Research Article
BibTex RIS Cite

Comparative Analysis of Two Different Light Rail Superstructures in Istanbul Traffic in Terms of Vibration

Year 2020, Volume: 8 Issue: 1, 589 - 607, 31.01.2020
https://doi.org/10.29130/dubited.577659

Abstract

Railway-induced vibrations are one of the major problems that need to be
suppressed for the passengers or people who are living around the railway. It
is essential that the vibrations are first tried to be suppressed on the
source, railway. Thus, the railway superstructure components contain various
elastic elements used in vibration insulation, such as rail pads. In this
study, two different railway superstructures used in Istanbul railway traffic
were tested while passing the railway vehicle at various speeds, and the
vibrations generated by the wheel-rail interaction were compared regarding
passenger comfort and the environment in compliance with the relevant
standards. Used railway superstructures to compare the propagated vibrations
are constructions with single and double elastomeric layers installed on the
same line, sequentially. In this experimental benchmarking study which contains
some evaluations according to standards, the behaviour of these two railway
superstructure types in terms of vibration insulation in light metro lines is
revealed using measurement results. Consequently, when the double-layered
elastomer is used instead of a single-layered in the superstructure, the
comfort level of the people living around the line is improved as up to 64% and
the comfort level of the passengers is improved as up to 54%. In addition, in
terms of the safety investigations of the buildings around the line, a
meaningful decrease in vibrations greater than 70 Hz is observed and it is
concluded that residential buildings could be built up to 5 m distance.

Supporting Institution

TÜBİTAK

Project Number

115M586

Thanks

The financial support of the Program for Scientific and Technological Research Projects 1001 by the Scientific and Technical Research Council of Turkey (TUBITAK) [Project No: 115M586] is gratefully acknowledged.

