Research Article
BibTex RIS Cite

Investigation of Flexural Performance of Steel, Glass FRP and Hybrid Reinforced Concrete Beams

Year 2020, Volume: 8 Issue: 2, 1470 - 1483, 30.04.2020
https://doi.org/10.29130/dubited.629354

Abstract

Fiber-reinforced polymer (FRP) reinforcing bars are preferred alternative to steel reinforcements, due to advantages such as resistance to corrosion, high strength to weight ratio, good fatigue properties and ease of handling. Glass-FRP (GFRP) bars are the most commonly used in civil engineering applications due to their low cost. Recently, a lot of research has been done on GFRP reinforcements and steel together with GFRP reinforcements called as “Hybrid” reinforcements instead of using steel reinforcements in beams and columns. In this study; the advantages of GFRP and Hybrid reinforcements over reinforced in concrete beams compared to conventional steel bars have been investigated. Reinforced concrete beams produced consisting of steel bars and different number of glass bars. Four-point bending test was performed on the produced beams. All three specimens have almost equal maximum load carrying capacity. However, specimen with steel bar and specimen with hybrid bar showed brittle failure while specimen with GFRP bar showed ductile behavior. Energy absorption capacity of the specimen with GFRP bar was significantly higher than the other specimens. In order to explain the damages occurred at the specimen, damage analysis is presented. 

