ Environment & We an International Journal of Science & Technology, vol. 4, pp. 1-21, 2009.
  • [24] H. Shan, Y. Chu, P. Chang, L. Yang, Y. Wang, S. Zhu, M. Zhang and L. Tao, ‘‘Neuroprotective effects of hydrogen sulfide on sodium azide induced autophagic cell death in PC12 cells,’’ Molecular Medicine Reports, vol. 16, no. 5, pp. 5938-5946, 2017.
  • [25] T. Ishikawa, B. L. Zhu and H. Maeda, ‘‘Effect of sodium azide on the metabolic activity of cultured fetal cells,’’ Toxicology & Industrial Health, vol. 22, no. 8, pp. 337-341, 2006.
  • [26] Z. Ciesla, T. Filutowicz and T. Klopotowski, ‘‘Involvement of the L-cysteine biosynthetic pathway in azide-induced mutagenesis in Salmonella typhimurium,’’ Mutation Reseach, vol. 70, no. 3, pp. 261-268, 1980. [27] W. M. Owais and A. Kleinhofs, ‘‘Metabolic activation of the mutagen azide in biological systems,’’ Mutation Research, vol. 197, no. 2, pp. 313-323, 1988.
  • [28] İ. Şakıyan, M. Anar, H. Öğütcü, G. Agar and N. Sarı, ‘‘Schiff bases attached L-Glutamine and L-Asparagine: First investigation on antimutagenic and antimicrobial analysis,’’ Artificial Cells, Blood Substitutes, and Biotechnology, vol. 42, no. 3, pp. 199-204, 2014.
  • [29] M. Güllüce, G. Agar, O. Barış M. Karadayı, F. Orhan, F. Şahin, ‘‘Mutagenic and antimutagenic eddects of hexane extract of some Astragalus species grown in the Eastern Anatolia region of Turkey,’’ Phytotherapy Research, vol. 24, no. 7, pp. 1014-1018, 2010.
  • [30] Z. Güvenalp, M. Güllüce, M. Karadayı, M, H. Özbek, T. A. Özbek, L. Demirezer, ‘‘Determination of mutagenic and antimutagenic properties of flavonoid compounds isolated from Mentha longifolia ssp. longifolia and Origanum vulgare ssp. vulgare by using AMES test system,’’ Planta Medica, vol. 76, no. 12, pp. 1286-1287, 2010.
  • [31] P. Perry and H. Evans, ‘‘Cytological detection of mutagen–carcinogen exposure by sister chromatid exchange,’’ Nature, vol. 258, no. 5531, pp. 121-125, 1975.
  • [32] S. Çeker, G. Agar, L. Alpsoy, G. Nardemir and H. E. Kızıl, ‘‘Protective role of essential oils of Calamintha nepeta L. on oxidative and genotoxic damage caused by aflatoxin B1 in vitro,’’ Fresenius Environmental Bulletin, vol. 22, no. 11, pp. 3258-3263, 2013.
  • [33] F. Orhan, S. Çeker, M. Anar, G. Agar, T. Arasoglu, M. Gulluce, ‘‘Protective effects of three luteolin derivatives on aflatoxin B-1-induced genotoxicity on human blood cells,’’ Medicinal Chemistry Research, vol. 25, pp. 2567-2577, 2016.
  • [34] V. A. Alexandrova, G. V. Obukhova and D. A. Topchıev, ‘‘Synthesis and antimutagenic properties of novel systems based on poly(quaternized ammonium) salts,’’ Journal of Bioactive and Compatible Polymers, vol. 17, no. 5, pp. 321-341, 2002.
  • [35] S. Koçoğlu, H. Öğütcü, Z. Hayvalı, ‘‘Photophysical and antimicrobial properties of new double‑armed benzo‑15‑crown‑5 ligands and complexes,’’ Research on Chemical Intermediates,vol. 45, pp.2403-2427,2019.

Asimetrik Schiff Bazı Ni(II) Komplekslerinin Antimutajenik Aktivitesinin Değerlendirilmesi

Year 2020, Volume: 8 Issue: 1, 608 - 616, 31.01.2020
https://doi.org/10.29130/dubited.575747

Abstract

Bu çalışmada,
asimetrik Ni(II) kompleksleri (
NiL1, NiL2, NiL3, NiL4) potansiyel antimutajen özelliklerini incelemek için son zamanlarda
grubumuzdan biri tarafından rapor edilen yeni iki aşamalı bir yöntem ile
hazırlandı. Lenfositlerdeki sodyum azid kaynaklı antimutagenik
etki, kardeş kromatid değişimi (SCE) ve mikronükleus (MN) yöntemleriyle belirlendi.
Sentezlenen bileşiklerin antimutagenik özelliklere sahip olduğu ve pozitif
kontrol olarak kullanılan sodyum azid (Na
N3)'ün neden olduğu mutajeniteyi azalttıkları belirlenmiştir.

