Research Article
BibTex RIS Cite

Ha/Β-TCP Kumlama ve Anodizasyon İşlemlerinin Yüzey Kontak Açısına ve Topografyasına Etkilerinin İncelenmesi

Year 2020, Volume: 8 Issue: 1, 1072 - 1083, 31.01.2020
https://doi.org/10.29130/dubited.618323

Abstract



Medikal, ulaşım, enerji gibi endüstriyel alanlarda birçok farklı kullanım amacına uygun olarak hidrofilik ve hidrofobik yüzey karakterlerine ihtiyaç duyulmaktadır. Farklı modifikasyon teknikleri kullanarak yüzeylerin kimyasal ve fiziksel yapıları, enerjileri değiştirilmekte ve buna bağlı olarak yüzeyin kontak açısı değiştirilmektedir. Bu çalışma kapsamında HA/β-TCP kumlama ve anodizasyon işlemi Ti64Al4V ELIdisk numunelere uygulanarak, otoklavlanmış ve otoklavlanmamış şartlar altında yüzeylerin sahip olduğu ıslanma değerleri kontak açısı ölçümleri ile tespit edilmiştir. Ayrıca numune gruplarının sahip olduğu topografyalar Taramalı Elektron Mikroskobu, Kontak Profilometre, Optik Profilometre ile incelenmiş, kumlama esnasında kullanılmış olan HA/β-TCP taneciklerinin içeriği X ışını kırınımı ile incelenmiştir. Disk numunelerin pürüzlülük değeri kumlama ile 1,92 μm değerine yükselirken anodizasyon sonrasında bu değer 1,73 μm değerine düşmüştür. Kumlama ve anodizasyon işlemi gerçekleştirilen numuneler en hidrofilik karaktere sahip numune grubu olarak tespit edilmiştir. Otoklav sonrasında kumlanmış numune grubu en yüksek ıslanma açısı ile hidrofobik karakterde tespit edilmiştir.

Thanks

Gerçekleştirilen deneysel çalışma Avrupa İmplant San. ve Dış. Tic. Ltd. Şti. firması tarafından desteklenmiştir.

