Research Article
BibTex RIS Cite

Molecularly Imprinted Polymer Based Biosensor for Choline

Year 2020, Volume: 8 Issue: 1, 974 - 982, 31.01.2020
https://doi.org/10.29130/dubited.578392

Abstract

Biosensors
are systems that can perform a quantitative and/or qualitative analysis of
substances in a liquid or gas environment through their biological recognition
sites and transform the acquired data into detectable signals. Biosensors are
able to detect physical changes (i.e. as density, mass concentration, etc.) by
means of recognition sites and correlate them with electrical or optical
quantities (i.e. current, voltage and impedance). In this study, three
molecularly imprinted pencil graphite electrodes (PGE) with differing numbers
of choline recognition sites, at E-1 M, E-3 M and E-5 M concentration, were
used as electrochemical biosensors. An increase in choline receptor
concentration on the electrode surface was expected to correlate with an
increase in PGE surface bound choline and thus lead to electrical changes. The
study was conducted in a three-electrode cell with Ag/AgCl as the reference
electrode, platinum wire as the counter electrode and PGE as the working
electrode. Cyclic voltammetry and electrochemical impedance measurements were
conducted in 10 mM phosphate buffer solution (PBS) containing 5mM K3[FeCN6]-3/-4
redox pair. As expected, as increasing amount of choline was bound to the
complementary recognition sites on choline imprinted PGEs, a correlating change
in current, voltage and impedance on PGEs was observed. The dynamic detection
range for choline expanded as the choline concentration imprinted on the PGE
electrode increased. Using the E-1 M PGE electrode, 72 pM limit of detection,
up to 7.2 nM limit of linearity was attained.