References

  • [1] E. Madenci. “A refined functional and mixed formulation to static analyses of FGM beams,” Structural Engineering and Mechanics, vol. 69, no. 4, pp. 427-437, 2019.
  • [2] A. Özütok, E. Madenci. “Static analysis of laminated composite beams based on higher-order shear deformation theory by using mixed-type finite element method,” International Journal of Mechanical Sciences, vol. 130, pp. 234-243, 2017.
  • [3] E. Madenci, A. Özütok. “Variational approximate and mixed-finite element solution for static analysis of laminated composite plates,” Solid State Phenomena, vol. 267, pp. 35-39, 2017.
  • [4] A. Özütok, E. Madenci. “Free vibration analysis of cross-ply laminated composite beams by mixed finite element formulation,” International Journal of Structural Stability and Dynamics, vol. 13, no. 2, pp. 1250056-17, 2013.
  • [5] L. Gemi, U. Köklü, Ş. Yazman, S. Morkavuk. “The effects of stacking sequence on drilling machinability of filament wound hybrid composite pipes: Part-1 mechanical characterization and drilling tests,” Composites Part B: Engineering, vol. 186, pp. 107787, 2020.
  • [6] S. Kocaoz, V. Samaranayake, A. Nanni. “Tensile characterization of glass FRP bars,” Composites Part B: Engineering, vol. 36, no. 2, pp. 127-134, 2005.
  • [7] L. Gemi, M. Kayrıcı, M. Uludağ, D.S. Gemi, Ö.S. Şahin. “Experimental and statistical analysis of low velocity impact response of filament wound composite pipes,” Composites Part B: Engineering, vol. 149, pp. 38-48, 2018.
  • [8] L. Gemi, M.A. Köroğlu, A. Ashour. “Experimental study on compressive behavior and failure analysis of composite concrete confined by glass/epoxy ±55° filament wound pipes” Composite Structures, vol. 187, pp. 157-168, 2018.
  • [9] L. Gemi, S. Morkavuk, U. Köklü, Ş. Yazman. “The effects of stacking sequence on drilling machinability of filament wound hybrid composite pipes: Part-2 damage analysis and surface quality,” Composite Structures, vol. 235, pp. 111737, 2020.
  • [10] A. Ashour. “Flexural and shear capacities of concrete beams reinforced with GFRP bars,” Construction and Building Materials, vol. 20, no. 10, pp. 1005-1015, 2006.
  • [11] M. Robert, P. Cousin, B. Benmokrane. “Durability of GFRP reinforcing bars embedded in moist concrete,” Journal of Composites for Construction, vol. 13, no. 2, pp. 66-73, 2009.
  • [12] M. Robert, B. Benmokrane. “Behavior of GFRP reinforcing bars subjected to extreme temperatures,” Journal of Composites for Construction, vol. 14, no. 4, pp. 353-360, 2010.
  • [13] F. Yan, Z. Lin, M. Yang. “Bond mechanism and bond strength of GFRP bars to concrete: A review,” Composites Part B: Engineering, vol. 98, pp. 56-69, 2016.
  • [14] M.N. Hadi, H. Karim, M.N. Sheikh. “Experimental investigations on circular concrete columns reinforced with GFRP bars and helices under different loading conditions,” Journal of Composites for Construction, vol. 20, no. 4, pp. 04016009-12, 2016.
  • [15] G. Maranan, A. Manalo, B. Benmokrane, W. Karunasena, P. Mendis. “Behavior of concentrically loaded geopolymer-concrete circular columns reinforced longitudinally and transversely with GFRP bars,” Engineering Structures, vol. 117, pp. 422-436, 2016.
  • [16] Z. Wang, X.L. Zhao, G. Xian, G. Wu, R.S. Raman, S. Al-Saadi. “Long-term durability of basalt-and glass-fibre reinforced polymer (BFRP/GFRP) bars in seawater and sea sand concrete environment,” Construction and Building Materials, vol. 139, pp. 467-489, 2017.
  • [17] M. Goldston, A. Remennikov, M.N. Sheikh. “Experimental investigation of the behaviour of concrete beams reinforced with GFRP bars under static and impact loading,” Engineering Structures, vol. 113, pp. 220-232, 2016.
  • [18] L. Gemi, M.A. Köroğlu. “Çekme bölgesi lifli beton olan cam fiber takviyeli polimer (GFRP) ve çelik donatılı etriyesiz kirişlerin eğilme etkisi altındaki davranışı ve hasar analizi,” Selçuk Üniversitesi Mühendislik, Bilim ve Teknoloji Dergisi, vol. 6, pp. 654-667, 2018.
  • [19] A. El Refai, F. Abed, A. Al-Rahmani. “Structural performance and serviceability of concrete beams reinforced with hybrid (GFRP and steel) bars,” Construction and Building Materials, c. 96, ss. 518-529, 2015.
  • [20] E. Madenci, L. Gemi, Y.O. Özkılıç. “An Investigation on Flexure Behavior of Pultruded Glass Fiber Reinforced Polymer Composite Beams,” 1st International Symposium on Innovations in Civil Engineering and Technology, pp. 379-384, 2019.
  • [21] E. Madenci, Y.O. Özkılıç, L. Gemi. “The Effects of Length to Depth Ratio on the Reinforced Concrete Pultruded GFRP Beams,” 1st International Symposium on Innovations in Civil Engineering and Technology. pp. 386-391, 2019.
  • [22] Y.O. Özkılıç, E. Madenci, L. Gemi. “Performance of Pultruded Glass Fiber Reinforced Polymer Composite Beams under Quasistatic Load,” 5th International Conference on Engineering Science. pp. 207-2212, 2019.
  • [23] Y.O. Özkılıç, L. Gemi, E. Madenci. “Hybrid Reinforced Concrete Filled Pultruded GFRP Beams Strengthened by GFRP Composites,” 5th International Conference on Engineering Science. pp. 213-217, 2019.
  • [24] L. Gemi, E. Madenci, Y.O. Özkılıç. “Investigation of Reinforced Concrete-Filled Pultruded Beams Strengthened By GFRP Composite,” The International Alumınıum-Themed Engineering and Natural Sciences Conference. ss. 313-316, , 2019.
  • [25] L. Gemi, Y.O. Özkılıç, E. Madenci. “An Experimental Investigation on Buckling Behavior of The Pultruded Gfrp Beam,” The International Alumınıum-Themed Engineering and Natural Sciences Conference. ss. 306-308, 4-6 October, Seydişehir, 2019.
  • [26] L. Gemi, Y.O. Özkılıç, E. Madenci. “Investigation of Flexural Behavior of FRP Wrapped and Concrete Filled GFRP Box Profile Beams,” VI. International Earthquake Symposium. ss. 605-610, 25-27 September, Kocaeli, 2019.
  • [27] L. Gemi, E. Madenci, Y.O. Özkılıç. “An Investigation on Effect of Steel/Glass Fiber Bars in Concrete Beams,” VI. International Earthquake Symposium, ss. 651-656, 25-27 September, Kocaeli, 2019.
  • [28] Y.O. Özkılıç, E. Madenci, L. Gemi. “Tensile and compressive behaviors of the pultruded GFRP lamina,” Turkish Journal of Engineering (TUJE), c. 4, s. 4, ss. 169-175, 2020.
  • [29] E. Madenci, Y.O. Özkılıç, L. Gemi. “Experimental and theoretical investigation on flexure performance of pultruded GFRP composite beams with damage analyses,” Composite Structures, c. 242, ss. 112162, 2020.
  • [30] F. Aydın, A. Sarıbıyık, M. Sarıbıyık, M. Ipek, “Experimental Study of Flexural Performance of Reinforced Concrete Beams and Hybrid Beams,” Acta Physica Polonica A, c. 134, ss. 244-247, 2018.
  • [31] L. Gemi, C. Aksoylu, Ş. Yazman, Y.O. Özkılıç, M.H. Arslan. “Experimental investigation of shear capacity and damage analysis of thinned end prefabricated concrete purlins strengthened by CFRP composite,” Composite Structures, c. 229, ss. 111399, 2019.
  • [32] C. Aksoylu, Ş. Yazman, Y.O. Özkılıç, L. Gemi, M.H. Arslan. “Experimental analysis of reinforced concrete shear deficient beams with circular web openings strengthened by CFRP composite,” Composite Structures, c. 249, ss. 112561, 2020.