References

  • [1] C. M. da Silva, D. L. da Silva, L.V. Modolo, R. B. Alves, M. A. de Resende, C. V. B. Martins and A. de Fatima, ‘‘Schiff bases: A short review of their antimicrobial activities,’’ Journal of Advanced Research, vol. 2, pp. 1-8, 2011.
  • [2] B. Katarzyna and E. L. Chruscınska, ‘‘Schiff bases-interesting range of applications in various fields of science,’’ Chemik International, vol. 68, no. 2, pp. 129-138, 2014.
  • [3] A. K. Gupta and R. Pal, ‘‘Dehydroacetic acid based Schiff’s bases and their metal complexes: A review,’’ World Journal of Pharmaceutical Sciences, vol. 4, no. 1, pp. 386-425, 2015.
  • [4] S. Kumar, D. N. Dhar and P. N. Saxena, ‘‘Applications of metal complexes of Schiff bases-a review,’’ Journal of Scientific and Industrial Research, vol. 68, no. 3, pp. 181-187, 2009.
  • [5] P. Anand, V. M. Patil, V. K. Sharma, R. L. Khosa and N. Masand, ‘‘Schiff bases: A review on biological insights,’’ International Journal of Drug Discovery and Development, vol. 3, no. 3, pp. 851-868, 2012. [6] O. A. M. Ali, S. M. El-Medani, M. R. A. Serea and A. S. Sayed, ‘‘Unsymmetrical Schiff base (ON) ligand on complexation with some transition metal ions: Synthesis, spectral characterization, antibacterial, fluorescence and thermal studies,’’ Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy, vol. 136, pp. 651-660, 2015.
  • [7] K. Turhan, S. A. Ozturkcan, Z. Turgut, M. Karadayi and M. Gulluce, ‘‘Protective properties of five newly synthesized cyclic compounds against sodium azide and N-methyl-N0-nitroN-nitrosoguanidine genotoxicity,’’ Toxicology and Industrial Health, vol. 28, no. 7, pp. 605-613, 2012.
  • [8] N. Sarı, N. Pişkin, H. Öğütcü and N. K. Yetim, ‘‘Spectroscopic characterization of novel d-aminoacid-Schiff bases and their Cr(III) and Ni(II) complexes as antimicrobial agents,’’ Medicinal Chemistry Research, vol. 22, no. 2, pp. 580-587, 2012.
  • [9] S. Meghdadi, M. Amirnasr, M. Majedi, M. Bagheri, A. Amiri, S. Abbasi and K. Mereiter, ‘‘Template synthesis, and X-ray crystal structures of copper(II) and nickel(II) complexes of new unsymmetrical tetradentate Schiff base ligands. Electrochemistry, antibacterial properties, and metal ion effect on hydrolysis-recondensation of the ligand,’’ Inorganica Chimica Acta, vol. 437, pp. 64-69, 2015.
  • [10] M. Kalita, K. J. Tamuli, P. Barman, B. Sarma, R. Baruah, H. P. D. Boruah, ‘‘Synthesis, crystal structure, bioactivities of Ni(II), Cu(II), Co(II) and Pd(II) complexes with unsymmetrical thioether donor Schiff base: Phosphine free Pd(II) complex catalyzed Suzuki reaction,’’ Polyhedron, vol. 97, pp. 140-147, 2015.
  • [11] D. Nartop, P. Gürkan, N. Sarı and S. Çete, ‘‘Tetradentate asymmetric Schiff bases and their Ni(II) and Fe(III) complexes,’’ Journal of Coordination Chemistry, vol. 61, no. 21, pp. 3516-3524, 2008.
  • [12] D. Nartop and P. Gürkan, ‘‘Synthesis, characterization and antibacterial activities of unsymmetric diimine Schiff bases and their Fe(III) and Ni(II) complexes,’’ Chinese Journal of Inorganic Chemistry, vol. 29, no. 6, pp. 1227-1234, 2013.
  • [13] Ö. Güngör and P. Gürkan, ‘‘Synthesis and spectroscopic properties of novel asymmetric Schiff bases,’’ Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy, vol. 77, no. 1, pp. 304-311, 2010.
  • [14] Ö. Özdemir, ‘‘Novel symmetric diimine-Schiff bases and asymmetric triimine-Schiff bases as chemosensors for the detection of various metal ions,’’ Journal of Molecular Structure, vol. 1125, pp. 260-271, 2016.
  • [15] D. Nartop, Ö. Özdemir and P. Gürkan, ‘‘Synthesis, characterization and investigation of tautomeric, potentiometric and antimicrobial properties of a novel unsymmetric Schiff base and its Fe(III) and Ni(II) complexes,’’ Moroccan Journal of Chemistry, vol. 5, pp. 560-572, 2017.
  • [16] Ö. Güngör, ‘‘Intramolecular proton transfer equilibrium in salicylidene- and naphthalene-based tetraimine Schiff bases,’’ Gazi University Journal of Science, vol. 30, no. 1, pp. 191-214, 2017.
  • [17] D. Nartop, W. Clegg, R. W. Harrington, R. A. Henderson, C. Y. Will, ‘‘Binding multidentate ligands to Ni2+: Kinetic identification of preferential binding sites,’’ Dalton Transactions, pp. 3372-3382, 2014.
  • [18] W. M. El-Sayed and W. A Hussin, ‘‘Antimutagenic and antioxidant activity of novel 4-substituted phenyl-2,2′-bichalcophenes and aza-analogs,’’ Drug Design Development and Therapy, vol. 7, pp. 73-81, 2013.