References

  • [1] N. Bhalla, P. Jolly, N. Formisano & P. Estrela, “Introduction to Biosensors,” Essays in Biochemistry, vol. 60, no. 1, pp. 1-8, 2016.
  • [2] C. I. Justino, A. C. Freitas, R. Pereira, A. C. Duarte, & T. A. R. Santos, ‘’Recent developments in recognition elements for chemical sensors and biosensors,’’ TrAC Trends in Analytical Chemistry, no. 68, pp. 2-17, 2015.
  • [3] N. Verma, & A. Bhardwaj, ‘’Biosensor technology for pesticides—a review,’’ Applied Biochemistry And Biotechnology, vol. 175, no. 6, pp. 3093-3119, 2015.
  • [4] R. Gui, H. Jin, H. Guo, & Z. Wang, ‘’Recent advances and future prospects in molecularly imprinted polymers-based electrochemical biosensors,’’ Biosensors and Bioelectronics, no. 100, pp. 56-70.,2018.
  • [5] R. Li, Y. Feng, G. Pan, & L. Liu, ‘’Advances in molecularly imprinting technology for bioanalytical applications,’’ Sensors, vol. 19, no. 1, p. 177, 2019.
  • [6] N. Fu, X. Liu, L. Li, B. Tang, & K. H. Row, ‘’Ternary choline chloride/caffeic acid/ethylene glycol deep eutectic solvent as both a monomer and template in a molecularly imprinted polymer,’’ Journal of Separation Science, vol. 40, no. 10, pp. 2286-2291, 2017.
  • [7] G. Ertürk, H. Özen, M. A. Tümer, B. Mattiasson & A. Denizli, “Microcontact imprinting based surface plasmon resonance (SPR) biosensor for real-time and ultrasensitive detection of prostate specific antigen (PSA) from clinical samples,” Sensors and Actuators B: Chemical, vol. 224, pp. 823-832, 2016.
  • [8] J. M. Moon, N. Thapliyal, K. K. Hussain, R. N. Goyal, & Y. B. Shim, ‘’Conducting polymer-based electrochemical biosensors for neurotransmitters: A review,’’ Biosensors and Bioelectronics, no. 102, pp. 540-552, 2018.
  • [9] S. Nishitani, & T. Sakata, ‘’Potentiometric adsorption isotherm analysis of a molecularly imprinted polymer interface for small-biomolecule recognition,’’ ACS omega, vol. 3, no. 5, pp. 5382-5389, 2018.
  • [10] M. Andaç, G. Baydemir, & A. Denizli, (2018). Molecularly imprinted polymers as a tool for biomolecule separation. In Nanoscale Fabrication, Optimization, Scale-Up and Biological Aspects of Pharmaceutical Nanotechnology (pp. 511-545). William Andrew Publishing.
  • [11] M. L. Yola, & N. Atar, ‘’A review: molecularly imprinted electrochemical sensors for determination of biomolecules/drug,’’ Current Analytical Chemistry, vol. 13, no. 1, pp. 13-17, 2017.
  • [12] S. H. Zeisel, K. A. Da Costa, P. D. Franklin, E. A. Alexander, J. T. Lamont, N. F. Sheard, & A.L. Beiser, “Choline, an essential nutrient for humans,” The FASEB Journal, vol.5, no.7, pp. 2093-2098, 1991.
  • [13] J. C. M. Hamlin, Pauly, S. Melnyk, O. Pavliv, W. Starrett, T. A. Crook & S. J. James, Autism Research and Treatment, 2013.
  • [14] J. L. Sherriff, T. A. C. O'Sullivan, Properzi, J. L. Oddo & L.A. Adams, “One Carbon Metabolism and Hepatocellular Carcinoma,” Advances in Nutrition, vol. 7, no.1, pp. 5-13, 2016.
  • [15] Y. Tan, D. Jia, Z. Lin, B. Guo, B. He, C. Lu, C. Xiao, Z. Liu, N. Zhao, Z. Bian, W. Zhang, X. Liu, A. Lu & G. Zhang, “Potential Metabolic Biomarkers to Identify Interstitial Lung Abnormalities,” International Journal of Molecular Sciences, vol. 17, no. 7, pp. 1148, 2016.
  • [16] A. Mastrokolias, R. Pool, E. Mina, K. M. Hettne, E. van Duijn, R. C. van der Mast, G. van Ommen, P. A. Hoen, C. Prehn, J. Adamski & W. van Roon-Mom, “Integration of Targeted Metabolomics and Transcriptomics Identifies Deregulation of Phosphatidylcholine Metabolism in Huntington’s Disease Peripheral Blood Samples,” Metabolomics, vol. 12, no.8, pp. 137,2016.
  • [17] N. Nikzad, & Z. Karami, “Label-free colorimetric sensor for sensitive detection of choline based on DNAzyme-choline oxidase coupling,”International Journal of Biological Macromolecules, vol. 115, pp. 1241-1248, 2018.
  • [18] E. Barsoukov, J. R. Macdonald, Fundamentals of Elecktrochemistry, 2nd Ed., New Jersey, USA: John Wiley& Sons, Hoboken, 2005.
  • [19] G. Ertürk, M. Hedström, M. A. Tümer & A. Denizli, “Real-Time Prostate-Specific Antigen Detection with Prostate-Specific Antigen Imprinted Capacitive Biosensors,” Analytica Chimica Acta, vol. 891, pp. 120-129, 2015.
  • [20] B. Özcan, B. Demirbakan, G. Yeşiller & M. K. Sezgintürk, “Introducing a New Method for Evaluation of The Interaction Between an Antigen and an Antibody: Single Frequency Impedance Analysis for Biosensing Systems,” Talanta vol.125, 7-13, 2014.
  • [21] J. L. Figueiredo, M. F. R. Pereira, M. M. A. Freitas & J. J. M. Orfao, “Modification o the Surface Chemistry of Activated Carbons,” Carbon, vol. 37, no. 9, pp. 1379-1389, 1999.
  • [22] I. S. Park & N. Kim, “Thiolated Salmonella Antibody Immobilization onto the Gold Surface of Piezoelectric Quartz Crystal,” Biosensors and Bioelectronics, vol. 13, no. 10, pp. 1091-1097, 1998.
  • [23] I. Markovich & D. J. Mandler, “Effect of an Alkylsilane Monolayer on an Indium-Tin Oxide Surface on the Electrochemistry of Hexacyanoferrate,” Electroanalytical Chemistry, vol. 484, no. 2, pp. 194-202, 2000.