Çelik, Cam FRP ve Hibrit Donatılı Betonarme Kirişlerin Eğilme Performansının İncelenmesi

Year 2020, Volume: 8 Issue: 2, 1470 - 1483, 30.04.2020
https://doi.org/10.29130/dubited.629354

Abstract

Elyaf takviyeli polimer
(FRP) donatılar korozyona karşı direnç, ağırlıkça yüksek mukavemet oranı, iyi
yorulma özellikleri ve kullanım kolaylığı gibi avantajlar nedeniyle, alternatif
olarak tercih edilmekte ve kullanımı giderek artmaktadır. İnşaat mühendisliği
uygulamalarında düşük maliyetlerinden dolayı en yaygın olarak Cam-FRP (GFRP) donatılar
kullanılmaktadır. Son zamanlarda, kiriş ve kolonlarda kullanılan çelik donatılar
yerine Cam FRP donatılar ve çelik ile Cam FRP donatının birlikte kullanıldığı
“Hibrit” donatı düzeni üzerinde birçok araştırma yapılmıştır. Bu çalışmada; Cam
FRP ve Hibrit donatıların betonarme kirişlerde geleneksel çelik donatılara göre
avantajları araştırılmıştır. Çelik çubuklardan ve farklı sayıda cam çubuklardan
oluşan betonarme kirişler üretilmiştir. Üretilen betonarme kirişlere dört nokta
eğilme testleri yapılmıştır. Deney sonucu her üç numune için yaklaşık eşit
maksimum yük taşıma kapasitesi elde edilmiştir. Bununla birlikte, çelik
donatılı ve hibrit donatılı kiriş, gevrek bir davranış sergilerken, GFRP
donatılı kiriş sünek bir davranış sergilemiştir. Tamamen GFRP donatılı
numunenin enerji emme kapasitesi diğer numunelere göre ciddi oranda artış
gösterdi. Numunelerde oluşan hasarları açıklamak için hasar analizi sunuldu.