References

  • [1] Metro İstanbul A.Ş. (2018, March 18). Hakkimizda. [Online]. Available: https://www.metro.istanbul/icerik/hakkimizda
  • [2] J. A. Forrest, "Modelling of ground vibration from underground railways," Ph.D. dissertation, University of Cambridge, 1999.
  • [3] A. Garinei, G. Risitano, L. Scappaticci, and F. J. M. Castellani, "An optimized method to evaluate the performance of trench isolation for railway-induced vibration," Measurement, vol. 94, pp. 92-102, 2016.
  • [4] D. Connolly, A. Giannopoulos, W. Fan, P. Woodward, M. J. C. Forde, and B. Materials, "Optimising low acoustic impedance back-fill material wave barrier dimensions to shield structures from ground borne high speed rail vibrations," Construction and Building Materials, vol. 44, pp. 557-564, 2013.
  • [5] N. Hamdan, O. Laghrouche, P. K. Woodward, M. J. C. Mahmood, and B. Materials, "Ground vibration reduction analysis using a frequency-domain finite element approach," Construction and Building Materials, vol. 92, pp. 95-103, 2015.
  • [6] A. Dijckmans et al., "Mitigation of railway induced ground vibration by heavy masses next to the track," Soil Dynamics and Earthquake Engineering, vol. 75, pp. 158-170, 2015.
  • [7] Y. J. M. Dere, "Effectiveness of the floating slab track system constructed at Konya Light Rail," Measurement, vol. 89, pp. 48-54, 2016.
  • [8] F. Cui and C. J. A. A. Chew, "The effectiveness of floating slab track system—Part I. Receptance methods," Applied Acoustics, vol. 61, no. 4, pp. 441-453, 2000.
  • [9] M. Sol-Sánchez, F. Moreno-Navarro, M. C. J. C. Rubio-Gámez, and b. materials, "The use of elastic elements in railway tracks: A state of the art review," Construction and Building Materials, vol. 75, pp. 293-305, 2015.
  • [10] W. Ferdous, A. Manalo, G. Van Erp, T. Aravinthan, S. Kaewunruen, and A. J. C. S. Remennikov, "Composite railway sleepers–Recent developments, challenges and future prospects," Composite Structures, vol. 134, pp. 158-168, 2015.
  • [11] K. Knothe and S. J. V. s. d. Grassie, "Modelling of railway track and vehicle/track interaction at high frequencies," Vehicle System Dynamics, vol. 22, no. 3-4, pp. 209-262, 1993.
  • [12] D. I. f. Normung, "DIN 4150-2: Structural vibrations–Part 2: Human exposure to vibration in buildings," German Standards Organization (GSO) Berlin, 1999.
  • [13] G. S. DIN, Structural vibration Part 3: Effects of vibration on Structures, 1999.
  • [14] I.-J. I. O. f. Standardization, Mechanical vibration and shock-Evaluation of human exposure to whole-body vibration-Part 1: General requirements, 1997.
  • [15] I. O. f. Standardization, "ISO 2631-2: Mechanical vibration and shock—Evaluation of human exposure to whole–body vibration—Part 2: Vibration in buildings (1 Hz to 80 Hz)," 2003.
  • [16] G. Kouroussis, C. Conti, O. J. M. Verlinden, and Industry, "Building vibrations induced by human activities: a benchmark of existing standards," Mechanics & Industry, vol. 15, no. 5, pp. 345-353, 2014.
  • [17] P. Wang, K. Wei, L. Wang, J. J. P. o. t. I. o. M. E. Xiao, Part F: Journal of Rail, and R. Transit, "Experimental study of the frequency-domain characteristics of ground vibrations caused by a high-speed train running on non-ballasted track," Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, vol. 230, no. 4, pp. 1131-1144, 2016.
  • [18] W. Gong, M. J. J. P. o. t. I. o. M. E. Griffin, Part F: Journal of Rail, and R. Transit, "Measuring, evaluating and assessing the transmission of vibration through the seats of railway vehicles," vol. 232, no. 2, pp. 384-395, 2018.
  • [19] C. Zou, Y. Wang, P. Wang, and J. J. S. o. t. T. E. Guo, "Measurement of ground and nearby building vibration and noise induced by trains in a metro depot," Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, vol. 536, pp. 761-773, 2015.
  • [20] E. Celebi and G. J. E. S. Schmid, "Investigation of ground vibrations induced by moving loads," Engineering Structures, vol. 27, no. 14, pp. 1981-1998, 2005.
  • [21] G. Kouroussis, G. Gazetas, I. Anastasopoulos, C. Conti, O. J. S. D. Verlinden, and E. Engineering, "Discrete modelling of vertical track–soil coupling for vehicle–track dynamics," Soil Dynamics and Earthquake Engineering, vol. 31, no. 12, pp. 1711-1723, 2011.
  • [22] M. J. B. S. Bata, "Effects on buildings of vibrations caused by traffic," Building Science, vol. 6, no. 4, pp. 221-246, 1971.
  • [23] P. A. Costa, R. Calçada, A. S. J. S. D. Cardoso, and E. Engineering, "Ballast mats for the reduction of railway traffic vibrations. Numerical study," Soil Dynamics and Earthquake Engineering, vol. 42, pp. 137-150, 2012.
  • [24] P. Lopes, P. A. Costa, M. Ferraz, R. Calçada, A. S. J. S. D. Cardoso, and E. Engineering, "Numerical modeling of vibrations induced by railway traffic in tunnels: From the source to the nearby buildings," Soil Dynamics and Earthquake Engineering, vol. 61, pp. 269-285, 2014.
  • [25] M. Valikhani and D. J. M. Younesian, "Application of an optimal wavelet transformation for rail-fastening system identification in different preloads," Measurement, vol. 82, pp. 161-175, 2016.
  • [26] G. Kouroussis, O. Verlinden, and C. J. V. S. D. Conti, "Influence of some vehicle and track parameters on the environmental vibrations induced by railway traffic," Vehicle System Dynamics, vol. 50, no. 4, pp. 619-639, 2012.
  • [27] V. A.G. (2019, January 01). DFF 21. Available: https://www.vossloh.com/en/products-and-solutions/product-finder/product_11013.php.
  • [28] V. A.G. (2019, January 01). System 336. Available: https://www.vossloh.com/en/products-and-solutions/product-finder/product_10947.php.