Kolin Tespiti İçin Moleküler Baskılama Tabanlı Biyosensör Geliştirilmesi

Year 2020, Volume: 8 Issue: 1, 974 - 982, 31.01.2020
https://doi.org/10.29130/dubited.578392

Abstract

Biyolojik sensörün
kısaltması olarak kullanılan biyosensörler, maddelerin sıvı ya da gaz ortamda
nicel veya nitel tayinini sahip olduğu biyolojik tanıma bölgeleri sayesinde
yapabilen ve elde ettiği verileri tespit edilebilir sinyallere çeviren
sistemlerdir. Biyosensörler, uygun tanıma bölgeleri aracılığıyla fiziksel
değişiklikleri (yoğunluk, kütle, derişim vb.) tespit edebilmekte ve bunları
elektriksel veya optik büyüklüklerle (akım, gerilim, empedans vb.)
ilişkilendirmektedir. Bu çalışmada, E-1M, E-3M ve E-5M olmak üzere 3 farklı
derişimde moleküler baskılanmış, farklı sayıda kolin tanıma bölgelerine sahip,
kalem grafit elektrotlar (PGE), elektrokimyasal biyosensörler olarak
kullanılmıştır. Elektrot yüzeyindeki kolin reseptörü konsantrasyonundaki
artışın, PGE yüzeyine bağlı kolindeki artışla ilişkili olması ve dolayısıyla
elektriksel değişikliklere yol açması beklenmektedir. Çalışma, üç elektrotlu
hücrede, referans elektrot olarak Ag/AgCl, 
karşı elektrot olarak platin tel ve çalışma elektrotu olarak PGE
kullanılarak gerçekleştirilmiştir. Elektrotların açık hücre potansiyeli,
dönüşümsel voltametri ve elektrokimyasal empedans ölçümleri, 5mM K3[FeCN6]-3/-4
redoks çifti içeren 10 mM fosfat tampon çözeltisi (PBS) içerisinde
alınmıştır. Çözelti içerisindeki kolinin, kolin baskılanmış PGE'ler üzerindeki
tamamlayıcı tanıma alanlarına bağlanmasıyla beklendiği gibi PGE'lerde akım,
voltaj ve empedans değişimleri gözlenmiştir. Baskılanan molekül
konsantrasyonunun artışıyla bağıntılı olarak tespit aralığında da bir artış
gözlenmiştir. Sonuç olarak, E-1M kolin baskılanan PGE, 7.2 nM-72 pM tespit
aralığındaki kolin konsantrasyonunda en yüksek farklılaşmayı göstermiştir.