References

  • [1] T. Huhtamäki, X. Tian, J. T. Korhonen and R. H. Ras, “Surface-wetting characterization using contact-angle measurements,” Nature Protocols, vol. 13, no. 7, pp. 1521-1538, 2018.
  • [2] R. Sanchis, O. Fenollar, D. García, L. Sánchez and R. Balart, “Improved adhesion of LDPE films to polyolefin foams for automotive industry using low-pressure plasma,” International Journal of Adhesion and Adhesives, vol. 28, no. 8, pp. 445–451, 2008.
  • [3] C. Luigi, M. Giovanni and P. Wilma, “Cold plasma treatment of polypropylene surface: a study on wettability and adhesion,” Journal of Materials Processing Technology, vol. 121, no. 2-3, pp. 373-382, 2002.
  • [4] M. S. Reddy, K. Kurose, T. Okuda, W. Nishijima and M. Okada, “Separation of polyvinyl chloride (PVC) from automobile shredder residue (ASR) by froth flotation with ozonation,” Journal of Hazardous Material, vol. 147, no. 3, pp. 1051-1055, 2007.
  • [5] O. Andrukhov, R. Huber, B. Shi, S. Berner, X. Rausch-Fan, A. Moritz, N. D. Spencer and A. Schedle, “Proliferation, behavior, and differentiation of osteoblasts on surfaces of different microroughnes,” Dental Materials, vol. 32, no. 11, pp. 1374-1384, 2016.
  • [6] A. Citeau, J. Guicheux, C. Vinatier, P. Layrolle, T. P. Nguyen, P. Pilet and G. Daculsi, “In vitro biological effects of titanium rough surface obtained by calcium phosphate grid blasting,” Biomaterials, vol. 26, no. 2, pp. 157-165, 2005.
  • [7] A. Zareidoost, M. Yousefpour, B. Ghaseme and A. Amanzadeh, “The relationship of surface roughness and cell response of chemical surface modification of titanium,” Journal of Materials Science Materials in Medicine, vol. 23, no. 6, pp. 1479-1488, 2012.
  • [8] A. Canabarro, C. G. Paiva, H.T. Ferreira, B. Tholt-de-Vasconcellos, G. De-Deus, R. Prioli, A. B. Linhares, G. G. Alves and J. M. Granjeiro, “Short-term response of human osteoblast-like cells on titanium surfaces with micro-and nano-sized features,” Scanning, vol. 34, no. 6, pp. 378-386, 2012.
  • [9] M. Niinomi, M. Nakai, J. Hieda, K. Cho, T. Kasuga, T. Hattori, T. Goto and T. Hanawa, “A review of surface modification of a novel low modulus β-type titanium alloy for biomedical applications,” International Journal of Surface Science and Engineering, vol. 8, no. 2, pp. 138-152, 2014.
  • [10] S. Chen, Y. Guo, R. Liu, S. Wu, J. Fang B. Huang, Z. Li and Z. Chen, “Tuning surface properties of bone biomaterials to manipulate osteoblastic cell adhesion and the signaling path ways for the enhancement of early osseointegration,” Colloids and Surfaces B: Biointerfaces, vol. 164, pp. 58-69, 2018.
  • [11] C. Murphy and F. J. O’Brien, “Understanding the effect of mean pore size on cell activity incollagen-glycosaminogly can scaffolds,” Cell Adhesion & Migration, vol. 101, no. 12, pp. 5811-5826, 2018.
  • [12] M. L. Schwarz, M. Kowarsch, S. Rose, K. Becker, T. Lenz and L. Jani, “Effect of surface roughness, porosity, and a resorbable calcium phosphate coating on osseointegration of titanium in a minipig model,” Journal of Biomedical Materials Research Part A, vol. 89, no. 3, pp. 667-678, 2009.
  • [13] L. L. Guehennec, L. Goyenvalle, E. Lopez-Heredia, M. A. Weiss, P. Amouriq and Y. Layrolle, “Histomorphometric analysis of the osseointegration of four different implant surfaces in the femoral epiphyses of rabbits,” Clinical Oral Implants Research, vol. 19, no. 11, pp. 1103-1010, 2008.
  • [14] K. Bobzin, T. Brögelmann, K. Stahl, J-P. Stemplinger, J. Mayer and M. Hinterstoißer, “Influence of wetting and thermophysical properties of diamond-like carbon coatings on the frictional behavior in automobile gearboxes under elasto-hydrodynamic lubrication,” Surface and Coatings Technology, vol. 248, pp. 290-301, 2015.
  • [15] S. M. Hosseinalipour, A. Ershad-langroudi, A. Nemati Hayati and A. M. Nabizade-Haghighi “Characterization of sol–gel coated 316L stainless steel for biomedical applications,” Progress in Organic Coating, vol. 67, no. 4, pp. 371-374, 2010.
  • [16] G. M. Bruinsma, H. Mei and H. J. Busscher, “Bacterial adhesion to surface hydrophilic and hydrophobic contact lenses,” Biomaterials, vol. 22, no. 24, pp. 3217-3224, 2001.