İstanbul Trafiğinde Bulunan İki Farklı Hafif Metro Üstyapısının Titreşim Bakımından Karşılaştırmalı Analizi

Year 2020, Volume: 8 Issue: 1, 589 - 607, 31.01.2020
https://doi.org/10.29130/dubited.577659

Abstract

Demiryoluna bağlı titreşimler, yolcuların veya demiryolunun
çevresinde yaşayan insanlar için bastırılması gereken en önemli sorunlardan
biridir. Titreşimlerin öncelikle kaynakta, yani demiryolu üzerinde bastırılmaya
çalışılması esastır. Bu nedenle, demiryolu üst yapı bileşenleri, titreşim
yalıtımında kullanılan ray pedleri gibi çeşitli elastik elemanlar içerir. Bu
çalışmada, İstanbul demiryolu trafiğinde kullanılan iki farklı demiryolu üst
yapısı, demiryolu aracı çeşitli hızlarda geçerken test edildi ve tekerlek-ray etkileşiminin
oluşturduğu titreşimler, yolcu konforu ve çevre ile ilgili standartlara uygun
olarak karşılaştırıldı. Yayılan titreşimleri karşılaştırmak için aynı hat
üzerinde yerleştirilmiş tek ve çift elastomerik tabakalara sahip demiryolu
üstyapıları kullanılmıştır. Standartlara göre bazı değerlendirmeler içeren bu
deneysel kıyaslama çalışmasında, bu iki demiryolu üst yapı tipinin hafif metro
hatlarında titreşim yalıtımı açısından davranışları ölçüm sonuçları
kullanılarak ortaya konmuştur. Sonuç olarak, üstyapıda tek katman yerine çift
katmanlı elastomer kullanıldığında, hat çevresinde yaşayan insanların konfor
seviyelerinde %64’e, araç içerisinde bulunan yolcuların konfor seviyelerinde
ise %54 varan iyileşme gerçekleşmiştir. Ayrıca, hat çevresinde bulunan
binaların güvenliği bakımından yapılan araştırmada 70 HZ’den büyük
titreşimlerde anlamlı bir azalma gözlenmiş ve hatta en az 5 m mesafeye kadar
konut amaçlı bina yapılabileceği sonucuna ulaşılmıştır.

