Research Article
BibTex RIS Cite

Nano Silica and Micro Silica Effect on Mechanical Attributes of Ferrochrome Slag Based Geopolymer

Year 2020, Volume: 8 Issue: 1, 347 - 362, 31.01.2020
https://doi.org/10.29130/dubited.587321

Abstract

Considering global
trends in sustainable and green development as well as the major drawbacks of
conventional hydraulic cement, accelerate attempt for finding a suitable
alternative and likely cause further development of geopolymeric cements in
future. Influences of Nano scale Materials in improving the mechanical
properties of ordinary Portland cement have been obviously proved. Despite the
widespread use of these materials in different fields of science, for instance,
chemicals engineering, materials engineering and even ordinary Portland cement,
the effect of Nano scale materials in geopolymers has not been investigated
deservedly. The purpose of this study is creating bridges to mitigate these
gaps and shortcomings. Very fine silica particles (micro and Nano-silica)
effects in ferrochrome slag based geopolymer have been evaluated in this
research. Elazığ ferrochrome slag was used as the main aluminosilicate source
and then it was blended with Nano silica or silica fume in little amounts in
order to accelerate geopolymerization. Nano-silica and silica fume have been
used at 2,4,6,8 and 10% of total binder weight in this study due to probe fine
silica effect on the mechanical specification of produced material such as
compressive strength, Static modulus of elasticity, Tensile Strength and
microstructural change. The experimental results show all of these mention
mechanical properties have been improved with adding fine silica in geopolymer
mixes in optimum percentage of total binder weight. The best percentage of fine
silica partial replacement instead of FS is 6% at all of silica fume and three
Nano particle size (15, 30 and 45 nm). SEM images assessment demonstrated
homogenous and denser texture with acceptable chemical bonds improvements for
samples with optimum Nano-silica dosage. Compressive strength increase can be
explained by densification of the matrix texture by using of Nano-silica and
silica fume at optimum dosage.

Thanks

The author gratefully acknowledge the Elazıg Ferrochrome plant for providing Ferrochrome Slag.