  • [17] A. Braem, L. Mellaert, T. Mattheys, D. Hofmans, E. Waelheyns, G. Liesbet, J. A. Jozef and J. Vleugels, “Staphylococcal biofilm growth on smooth and porous titanium coatings for biomedical applications,” Journal of Biomedical Materials Research Part A, vol. 102, no. 1, pp. 215-224, 2014.
  • [18] A. Günay Bulutsuz, Ö. Berrak, H. A. Yeprem, E. D. Arısan and M. E. Yurci, “Biological responses of ultrafine grained pure titanium and their sand blasted surfaces,” Materials Science & Engineering C-Materials For Biological Applications, vol. 91, no. 1, pp. 382-388, 2018.
  • [19] T. Young, “An essay on the cohesion of fluids,”Philosophical Transactions of the Royal Society B: Biological Sciences, vol. 95, pp. 65-87, 1805.
  • [20] P. H. Saksono, D. Perić “On finite element modelling of surface tension variational formulation and applications – Part I: Quasistatic problems,” Computational Mechanics, vol. 38, no. 3, pp. 265–281, 2006.
  • [21] D. Y. Kwok, A. W. Neumann, “Contact angle measurement and contact angle interpretation,” Advances in Colloid and Interface Science Volume, vol. 81, no. 3-7, pp. 167-249, 1999.
  • [22] A. W. Neumann, R. J. Good, C. J. Hope, M. Sejpal “An equation-of-state approach to determine surface tensions of low-energy solids from contact angles,” Journal of Colloid and Interface Science, vol. 49, no. 2, pp. 291-304, 1974.
  • [23] L. Hallmann, P. Ulmer, E. Reusser and C. H. F. Hämmerle, “Effect of blasting pressure, abrasive particle size and grade on phase transformation and morphological change of dental zirconia surface,” Surface and Coatings Technology, vol. 206, no. 19–20, 25, pp. 4293-4302, 2012.
  • [24] A. Günay Bulutsuz, C. U. Mercan, G. Karapinar, A. B. Katiboglu and M. Lewandowska, “Influence of surface modification methods on the topography of dental ımplants by using metrological observation techniques,” Acta Physıca Polonıca A, vol. 129, pp. 625-627, 2016.
  • [25] S.J. Ferguson, N. Broggini, M. Wieland, M. Wild, F. Rupp, J. Geis-Gerstorfer, D. L. Cochran and D. Buser, “Biomechanical evaluation of the interfacial strength of a chemically modified sandblasted and acid-etched titanium surface,” Journal of Biomedical Material Research A, vol. 78, no. 2, pp. 291-297, 2006.
  • [26] G. Strnada, N. Chirila, C. Petrovan and O. Russu, “Contact angle measurement on medical ımplant titanium based biomaterials,” Procedia Technology, vol. 22, pp. 946-953, 2016.
  • [27] J. Vlacic-Zischke, S. M. Hamlet, T. Friis, M. S. Tonetti and S. Ivanovski, “The influence of surface microroughness and hydrophilicity of titanium on the up-regulation of TGFβ/BMP signalling in osteoblasts,” Biomaterials, vol. 32, no. 3, pp. 665-671, 2011.
  • [28] K. Kerstin, B. Bharat, C. J. Yong and B. Wilhelm, “Fabrication of artificial Lotus leaves and significance of hierarchical structure for super hydrophobicity and low adhesion,” Soft Matter, vol. 5, pp. 1386–1393, 2009.
  • [29] A. Zhuang, L. Yang, R. Liao, C Guo, Z. Zuo and Y. Yuan, “A simple method to make mechanically robust, adhesive and superhydrophobic surface based on epoxy resin,” Journal of Coatings Technology and Research, vol. 12, no. 3, pp. 609-615, 2015.
  • [30] S. Beckfordand, M. Zou, “Micro/Nano engineering on stainless steel substrates to produce super hydrophobic surfaces,” Thin Solid Films, vol. 520, no. 5, pp. 1520-1524, 2011.
  • [31] G. Rotella, M. Alfano, T. Schiefer and I. Jansen, “Evaluation of mechanical and laser surface pretreatments on the strength of adhesive bonded steel joints for the automotive industry,” Journal of Adhesion Science and Technology, vol. 30, no. 7, pp. 747-758, 2016.
  • [32] P. J. Vezeau, G. F. Koorbusch, R. A. Draughn and J. C. Keller, “Effects of multiple sterilization on surface characteristics and in vitro biologic responses to titanium,” Journal of Oral Maxillofacial Surgery, vol. 54, no. 6, pp. 738-74, 1996.
  • [33] M. Pegueroles, F. J. Gil, J. A. Planell and C. Aparicio, “The influence of blasting and sterilization on static and time-related wettability and surface-energy properties of titanium surfaces,” Surface and Coatings Technology, vol. 202, no. 15, pp. 3470-3479, 2008.
  • [34] X. Shi, L. Xu, Q. Wang and L. Xu, “Hydrothermal sterilization ımproves ınitial osteoblast responses on sandpaper-polished titanium,” Materials, vol. 10, no. 812, pp. 1-11, 2017.