  • [19] L. E. S. Fedel-Miyasato, A. S. N. Formagio, S. A. Auharek, C. A. L. Kassuya, S. D. Navarro, A. L. Cunha-Laura, A. C. D. Monreal, M. C. Vieira and R. J. Oliveira, ‘‘Antigenotoxic and antimutagenic effects of Schinus terebinthifolius Raddi in Allium cepa and Swiss mice: a comparative study,’’ Genetics and Molecular Research, vol. 13, no. 2, pp. 3411-3425, 2014.
  • [20] S. A. Öztürkcan, ‘‘Farklı ortamlarda çok bileşenli tek-kap yöntemi ile Mannıch reaksiyonu,’’ Doktora tezi, Kimya Bölümü, Yıldız Teknik Üniversitesi, İstanbul, Türkiye, 2012.
  • [21] D. E. Levin, L. J. Marnett and B. N. Ames, ‘‘Spontaneous and mutagen-induced deletions: Mechanistic studies in Salmonella tester strain TA102,’’ Proceedings of the National Academy of Sciences, vol. 81, no. 14, pp. 4457-4461, 1984.
  • [22] T. J. Makhafola, E. E. Elgorashi, L. J. McGaw, L. Verschaeve and J. N. Eloff, ‘‘The correlation between antimutagenic activity and total phenolic content of extracts of 31 plant species with high antioxidant activity,’’ BMC Complementary and Alternative Medicine, vol. 16, no. 490, pp. 1-13, 2016.
  • [23] S. Khan, F. Al-Qurainy and F. Anwar, ‘‘Sodium azide: a chemical mutagen for enhancement of agronomic traits of crop plants,’’ Environment & We an International Journal of Science & Technology, vol. 4, pp. 1-21, 2009.
  • [24] H. Shan, Y. Chu, P. Chang, L. Yang, Y. Wang, S. Zhu, M. Zhang and L. Tao, ‘‘Neuroprotective effects of hydrogen sulfide on sodium azide induced autophagic cell death in PC12 cells,’’ Molecular Medicine Reports, vol. 16, no. 5, pp. 5938-5946, 2017.
  • [25] T. Ishikawa, B. L. Zhu and H. Maeda, ‘‘Effect of sodium azide on the metabolic activity of cultured fetal cells,’’ Toxicology & Industrial Health, vol. 22, no. 8, pp. 337-341, 2006.
  • [26] Z. Ciesla, T. Filutowicz and T. Klopotowski, ‘‘Involvement of the L-cysteine biosynthetic pathway in azide-induced mutagenesis in Salmonella typhimurium,’’ Mutation Reseach, vol. 70, no. 3, pp. 261-268, 1980. [27] W. M. Owais and A. Kleinhofs, ‘‘Metabolic activation of the mutagen azide in biological systems,’’ Mutation Research, vol. 197, no. 2, pp. 313-323, 1988.
  • [28] İ. Şakıyan, M. Anar, H. Öğütcü, G. Agar and N. Sarı, ‘‘Schiff bases attached L-Glutamine and L-Asparagine: First investigation on antimutagenic and antimicrobial analysis,’’ Artificial Cells, Blood Substitutes, and Biotechnology, vol. 42, no. 3, pp. 199-204, 2014.
  • [29] M. Güllüce, G. Agar, O. Barış M. Karadayı, F. Orhan, F. Şahin, ‘‘Mutagenic and antimutagenic eddects of hexane extract of some Astragalus species grown in the Eastern Anatolia region of Turkey,’’ Phytotherapy Research, vol. 24, no. 7, pp. 1014-1018, 2010.
  • [30] Z. Güvenalp, M. Güllüce, M. Karadayı, M, H. Özbek, T. A. Özbek, L. Demirezer, ‘‘Determination of mutagenic and antimutagenic properties of flavonoid compounds isolated from Mentha longifolia ssp. longifolia and Origanum vulgare ssp. vulgare by using AMES test system,’’ Planta Medica, vol. 76, no. 12, pp. 1286-1287, 2010.
  • [31] P. Perry and H. Evans, ‘‘Cytological detection of mutagen–carcinogen exposure by sister chromatid exchange,’’ Nature, vol. 258, no. 5531, pp. 121-125, 1975.
  • [32] S. Çeker, G. Agar, L. Alpsoy, G. Nardemir and H. E. Kızıl, ‘‘Protective role of essential oils of Calamintha nepeta L. on oxidative and genotoxic damage caused by aflatoxin B1 in vitro,’’ Fresenius Environmental Bulletin, vol. 22, no. 11, pp. 3258-3263, 2013.
  • [33] F. Orhan, S. Çeker, M. Anar, G. Agar, T. Arasoglu, M. Gulluce, ‘‘Protective effects of three luteolin derivatives on aflatoxin B-1-induced genotoxicity on human blood cells,’’ Medicinal Chemistry Research, vol. 25, pp. 2567-2577, 2016.
  • [34] V. A. Alexandrova, G. V. Obukhova and D. A. Topchıev, ‘‘Synthesis and antimutagenic properties of novel systems based on poly(quaternized ammonium) salts,’’ Journal of Bioactive and Compatible Polymers, vol. 17, no. 5, pp. 321-341, 2002.
  • [35] S. Koçoğlu, H. Öğütcü, Z. Hayvalı, ‘‘Photophysical and antimicrobial properties of new double‑armed benzo‑15‑crown‑5 ligands and complexes,’’ Research on Chemical Intermediates,vol. 45, pp.2403-2427,2019.
There are 33 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Dilek Nartop 0000-0002-0705-5018