References

  • [1] J. Davidovits, "Geopolymers: man-made rock geosynthesis and the resulting development of very early high strength cement," Journal of Materials education, vol. 16, pp. 91-91, 1994.
  • [2] J. S. J. van Deventer, J. L. Provis, and P. Duxson, "Technical and commercial progress in the adoption of geopolymer cement," Minerals Engineering, vol. 29, pp. 89-104, 2012.
  • [3] M. Sumesh, U. J. Alengaram, M. Z. Jumaat, K. H. Mo, and M. F. Alnahhal, "Incorporation of nano-materials in cement composite and geopolymer based paste and mortar - A review," Construction and Building Materials, vol. 148, pp. 62-84, 2017.
  • [4] H. Abdel-Gawwad and S. Abo-El-Enein, "A novel method to produce dry geopolymer cement powder," HBRC Journal, vol. 12, no. 1, pp. 13-24, 2016.
  • [5] A. Bilodeau and M. Malhotra, "High-volume fly ash system: Concrete solution for sustainable development," Aci Materials Journal, vol. 97, no. 1, pp. 41-48, 2000.
  • [6] N. Ranjbar, M. Mehrali, U. J. Alengaram, H. S. C. Metselaar, and M. Z. Jumaat, "Compressive strength and microstructural analysis of fly ash/palm oil fuel ash based geopolymer mortar under elevated temperatures," Construction and building materials, vol. 65, pp. 114-121, 2014.
  • [7] M. M. Yadollahi and A. Benli, "Stress-strain behavior of geopolymer under uniaxial compression," Computers and Concrete, vol. 20, no. 4, pp. 381-389, 2017.
  • [8] M. M. Yadollahi, A. Benli, and R. Demirboga, "The effects of silica modulus and aging on compressive strength of pumice-based geopolymer composites," Construction and Building Materials, vol. 94, pp. 767-774, 2015.
  • [9] M. M. Yadollahi, A. Benli, and R. Demirboga, "Effects of elevated temperature on pumice based geopolymer composites," Plastics Rubber and Composites, vol. 44, no. 6, pp. 226-237, 2015.
  • [10] M. M. Yadollahi, R. Demirboga, and R. Polat, "Effect of heat treatment temperature on ground pumice activation in geopolymer composites," Science and Engineering of Composite Materials, vol. 21, no. 3, pp. 377-382, 2014.
  • [11] D. Lin, K. Lin, W. Chang, H. Luo, and M. Cai, "Improvements of nano-SiO2 on sludge/fly ash mortar," Waste management, vol. 28, no. 6, pp. 1081-1087, 2008.
  • [12] M. M. Khotbehsara, E. Mohseni, M. A. Yazdi, P. Sarker, and M. M. Ranjbar, "Effect of nano-CuO and fly ash on the properties of self-compacting mortar," Construction and Building Materials, vol. 94, pp. 758-766, 2015.
  • [13] B. Singh, G. Ishwarya, M. Gupta, and S. Bhattacharyya, "Geopolymer concrete: A review of some recent developments," Construction and building materials, vol. 85, pp. 78-90, 2015.
  • [14] J. He, "Synthesis and characterization of geopolymers for infrastructural applications," 2012.
  • [15] P. Sukmak, S. Horpibulsuk, S.-L. Shen, P. Chindaprasirt, and C. Suksiripattanapong, "Factors influencing strength development in clay–fly ash geopolymer," Construction and Building Materials, vol. 47, pp. 1125-1136, 2013.
  • [16] B.-h. Mo, H. Zhu, X.-m. Cui, Y. He, and S.-y. Gong, "Effect of curing temperature on geopolymerization of metakaolin-based geopolymers," Applied clay science, vol. 99, pp. 144-148, 2014.
  • [17] F. Sanchez and K. Sobolev, "Nanotechnology in concrete–a review," Construction and building materials, vol. 24, no. 11, pp. 2060-2071, 2010.
  • [18] S. Haruehansapong, T. Pulngern, and S. Chucheepsakul, "Effect of the particle size of nanosilica on the compressive strength and the optimum replacement content of cement mortar containing nano-SiO2," Construction and Building Materials, vol. 50, pp. 471-477, 2014.
  • [19] N. León, J. Massana, F. Alonso, A. Moragues, and E. Sánchez-Espinosa, "Effect of nano-Si2O and nano-Al2O3 on cement mortars for use in agriculture and livestock production," Biosystems engineering, vol. 123, pp. 1-11, 2014.
  • [20] C. ASTM, "Standard test method for splitting tensile strength of cylindrical concrete," 2011.
  • [21] M. Shetty, "Concrete technology," S. chand & company LTD, pp. 420-453, 2005.
  • [22] A. S. f. Testing and M. C. C.-o. Cement, Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (using 2-in. Or [50-mm] Cube Specimens), ASTM International, 2013.
  • [23] B. B. Jindal, Parveen, D. Singhal, and A. Goyal, "Predicting Relationship between Mechanical Properties of Low Calcium Fly Ash-Based Geopolymer Concrete," Transactions of the Indian Ceramic Society, vol. 76, no. 4, pp. 258-265, 2017.
  • [24] H. M. Khater, "Effect of nano-silica on microstructure formation of low-cost geopolymer binder," Nanocomposites, vol. 2, no. 2, pp. 84-97, 2016.

Nano Silika ve Mikro Silika Ferrokrom Cürufu Bazlı Geopolimerlerin Mekanik Özelliklerine Etkisi

Year 2020, Volume: 8 Issue: 1, 347 - 362, 31.01.2020
https://doi.org/10.29130/dubited.587321

Abstract

Geleneksel çimentoların dezavantajları uluslararası
sürdürülebilir ve yeşil kalkınma planları üzerinde yoğun talep yaşanmasına
neden olmaktadır. Geopolimer malzemenin daha fazla geliştirilmesi veya
alternatif malzemenin araştırılmasına dayalı çalışmaların gelecekte hızlanması
beklenmektedir. Sıklıkla kullanılan Portland çimentosunun mekanik
özelliklerinin geliştirilmesinde nano ölçekli malzemelerin katkısı literatürde
kanıtlanmıştır. Nano ölçekli silika malzemeler, kimya ve malzeme mühendisliği
gibi farklı bilim dallarında ve hatta sıradan Portland çimentosu üretiminde
bile yoğun kullanılmasına ve araştırılmasına rağmen geopolimer üretiminde
yeterince incelenmemiştir. Bu çalışmanın amacı bu konudaki boşlukları azaltmak
ve önceden elde edilen bilgileri geopolimerler üzerine aktarmaktır. Bu çalışma
esnasında nano ve mikro ölçekli silis malzemelerin ferrokrom cüruf bazlı
geopolimerler üzerindeki etkisi değerlendirilmiştir. Elazığ ferrokrom cürufu
alümino-silis kaynağı olarak bu çalışmada kullanılmıştır. Geopolimerleşme sürecini
hızlandırmak için Nano-silis ve silis dumanı cüruf ağırlığının %2, %4, %6, %8
ve %10 oranlarında kullanılmıştır ve üretilen malzemelerin basınç ile çekme
mukavemeti, elastisite modülü ve mikro yapısı üzerindeki etkisi incelenmiştir.
Deney sonuçlarına göre, geopolimer karışıma uygun miktarda ince silis
malzemesinin eklenmesiyle malzemenin yukarıda bahsedilen mekanik özelliklerinde
iyileşme meydana gelmiştir. Ferrokrom cüruf yerine farklı mikro ve nano
boyutlarında (15, 30 ve 45 nm) silis kullanım oranı optimum %6 olarak
belirlenmiştir. Numunelerde uygun değerde Nano-silis kullanımı, malzemenin
kimyasal bağlarında iyileşme, homojen ve daha yoğun dokuya sahip olmasını
sağlamıştır ve SEM görüntülerinde bu durum açıkça görülmektedir. Basınç
mukavemetinin artışının, Nano-silis ve silis dumanının uygun değerde
kullanılması sonucunda malzemenin dokusunun yoğunlaşmasından ve kimyasal
bağlarının iyileşmesinden kaynaklandığı düşünülmektedir.