Investigation Ha/β-TCP blasting and anodization effect and surface contact angle and topography

Year 2020, Volume: 8 Issue: 1, 1072 - 1083, 31.01.2020
https://doi.org/10.29130/dubited.618323

Abstract

Hydrophobic and hydrophilic surface properties are needed according to the industry field usage area such as medical, transport and energy sector. Depending on surface modification technique, surface wettability angles can be modified with changing surfaces chemistry, physical structures and energies. In this current study, HA/β-TCP blasting and anodization processes applied to Ti6Al4V ELI disc specimen. Also these specimen groups contact angles were measured for autoclaved and non-autoclaved conditions. Surface topographies were characterized with SEM-EDS, contact, stylus profilometer and optic profilometer. Moreover after blasting procedure the blasting media characterized with XRD in order to understand blasting procedure mechanism effect on abrasive and base material. Disc specimen roughness values increased to 1,92 μm value after blasting and decreased to 1,73 μm value after anodization process. The most hydrophilic surface determined as anodized surfaces for non-autoclaved condition. The most hydrophobic surface was characterized as the autoclaved blasted surfaces with the highest wettability angle.

References

  • [1] T. Huhtamäki, X. Tian, J. T. Korhonen and R. H. Ras, “Surface-wetting characterization using contact-angle measurements,” Nature Protocols, vol. 13, no. 7, pp. 1521-1538, 2018.
  • [2] R. Sanchis, O. Fenollar, D. García, L. Sánchez and R. Balart, “Improved adhesion of LDPE films to polyolefin foams for automotive industry using low-pressure plasma,” International Journal of Adhesion and Adhesives, vol. 28, no. 8, pp. 445–451, 2008.
  • [3] C. Luigi, M. Giovanni and P. Wilma, “Cold plasma treatment of polypropylene surface: a study on wettability and adhesion,” Journal of Materials Processing Technology, vol. 121, no. 2-3, pp. 373-382, 2002.
  • [4] M. S. Reddy, K. Kurose, T. Okuda, W. Nishijima and M. Okada, “Separation of polyvinyl chloride (PVC) from automobile shredder residue (ASR) by froth flotation with ozonation,” Journal of Hazardous Material, vol. 147, no. 3, pp. 1051-1055, 2007.
  • [5] O. Andrukhov, R. Huber, B. Shi, S. Berner, X. Rausch-Fan, A. Moritz, N. D. Spencer and A. Schedle, “Proliferation, behavior, and differentiation of osteoblasts on surfaces of different microroughnes,” Dental Materials, vol. 32, no. 11, pp. 1374-1384, 2016.
  • [6] A. Citeau, J. Guicheux, C. Vinatier, P. Layrolle, T. P. Nguyen, P. Pilet and G. Daculsi, “In vitro biological effects of titanium rough surface obtained by calcium phosphate grid blasting,” Biomaterials, vol. 26, no. 2, pp. 157-165, 2005.
  • [7] A. Zareidoost, M. Yousefpour, B. Ghaseme and A. Amanzadeh, “The relationship of surface roughness and cell response of chemical surface modification of titanium,” Journal of Materials Science Materials in Medicine, vol. 23, no. 6, pp. 1479-1488, 2012.
  • [8] A. Canabarro, C. G. Paiva, H.T. Ferreira, B. Tholt-de-Vasconcellos, G. De-Deus, R. Prioli, A. B. Linhares, G. G. Alves and J. M. Granjeiro, “Short-term response of human osteoblast-like cells on titanium surfaces with micro-and nano-sized features,” Scanning, vol. 34, no. 6, pp. 378-386, 2012.
  • [9] M. Niinomi, M. Nakai, J. Hieda, K. Cho, T. Kasuga, T. Hattori, T. Goto and T. Hanawa, “A review of surface modification of a novel low modulus β-type titanium alloy for biomedical applications,” International Journal of Surface Science and Engineering, vol. 8, no. 2, pp. 138-152, 2014.
  • [10] S. Chen, Y. Guo, R. Liu, S. Wu, J. Fang B. Huang, Z. Li and Z. Chen, “Tuning surface properties of bone biomaterials to manipulate osteoblastic cell adhesion and the signaling path ways for the enhancement of early osseointegration,” Colloids and Surfaces B: Biointerfaces, vol. 164, pp. 58-69, 2018.
  • [11] C. Murphy and F. J. O’Brien, “Understanding the effect of mean pore size on cell activity incollagen-glycosaminogly can scaffolds,” Cell Adhesion & Migration, vol. 101, no. 12, pp. 5811-5826, 2018.
  • [12] M. L. Schwarz, M. Kowarsch, S. Rose, K. Becker, T. Lenz and L. Jani, “Effect of surface roughness, porosity, and a resorbable calcium phosphate coating on osseointegration of titanium in a minipig model,” Journal of Biomedical Materials Research Part A, vol. 89, no. 3, pp. 667-678, 2009.
  • [13] L. L. Guehennec, L. Goyenvalle, E. Lopez-Heredia, M. A. Weiss, P. Amouriq and Y. Layrolle, “Histomorphometric analysis of the osseointegration of four different implant surfaces in the femoral epiphyses of rabbits,” Clinical Oral Implants Research, vol. 19, no. 11, pp. 1103-1010, 2008.
  • [14] K. Bobzin, T. Brögelmann, K. Stahl, J-P. Stemplinger, J. Mayer and M. Hinterstoißer, “Influence of wetting and thermophysical properties of diamond-like carbon coatings on the frictional behavior in automobile gearboxes under elasto-hydrodynamic lubrication,” Surface and Coatings Technology, vol. 248, pp. 290-301, 2015.