References

  • [1] N. Bhalla, P. Jolly, N. Formisano & P. Estrela, “Introduction to Biosensors,” Essays in Biochemistry, vol. 60, no. 1, pp. 1-8, 2016.
  • [2] C. I. Justino, A. C. Freitas, R. Pereira, A. C. Duarte, & T. A. R. Santos, ‘’Recent developments in recognition elements for chemical sensors and biosensors,’’ TrAC Trends in Analytical Chemistry, no. 68, pp. 2-17, 2015.
  • [3] N. Verma, & A. Bhardwaj, ‘’Biosensor technology for pesticides—a review,’’ Applied Biochemistry And Biotechnology, vol. 175, no. 6, pp. 3093-3119, 2015.
  • [4] R. Gui, H. Jin, H. Guo, & Z. Wang, ‘’Recent advances and future prospects in molecularly imprinted polymers-based electrochemical biosensors,’’ Biosensors and Bioelectronics, no. 100, pp. 56-70.,2018.
  • [5] R. Li, Y. Feng, G. Pan, & L. Liu, ‘’Advances in molecularly imprinting technology for bioanalytical applications,’’ Sensors, vol. 19, no. 1, p. 177, 2019.
  • [6] N. Fu, X. Liu, L. Li, B. Tang, & K. H. Row, ‘’Ternary choline chloride/caffeic acid/ethylene glycol deep eutectic solvent as both a monomer and template in a molecularly imprinted polymer,’’ Journal of Separation Science, vol. 40, no. 10, pp. 2286-2291, 2017.
  • [7] G. Ertürk, H. Özen, M. A. Tümer, B. Mattiasson & A. Denizli, “Microcontact imprinting based surface plasmon resonance (SPR) biosensor for real-time and ultrasensitive detection of prostate specific antigen (PSA) from clinical samples,” Sensors and Actuators B: Chemical, vol. 224, pp. 823-832, 2016.
  • [8] J. M. Moon, N. Thapliyal, K. K. Hussain, R. N. Goyal, & Y. B. Shim, ‘’Conducting polymer-based electrochemical biosensors for neurotransmitters: A review,’’ Biosensors and Bioelectronics, no. 102, pp. 540-552, 2018.
  • [9] S. Nishitani, & T. Sakata, ‘’Potentiometric adsorption isotherm analysis of a molecularly imprinted polymer interface for small-biomolecule recognition,’’ ACS omega, vol. 3, no. 5, pp. 5382-5389, 2018.
  • [10] M. Andaç, G. Baydemir, & A. Denizli, (2018). Molecularly imprinted polymers as a tool for biomolecule separation. In Nanoscale Fabrication, Optimization, Scale-Up and Biological Aspects of Pharmaceutical Nanotechnology (pp. 511-545). William Andrew Publishing.
  • [11] M. L. Yola, & N. Atar, ‘’A review: molecularly imprinted electrochemical sensors for determination of biomolecules/drug,’’ Current Analytical Chemistry, vol. 13, no. 1, pp. 13-17, 2017.
  • [12] S. H. Zeisel, K. A. Da Costa, P. D. Franklin, E. A. Alexander, J. T. Lamont, N. F. Sheard, & A.L. Beiser, “Choline, an essential nutrient for humans,” The FASEB Journal, vol.5, no.7, pp. 2093-2098, 1991.
  • [13] J. C. M. Hamlin, Pauly, S. Melnyk, O. Pavliv, W. Starrett, T. A. Crook & S. J. James, Autism Research and Treatment, 2013.
  • [14] J. L. Sherriff, T. A. C. O'Sullivan, Properzi, J. L. Oddo & L.A. Adams, “One Carbon Metabolism and Hepatocellular Carcinoma,” Advances in Nutrition, vol. 7, no.1, pp. 5-13, 2016.
  • [15] Y. Tan, D. Jia, Z. Lin, B. Guo, B. He, C. Lu, C. Xiao, Z. Liu, N. Zhao, Z. Bian, W. Zhang, X. Liu, A. Lu & G. Zhang, “Potential Metabolic Biomarkers to Identify Interstitial Lung Abnormalities,” International Journal of Molecular Sciences, vol. 17, no. 7, pp. 1148, 2016.
  • [16] A. Mastrokolias, R. Pool, E. Mina, K. M. Hettne, E. van Duijn, R. C. van der Mast, G. van Ommen, P. A. Hoen, C. Prehn, J. Adamski & W. van Roon-Mom, “Integration of Targeted Metabolomics and Transcriptomics Identifies Deregulation of Phosphatidylcholine Metabolism in Huntington’s Disease Peripheral Blood Samples,” Metabolomics, vol. 12, no.8, pp. 137,2016.
  • [17] N. Nikzad, & Z. Karami, “Label-free colorimetric sensor for sensitive detection of choline based on DNAzyme-choline oxidase coupling,”International Journal of Biological Macromolecules, vol. 115, pp. 1241-1248, 2018.
  • [18] E. Barsoukov, J. R. Macdonald, Fundamentals of Elecktrochemistry, 2nd Ed., New Jersey, USA: John Wiley& Sons, Hoboken, 2005.
  • [19] G. Ertürk, M. Hedström, M. A. Tümer & A. Denizli, “Real-Time Prostate-Specific Antigen Detection with Prostate-Specific Antigen Imprinted Capacitive Biosensors,” Analytica Chimica Acta, vol. 891, pp. 120-129, 2015.
  • [20] B. Özcan, B. Demirbakan, G. Yeşiller & M. K. Sezgintürk, “Introducing a New Method for Evaluation of The Interaction Between an Antigen and an Antibody: Single Frequency Impedance Analysis for Biosensing Systems,” Talanta vol.125, 7-13, 2014.
  • [21] J. L. Figueiredo, M. F. R. Pereira, M. M. A. Freitas & J. J. M. Orfao, “Modification o the Surface Chemistry of Activated Carbons,” Carbon, vol. 37, no. 9, pp. 1379-1389, 1999.
  • [22] I. S. Park & N. Kim, “Thiolated Salmonella Antibody Immobilization onto the Gold Surface of Piezoelectric Quartz Crystal,” Biosensors and Bioelectronics, vol. 13, no. 10, pp. 1091-1097, 1998.
  • [23] I. Markovich & D. J. Mandler, “Effect of an Alkylsilane Monolayer on an Indium-Tin Oxide Surface on the Electrochemistry of Hexacyanoferrate,” Electroanalytical Chemistry, vol. 484, no. 2, pp. 194-202, 2000.
There are 23 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Melahat Sevgül Bakay 0000-0001-6931-3281