References

  • [1] J. Davidovits, "Geopolymers: man-made rock geosynthesis and the resulting development of very early high strength cement," Journal of Materials education, vol. 16, pp. 91-91, 1994.
  • [2] J. S. J. van Deventer, J. L. Provis, and P. Duxson, "Technical and commercial progress in the adoption of geopolymer cement," Minerals Engineering, vol. 29, pp. 89-104, 2012.
  • [3] M. Sumesh, U. J. Alengaram, M. Z. Jumaat, K. H. Mo, and M. F. Alnahhal, "Incorporation of nano-materials in cement composite and geopolymer based paste and mortar - A review," Construction and Building Materials, vol. 148, pp. 62-84, 2017.
  • [4] H. Abdel-Gawwad and S. Abo-El-Enein, "A novel method to produce dry geopolymer cement powder," HBRC Journal, vol. 12, no. 1, pp. 13-24, 2016.
  • [5] A. Bilodeau and M. Malhotra, "High-volume fly ash system: Concrete solution for sustainable development," Aci Materials Journal, vol. 97, no. 1, pp. 41-48, 2000.
  • [6] N. Ranjbar, M. Mehrali, U. J. Alengaram, H. S. C. Metselaar, and M. Z. Jumaat, "Compressive strength and microstructural analysis of fly ash/palm oil fuel ash based geopolymer mortar under elevated temperatures," Construction and building materials, vol. 65, pp. 114-121, 2014.
  • [7] M. M. Yadollahi and A. Benli, "Stress-strain behavior of geopolymer under uniaxial compression," Computers and Concrete, vol. 20, no. 4, pp. 381-389, 2017.
  • [8] M. M. Yadollahi, A. Benli, and R. Demirboga, "The effects of silica modulus and aging on compressive strength of pumice-based geopolymer composites," Construction and Building Materials, vol. 94, pp. 767-774, 2015.
  • [9] M. M. Yadollahi, A. Benli, and R. Demirboga, "Effects of elevated temperature on pumice based geopolymer composites," Plastics Rubber and Composites, vol. 44, no. 6, pp. 226-237, 2015.
  • [10] M. M. Yadollahi, R. Demirboga, and R. Polat, "Effect of heat treatment temperature on ground pumice activation in geopolymer composites," Science and Engineering of Composite Materials, vol. 21, no. 3, pp. 377-382, 2014.
  • [11] D. Lin, K. Lin, W. Chang, H. Luo, and M. Cai, "Improvements of nano-SiO2 on sludge/fly ash mortar," Waste management, vol. 28, no. 6, pp. 1081-1087, 2008.
  • [12] M. M. Khotbehsara, E. Mohseni, M. A. Yazdi, P. Sarker, and M. M. Ranjbar, "Effect of nano-CuO and fly ash on the properties of self-compacting mortar," Construction and Building Materials, vol. 94, pp. 758-766, 2015.
  • [13] B. Singh, G. Ishwarya, M. Gupta, and S. Bhattacharyya, "Geopolymer concrete: A review of some recent developments," Construction and building materials, vol. 85, pp. 78-90, 2015.
  • [14] J. He, "Synthesis and characterization of geopolymers for infrastructural applications," 2012.
  • [15] P. Sukmak, S. Horpibulsuk, S.-L. Shen, P. Chindaprasirt, and C. Suksiripattanapong, "Factors influencing strength development in clay–fly ash geopolymer," Construction and Building Materials, vol. 47, pp. 1125-1136, 2013.
  • [16] B.-h. Mo, H. Zhu, X.-m. Cui, Y. He, and S.-y. Gong, "Effect of curing temperature on geopolymerization of metakaolin-based geopolymers," Applied clay science, vol. 99, pp. 144-148, 2014.
  • [17] F. Sanchez and K. Sobolev, "Nanotechnology in concrete–a review," Construction and building materials, vol. 24, no. 11, pp. 2060-2071, 2010.
  • [18] S. Haruehansapong, T. Pulngern, and S. Chucheepsakul, "Effect of the particle size of nanosilica on the compressive strength and the optimum replacement content of cement mortar containing nano-SiO2," Construction and Building Materials, vol. 50, pp. 471-477, 2014.
  • [19] N. León, J. Massana, F. Alonso, A. Moragues, and E. Sánchez-Espinosa, "Effect of nano-Si2O and nano-Al2O3 on cement mortars for use in agriculture and livestock production," Biosystems engineering, vol. 123, pp. 1-11, 2014.
  • [20] C. ASTM, "Standard test method for splitting tensile strength of cylindrical concrete," 2011.
  • [21] M. Shetty, "Concrete technology," S. chand & company LTD, pp. 420-453, 2005.
  • [22] A. S. f. Testing and M. C. C.-o. Cement, Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (using 2-in. Or [50-mm] Cube Specimens), ASTM International, 2013.
  • [23] B. B. Jindal, Parveen, D. Singhal, and A. Goyal, "Predicting Relationship between Mechanical Properties of Low Calcium Fly Ash-Based Geopolymer Concrete," Transactions of the Indian Ceramic Society, vol. 76, no. 4, pp. 258-265, 2017.
  • [24] H. M. Khater, "Effect of nano-silica on microstructure formation of low-cost geopolymer binder," Nanocomposites, vol. 2, no. 2, pp. 84-97, 2016.
There are 24 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Mehrzad Mohabbı 0000-0001-8584-1658