  • [15] S. M. Hosseinalipour, A. Ershad-langroudi, A. Nemati Hayati and A. M. Nabizade-Haghighi “Characterization of sol–gel coated 316L stainless steel for biomedical applications,” Progress in Organic Coating, vol. 67, no. 4, pp. 371-374, 2010.
  • [16] G. M. Bruinsma, H. Mei and H. J. Busscher, “Bacterial adhesion to surface hydrophilic and hydrophobic contact lenses,” Biomaterials, vol. 22, no. 24, pp. 3217-3224, 2001.
  • [17] A. Braem, L. Mellaert, T. Mattheys, D. Hofmans, E. Waelheyns, G. Liesbet, J. A. Jozef and J. Vleugels, “Staphylococcal biofilm growth on smooth and porous titanium coatings for biomedical applications,” Journal of Biomedical Materials Research Part A, vol. 102, no. 1, pp. 215-224, 2014.
  • [18] A. Günay Bulutsuz, Ö. Berrak, H. A. Yeprem, E. D. Arısan and M. E. Yurci, “Biological responses of ultrafine grained pure titanium and their sand blasted surfaces,” Materials Science & Engineering C-Materials For Biological Applications, vol. 91, no. 1, pp. 382-388, 2018.
  • [19] T. Young, “An essay on the cohesion of fluids,”Philosophical Transactions of the Royal Society B: Biological Sciences, vol. 95, pp. 65-87, 1805.
  • [20] P. H. Saksono, D. Perić “On finite element modelling of surface tension variational formulation and applications – Part I: Quasistatic problems,” Computational Mechanics, vol. 38, no. 3, pp. 265–281, 2006.
  • [21] D. Y. Kwok, A. W. Neumann, “Contact angle measurement and contact angle interpretation,” Advances in Colloid and Interface Science Volume, vol. 81, no. 3-7, pp. 167-249, 1999.
  • [22] A. W. Neumann, R. J. Good, C. J. Hope, M. Sejpal “An equation-of-state approach to determine surface tensions of low-energy solids from contact angles,” Journal of Colloid and Interface Science, vol. 49, no. 2, pp. 291-304, 1974.
  • [23] L. Hallmann, P. Ulmer, E. Reusser and C. H. F. Hämmerle, “Effect of blasting pressure, abrasive particle size and grade on phase transformation and morphological change of dental zirconia surface,” Surface and Coatings Technology, vol. 206, no. 19–20, 25, pp. 4293-4302, 2012.
  • [24] A. Günay Bulutsuz, C. U. Mercan, G. Karapinar, A. B. Katiboglu and M. Lewandowska, “Influence of surface modification methods on the topography of dental ımplants by using metrological observation techniques,” Acta Physıca Polonıca A, vol. 129, pp. 625-627, 2016.
  • [25] S.J. Ferguson, N. Broggini, M. Wieland, M. Wild, F. Rupp, J. Geis-Gerstorfer, D. L. Cochran and D. Buser, “Biomechanical evaluation of the interfacial strength of a chemically modified sandblasted and acid-etched titanium surface,” Journal of Biomedical Material Research A, vol. 78, no. 2, pp. 291-297, 2006.
  • [26] G. Strnada, N. Chirila, C. Petrovan and O. Russu, “Contact angle measurement on medical ımplant titanium based biomaterials,” Procedia Technology, vol. 22, pp. 946-953, 2016.
  • [27] J. Vlacic-Zischke, S. M. Hamlet, T. Friis, M. S. Tonetti and S. Ivanovski, “The influence of surface microroughness and hydrophilicity of titanium on the up-regulation of TGFβ/BMP signalling in osteoblasts,” Biomaterials, vol. 32, no. 3, pp. 665-671, 2011.
  • [28] K. Kerstin, B. Bharat, C. J. Yong and B. Wilhelm, “Fabrication of artificial Lotus leaves and significance of hierarchical structure for super hydrophobicity and low adhesion,” Soft Matter, vol. 5, pp. 1386–1393, 2009.
  • [29] A. Zhuang, L. Yang, R. Liao, C Guo, Z. Zuo and Y. Yuan, “A simple method to make mechanically robust, adhesive and superhydrophobic surface based on epoxy resin,” Journal of Coatings Technology and Research, vol. 12, no. 3, pp. 609-615, 2015.
  • [30] S. Beckfordand, M. Zou, “Micro/Nano engineering on stainless steel substrates to produce super hydrophobic surfaces,” Thin Solid Films, vol. 520, no. 5, pp. 1520-1524, 2011.
  • [31] G. Rotella, M. Alfano, T. Schiefer and I. Jansen, “Evaluation of mechanical and laser surface pretreatments on the strength of adhesive bonded steel joints for the automotive industry,” Journal of Adhesion Science and Technology, vol. 30, no. 7, pp. 747-758, 2016.
  • [32] P. J. Vezeau, G. F. Koorbusch, R. A. Draughn and J. C. Keller, “Effects of multiple sterilization on surface characteristics and in vitro biologic responses to titanium,” Journal of Oral Maxillofacial Surgery, vol. 54, no. 6, pp. 738-74, 1996.
  • [33] M. Pegueroles, F. J. Gil, J. A. Planell and C. Aparicio, “The influence of blasting and sterilization on static and time-related wettability and surface-energy properties of titanium surfaces,” Surface and Coatings Technology, vol. 202, no. 15, pp. 3470-3479, 2008.
  • [34] X. Shi, L. Xu, Q. Wang and L. Xu, “Hydrothermal sterilization ımproves ınitial osteoblast responses on sandpaper-polished titanium,” Materials, vol. 10, no. 812, pp. 1-11, 2017.
There are 34 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Aslı Günay Bulutsuz 0000-0001-5841-4829