Elvan Hasanoğlu Özkan This is me 0000-0001-7338-4015

Hamit Emre Kızıl 0000-0001-6193-3734

Güleray Ağar 0000-0002-8445-5082

Nurşen Sarı 0000-0002-4764-7747

Publication Date January 31, 2020
Published in Issue Year 2020 Volume: 8 Issue: 1

Cite

APA Nartop, D., Hasanoğlu Özkan, E., Kızıl, H. E., Ağar, G., et al. (2020). Evulation of Antimutagenic Activity of Ni(II) Complexes with Unsymmetric Schiff Bases. Duzce University Journal of Science and Technology, 8(1), 608-616. https://doi.org/10.29130/dubited.575747
AMA Nartop D, Hasanoğlu Özkan E, Kızıl HE, Ağar G, Sarı N. Evulation of Antimutagenic Activity of Ni(II) Complexes with Unsymmetric Schiff Bases. DUBİTED. January 2020;8(1):608-616. doi:10.29130/dubited.575747
Chicago Nartop, Dilek, Elvan Hasanoğlu Özkan, Hamit Emre Kızıl, Güleray Ağar, and Nurşen Sarı. “Evulation of Antimutagenic Activity of Ni(II) Complexes With Unsymmetric Schiff Bases”. Duzce University Journal of Science and Technology 8, no. 1 (January 2020): 608-16. https://doi.org/10.29130/dubited.575747.
EndNote Nartop D, Hasanoğlu Özkan E, Kızıl HE, Ağar G, Sarı N (January 1, 2020) Evulation of Antimutagenic Activity of Ni(II) Complexes with Unsymmetric Schiff Bases. Duzce University Journal of Science and Technology 8 1 608–616.
IEEE D. Nartop, E. Hasanoğlu Özkan, H. E. Kızıl, G. Ağar, and N. Sarı, “Evulation of Antimutagenic Activity of Ni(II) Complexes with Unsymmetric Schiff Bases”, DUBİTED, vol. 8, no. 1, pp. 608–616, 2020, doi: 10.29130/dubited.575747.
ISNAD Nartop, Dilek et al. “Evulation of Antimutagenic Activity of Ni(II) Complexes With Unsymmetric Schiff Bases”. Duzce University Journal of Science and Technology 8/1 (January 2020), 608-616. https://doi.org/10.29130/dubited.575747.
JAMA Nartop D, Hasanoğlu Özkan E, Kızıl HE, Ağar G, Sarı N. Evulation of Antimutagenic Activity of Ni(II) Complexes with Unsymmetric Schiff Bases. DUBİTED. 2020;8:608–616.
MLA Nartop, Dilek et al. “Evulation of Antimutagenic Activity of Ni(II) Complexes With Unsymmetric Schiff Bases”. Duzce University Journal of Science and Technology, vol. 8, no. 1, 2020, pp. 608-16, doi:10.29130/dubited.575747.
Vancouver Nartop D, Hasanoğlu Özkan E, Kızıl HE, Ağar G, Sarı N. Evulation of Antimutagenic Activity of Ni(II) Complexes with Unsymmetric Schiff Bases. DUBİTED. 2020;8(1):608-16.