Project Number

115M586

References

  • [1] Metro İstanbul A.Ş. (2018, March 18). Hakkimizda. [Online]. Available: https://www.metro.istanbul/icerik/hakkimizda
  • [2] J. A. Forrest, "Modelling of ground vibration from underground railways," Ph.D. dissertation, University of Cambridge, 1999.
  • [3] A. Garinei, G. Risitano, L. Scappaticci, and F. J. M. Castellani, "An optimized method to evaluate the performance of trench isolation for railway-induced vibration," Measurement, vol. 94, pp. 92-102, 2016.
  • [4] D. Connolly, A. Giannopoulos, W. Fan, P. Woodward, M. J. C. Forde, and B. Materials, "Optimising low acoustic impedance back-fill material wave barrier dimensions to shield structures from ground borne high speed rail vibrations," Construction and Building Materials, vol. 44, pp. 557-564, 2013.
  • [5] N. Hamdan, O. Laghrouche, P. K. Woodward, M. J. C. Mahmood, and B. Materials, "Ground vibration reduction analysis using a frequency-domain finite element approach," Construction and Building Materials, vol. 92, pp. 95-103, 2015.
  • [6] A. Dijckmans et al., "Mitigation of railway induced ground vibration by heavy masses next to the track," Soil Dynamics and Earthquake Engineering, vol. 75, pp. 158-170, 2015.
  • [7] Y. J. M. Dere, "Effectiveness of the floating slab track system constructed at Konya Light Rail," Measurement, vol. 89, pp. 48-54, 2016.
  • [8] F. Cui and C. J. A. A. Chew, "The effectiveness of floating slab track system—Part I. Receptance methods," Applied Acoustics, vol. 61, no. 4, pp. 441-453, 2000.
  • [9] M. Sol-Sánchez, F. Moreno-Navarro, M. C. J. C. Rubio-Gámez, and b. materials, "The use of elastic elements in railway tracks: A state of the art review," Construction and Building Materials, vol. 75, pp. 293-305, 2015.
  • [10] W. Ferdous, A. Manalo, G. Van Erp, T. Aravinthan, S. Kaewunruen, and A. J. C. S. Remennikov, "Composite railway sleepers–Recent developments, challenges and future prospects," Composite Structures, vol. 134, pp. 158-168, 2015.
  • [11] K. Knothe and S. J. V. s. d. Grassie, "Modelling of railway track and vehicle/track interaction at high frequencies," Vehicle System Dynamics, vol. 22, no. 3-4, pp. 209-262, 1993.
  • [12] D. I. f. Normung, "DIN 4150-2: Structural vibrations–Part 2: Human exposure to vibration in buildings," German Standards Organization (GSO) Berlin, 1999.
  • [13] G. S. DIN, Structural vibration Part 3: Effects of vibration on Structures, 1999.
  • [14] I.-J. I. O. f. Standardization, Mechanical vibration and shock-Evaluation of human exposure to whole-body vibration-Part 1: General requirements, 1997.
  • [15] I. O. f. Standardization, "ISO 2631-2: Mechanical vibration and shock—Evaluation of human exposure to whole–body vibration—Part 2: Vibration in buildings (1 Hz to 80 Hz)," 2003.
  • [16] G. Kouroussis, C. Conti, O. J. M. Verlinden, and Industry, "Building vibrations induced by human activities: a benchmark of existing standards," Mechanics & Industry, vol. 15, no. 5, pp. 345-353, 2014.
  • [17] P. Wang, K. Wei, L. Wang, J. J. P. o. t. I. o. M. E. Xiao, Part F: Journal of Rail, and R. Transit, "Experimental study of the frequency-domain characteristics of ground vibrations caused by a high-speed train running on non-ballasted track," Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, vol. 230, no. 4, pp. 1131-1144, 2016.
  • [18] W. Gong, M. J. J. P. o. t. I. o. M. E. Griffin, Part F: Journal of Rail, and R. Transit, "Measuring, evaluating and assessing the transmission of vibration through the seats of railway vehicles," vol. 232, no. 2, pp. 384-395, 2018.
  • [19] C. Zou, Y. Wang, P. Wang, and J. J. S. o. t. T. E. Guo, "Measurement of ground and nearby building vibration and noise induced by trains in a metro depot," Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, vol. 536, pp. 761-773, 2015.
  • [20] E. Celebi and G. J. E. S. Schmid, "Investigation of ground vibrations induced by moving loads," Engineering Structures, vol. 27, no. 14, pp. 1981-1998, 2005.
  • [21] G. Kouroussis, G. Gazetas, I. Anastasopoulos, C. Conti, O. J. S. D. Verlinden, and E. Engineering, "Discrete modelling of vertical track–soil coupling for vehicle–track dynamics," Soil Dynamics and Earthquake Engineering, vol. 31, no. 12, pp. 1711-1723, 2011.
  • [22] M. J. B. S. Bata, "Effects on buildings of vibrations caused by traffic," Building Science, vol. 6, no. 4, pp. 221-246, 1971.
  • [23] P. A. Costa, R. Calçada, A. S. J. S. D. Cardoso, and E. Engineering, "Ballast mats for the reduction of railway traffic vibrations. Numerical study," Soil Dynamics and Earthquake Engineering, vol. 42, pp. 137-150, 2012.
  • [24] P. Lopes, P. A. Costa, M. Ferraz, R. Calçada, A. S. J. S. D. Cardoso, and E. Engineering, "Numerical modeling of vibrations induced by railway traffic in tunnels: From the source to the nearby buildings," Soil Dynamics and Earthquake Engineering, vol. 61, pp. 269-285, 2014.
  • [25] M. Valikhani and D. J. M. Younesian, "Application of an optimal wavelet transformation for rail-fastening system identification in different preloads," Measurement, vol. 82, pp. 161-175, 2016.
  • [26] G. Kouroussis, O. Verlinden, and C. J. V. S. D. Conti, "Influence of some vehicle and track parameters on the environmental vibrations induced by railway traffic," Vehicle System Dynamics, vol. 50, no. 4, pp. 619-639, 2012.
  • [27] V. A.G. (2019, January 01). DFF 21. Available: https://www.vossloh.com/en/products-and-solutions/product-finder/product_11013.php.
  • [28] V. A.G. (2019, January 01). System 336. Available: https://www.vossloh.com/en/products-and-solutions/product-finder/product_10947.php.
There are 28 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Muzaffer Metin 0000-0002-9724-3433