Publication Date January 31, 2020
Published in Issue Year 2020 Volume: 8 Issue: 1

Cite

APA Günay Bulutsuz, A. (2020). Ha/Β-TCP Kumlama ve Anodizasyon İşlemlerinin Yüzey Kontak Açısına ve Topografyasına Etkilerinin İncelenmesi. Duzce University Journal of Science and Technology, 8(1), 1072-1083. https://doi.org/10.29130/dubited.618323
AMA Günay Bulutsuz A. Ha/Β-TCP Kumlama ve Anodizasyon İşlemlerinin Yüzey Kontak Açısına ve Topografyasına Etkilerinin İncelenmesi. DUBİTED. January 2020;8(1):1072-1083. doi:10.29130/dubited.618323
Chicago Günay Bulutsuz, Aslı. “Ha/Β-TCP Kumlama Ve Anodizasyon İşlemlerinin Yüzey Kontak Açısına Ve Topografyasına Etkilerinin İncelenmesi”. Duzce University Journal of Science and Technology 8, no. 1 (January 2020): 1072-83. https://doi.org/10.29130/dubited.618323.
EndNote Günay Bulutsuz A (January 1, 2020) Ha/Β-TCP Kumlama ve Anodizasyon İşlemlerinin Yüzey Kontak Açısına ve Topografyasına Etkilerinin İncelenmesi. Duzce University Journal of Science and Technology 8 1 1072–1083.
IEEE A. Günay Bulutsuz, “Ha/Β-TCP Kumlama ve Anodizasyon İşlemlerinin Yüzey Kontak Açısına ve Topografyasına Etkilerinin İncelenmesi”, DUBİTED, vol. 8, no. 1, pp. 1072–1083, 2020, doi: 10.29130/dubited.618323.
ISNAD Günay Bulutsuz, Aslı. “Ha/Β-TCP Kumlama Ve Anodizasyon İşlemlerinin Yüzey Kontak Açısına Ve Topografyasına Etkilerinin İncelenmesi”. Duzce University Journal of Science and Technology 8/1 (January 2020), 1072-1083. https://doi.org/10.29130/dubited.618323.
JAMA Günay Bulutsuz A. Ha/Β-TCP Kumlama ve Anodizasyon İşlemlerinin Yüzey Kontak Açısına ve Topografyasına Etkilerinin İncelenmesi. DUBİTED. 2020;8:1072–1083.
MLA Günay Bulutsuz, Aslı. “Ha/Β-TCP Kumlama Ve Anodizasyon İşlemlerinin Yüzey Kontak Açısına Ve Topografyasına Etkilerinin İncelenmesi”. Duzce University Journal of Science and Technology, vol. 8, no. 1, 2020, pp. 1072-83, doi:10.29130/dubited.618323.
Vancouver Günay Bulutsuz A. Ha/Β-TCP Kumlama ve Anodizasyon İşlemlerinin Yüzey Kontak Açısına ve Topografyasına Etkilerinin İncelenmesi. DUBİTED. 2020;8(1):1072-83.