Tuğçe Polat This is me

Adil Denizli 0000-0001-7548-5741

Feride Şermin Utku 0000-0002-5143-3602

Publication Date January 31, 2020
Published in Issue Year 2020 Volume: 8 Issue: 1

Cite

APA Bakay, M. S., Polat, T., Denizli, A., Utku, F. Ş. (2020). Molecularly Imprinted Polymer Based Biosensor for Choline. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi, 8(1), 974-982. https://doi.org/10.29130/dubited.578392
AMA Bakay MS, Polat T, Denizli A, Utku FŞ. Molecularly Imprinted Polymer Based Biosensor for Choline. DUBİTED. January 2020;8(1):974-982. doi:10.29130/dubited.578392
Chicago Bakay, Melahat Sevgül, Tuğçe Polat, Adil Denizli, and Feride Şermin Utku. “Molecularly Imprinted Polymer Based Biosensor for Choline”. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi 8, no. 1 (January 2020): 974-82. https://doi.org/10.29130/dubited.578392.
EndNote Bakay MS, Polat T, Denizli A, Utku FŞ (January 1, 2020) Molecularly Imprinted Polymer Based Biosensor for Choline. Düzce Üniversitesi Bilim ve Teknoloji Dergisi 8 1 974–982.
IEEE M. S. Bakay, T. Polat, A. Denizli, and F. Ş. Utku, “Molecularly Imprinted Polymer Based Biosensor for Choline”, DUBİTED, vol. 8, no. 1, pp. 974–982, 2020, doi: 10.29130/dubited.578392.
ISNAD Bakay, Melahat Sevgül et al. “Molecularly Imprinted Polymer Based Biosensor for Choline”. Düzce Üniversitesi Bilim ve Teknoloji Dergisi 8/1 (January 2020), 974-982. https://doi.org/10.29130/dubited.578392.
JAMA Bakay MS, Polat T, Denizli A, Utku FŞ. Molecularly Imprinted Polymer Based Biosensor for Choline. DUBİTED. 2020;8:974–982.
MLA Bakay, Melahat Sevgül et al. “Molecularly Imprinted Polymer Based Biosensor for Choline”. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi, vol. 8, no. 1, 2020, pp. 974-82, doi:10.29130/dubited.578392.
Vancouver Bakay MS, Polat T, Denizli A, Utku FŞ. Molecularly Imprinted Polymer Based Biosensor for Choline. DUBİTED. 2020;8(1):974-82.