Publication Date January 31, 2020
Published in Issue Year 2020 Volume: 8 Issue: 1

Cite

APA Mohabbı, M. (2020). Nano Silica and Micro Silica Effect on Mechanical Attributes of Ferrochrome Slag Based Geopolymer. Duzce University Journal of Science and Technology, 8(1), 347-362. https://doi.org/10.29130/dubited.587321
AMA Mohabbı M. Nano Silica and Micro Silica Effect on Mechanical Attributes of Ferrochrome Slag Based Geopolymer. DUBİTED. January 2020;8(1):347-362. doi:10.29130/dubited.587321
Chicago Mohabbı, Mehrzad. “Nano Silica and Micro Silica Effect on Mechanical Attributes of Ferrochrome Slag Based Geopolymer”. Duzce University Journal of Science and Technology 8, no. 1 (January 2020): 347-62. https://doi.org/10.29130/dubited.587321.
EndNote Mohabbı M (January 1, 2020) Nano Silica and Micro Silica Effect on Mechanical Attributes of Ferrochrome Slag Based Geopolymer. Duzce University Journal of Science and Technology 8 1 347–362.
IEEE M. Mohabbı, “Nano Silica and Micro Silica Effect on Mechanical Attributes of Ferrochrome Slag Based Geopolymer”, DUBİTED, vol. 8, no. 1, pp. 347–362, 2020, doi: 10.29130/dubited.587321.
ISNAD Mohabbı, Mehrzad. “Nano Silica and Micro Silica Effect on Mechanical Attributes of Ferrochrome Slag Based Geopolymer”. Duzce University Journal of Science and Technology 8/1 (January 2020), 347-362. https://doi.org/10.29130/dubited.587321.
JAMA Mohabbı M. Nano Silica and Micro Silica Effect on Mechanical Attributes of Ferrochrome Slag Based Geopolymer. DUBİTED. 2020;8:347–362.
MLA Mohabbı, Mehrzad. “Nano Silica and Micro Silica Effect on Mechanical Attributes of Ferrochrome Slag Based Geopolymer”. Duzce University Journal of Science and Technology, vol. 8, no. 1, 2020, pp. 347-62, doi:10.29130/dubited.587321.
Vancouver Mohabbı M. Nano Silica and Micro Silica Effect on Mechanical Attributes of Ferrochrome Slag Based Geopolymer. DUBİTED. 2020;8(1):347-62.