Arif Ulu This is me 0000-0003-3000-3731

Project Number 115M586
Publication Date January 31, 2020
Published in Issue Year 2020 Volume: 8 Issue: 1

Cite

APA Metin, M., & Ulu, A. (2020). İstanbul Trafiğinde Bulunan İki Farklı Hafif Metro Üstyapısının Titreşim Bakımından Karşılaştırmalı Analizi. Duzce University Journal of Science and Technology, 8(1), 589-607. https://doi.org/10.29130/dubited.577659
AMA Metin M, Ulu A. İstanbul Trafiğinde Bulunan İki Farklı Hafif Metro Üstyapısının Titreşim Bakımından Karşılaştırmalı Analizi. DUBİTED. January 2020;8(1):589-607. doi:10.29130/dubited.577659
Chicago Metin, Muzaffer, and Arif Ulu. “İstanbul Trafiğinde Bulunan İki Farklı Hafif Metro Üstyapısının Titreşim Bakımından Karşılaştırmalı Analizi”. Duzce University Journal of Science and Technology 8, no. 1 (January 2020): 589-607. https://doi.org/10.29130/dubited.577659.
EndNote Metin M, Ulu A (January 1, 2020) İstanbul Trafiğinde Bulunan İki Farklı Hafif Metro Üstyapısının Titreşim Bakımından Karşılaştırmalı Analizi. Duzce University Journal of Science and Technology 8 1 589–607.
IEEE M. Metin and A. Ulu, “İstanbul Trafiğinde Bulunan İki Farklı Hafif Metro Üstyapısının Titreşim Bakımından Karşılaştırmalı Analizi”, DUBİTED, vol. 8, no. 1, pp. 589–607, 2020, doi: 10.29130/dubited.577659.
ISNAD Metin, Muzaffer - Ulu, Arif. “İstanbul Trafiğinde Bulunan İki Farklı Hafif Metro Üstyapısının Titreşim Bakımından Karşılaştırmalı Analizi”. Duzce University Journal of Science and Technology 8/1 (January 2020), 589-607. https://doi.org/10.29130/dubited.577659.
JAMA Metin M, Ulu A. İstanbul Trafiğinde Bulunan İki Farklı Hafif Metro Üstyapısının Titreşim Bakımından Karşılaştırmalı Analizi. DUBİTED. 2020;8:589–607.
MLA Metin, Muzaffer and Arif Ulu. “İstanbul Trafiğinde Bulunan İki Farklı Hafif Metro Üstyapısının Titreşim Bakımından Karşılaştırmalı Analizi”. Duzce University Journal of Science and Technology, vol. 8, no. 1, 2020, pp. 589-07, doi:10.29130/dubited.577659.
Vancouver Metin M, Ulu A. İstanbul Trafiğinde Bulunan İki Farklı Hafif Metro Üstyapısının Titreşim Bakımından Karşılaştırmalı Analizi. DUBİTED. 2020;8(1):589-607.