References

  • [1] E. Madenci. “A refined functional and mixed formulation to static analyses of FGM beams,” Structural Engineering and Mechanics, vol. 69, no. 4, pp. 427-437, 2019.
  • [2] A. Özütok, E. Madenci. “Static analysis of laminated composite beams based on higher-order shear deformation theory by using mixed-type finite element method,” International Journal of Mechanical Sciences, vol. 130, pp. 234-243, 2017.
  • [3] E. Madenci, A. Özütok. “Variational approximate and mixed-finite element solution for static analysis of laminated composite plates,” Solid State Phenomena, vol. 267, pp. 35-39, 2017.
  • [4] A. Özütok, E. Madenci. “Free vibration analysis of cross-ply laminated composite beams by mixed finite element formulation,” International Journal of Structural Stability and Dynamics, vol. 13, no. 2, pp. 1250056-17, 2013.
  • [5] L. Gemi, U. Köklü, Ş. Yazman, S. Morkavuk. “The effects of stacking sequence on drilling machinability of filament wound hybrid composite pipes: Part-1 mechanical characterization and drilling tests,” Composites Part B: Engineering, vol. 186, pp. 107787, 2020.
  • [6] S. Kocaoz, V. Samaranayake, A. Nanni. “Tensile characterization of glass FRP bars,” Composites Part B: Engineering, vol. 36, no. 2, pp. 127-134, 2005.
  • [7] L. Gemi, M. Kayrıcı, M. Uludağ, D.S. Gemi, Ö.S. Şahin. “Experimental and statistical analysis of low velocity impact response of filament wound composite pipes,” Composites Part B: Engineering, vol. 149, pp. 38-48, 2018.
  • [8] L. Gemi, M.A. Köroğlu, A. Ashour. “Experimental study on compressive behavior and failure analysis of composite concrete confined by glass/epoxy ±55° filament wound pipes” Composite Structures, vol. 187, pp. 157-168, 2018.
  • [9] L. Gemi, S. Morkavuk, U. Köklü, Ş. Yazman. “The effects of stacking sequence on drilling machinability of filament wound hybrid composite pipes: Part-2 damage analysis and surface quality,” Composite Structures, vol. 235, pp. 111737, 2020.
  • [10] A. Ashour. “Flexural and shear capacities of concrete beams reinforced with GFRP bars,” Construction and Building Materials, vol. 20, no. 10, pp. 1005-1015, 2006.
  • [11] M. Robert, P. Cousin, B. Benmokrane. “Durability of GFRP reinforcing bars embedded in moist concrete,” Journal of Composites for Construction, vol. 13, no. 2, pp. 66-73, 2009.
  • [12] M. Robert, B. Benmokrane. “Behavior of GFRP reinforcing bars subjected to extreme temperatures,” Journal of Composites for Construction, vol. 14, no. 4, pp. 353-360, 2010.
  • [13] F. Yan, Z. Lin, M. Yang. “Bond mechanism and bond strength of GFRP bars to concrete: A review,” Composites Part B: Engineering, vol. 98, pp. 56-69, 2016.
  • [14] M.N. Hadi, H. Karim, M.N. Sheikh. “Experimental investigations on circular concrete columns reinforced with GFRP bars and helices under different loading conditions,” Journal of Composites for Construction, vol. 20, no. 4, pp. 04016009-12, 2016.
  • [15] G. Maranan, A. Manalo, B. Benmokrane, W. Karunasena, P. Mendis. “Behavior of concentrically loaded geopolymer-concrete circular columns reinforced longitudinally and transversely with GFRP bars,” Engineering Structures, vol. 117, pp. 422-436, 2016.
  • [16] Z. Wang, X.L. Zhao, G. Xian, G. Wu, R.S. Raman, S. Al-Saadi. “Long-term durability of basalt-and glass-fibre reinforced polymer (BFRP/GFRP) bars in seawater and sea sand concrete environment,” Construction and Building Materials, vol. 139, pp. 467-489, 2017.
  • [17] M. Goldston, A. Remennikov, M.N. Sheikh. “Experimental investigation of the behaviour of concrete beams reinforced with GFRP bars under static and impact loading,” Engineering Structures, vol. 113, pp. 220-232, 2016.
  • [18] L. Gemi, M.A. Köroğlu. “Çekme bölgesi lifli beton olan cam fiber takviyeli polimer (GFRP) ve çelik donatılı etriyesiz kirişlerin eğilme etkisi altındaki davranışı ve hasar analizi,” Selçuk Üniversitesi Mühendislik, Bilim ve Teknoloji Dergisi, vol. 6, pp. 654-667, 2018.
  • [19] A. El Refai, F. Abed, A. Al-Rahmani. “Structural performance and serviceability of concrete beams reinforced with hybrid (GFRP and steel) bars,” Construction and Building Materials, c. 96, ss. 518-529, 2015.
  • [20] E. Madenci, L. Gemi, Y.O. Özkılıç. “An Investigation on Flexure Behavior of Pultruded Glass Fiber Reinforced Polymer Composite Beams,” 1st International Symposium on Innovations in Civil Engineering and Technology, pp. 379-384, 2019.
  • [21] E. Madenci, Y.O. Özkılıç, L. Gemi. “The Effects of Length to Depth Ratio on the Reinforced Concrete Pultruded GFRP Beams,” 1st International Symposium on Innovations in Civil Engineering and Technology. pp. 386-391, 2019.
  • [22] Y.O. Özkılıç, E. Madenci, L. Gemi. “Performance of Pultruded Glass Fiber Reinforced Polymer Composite Beams under Quasistatic Load,” 5th International Conference on Engineering Science. pp. 207-2212, 2019.
  • [23] Y.O. Özkılıç, L. Gemi, E. Madenci. “Hybrid Reinforced Concrete Filled Pultruded GFRP Beams Strengthened by GFRP Composites,” 5th International Conference on Engineering Science. pp. 213-217, 2019.
  • [24] L. Gemi, E. Madenci, Y.O. Özkılıç. “Investigation of Reinforced Concrete-Filled Pultruded Beams Strengthened By GFRP Composite,” The International Alumınıum-Themed Engineering and Natural Sciences Conference. ss. 313-316, , 2019.
  • [25] L. Gemi, Y.O. Özkılıç, E. Madenci. “An Experimental Investigation on Buckling Behavior of The Pultruded Gfrp Beam,” The International Alumınıum-Themed Engineering and Natural Sciences Conference. ss. 306-308, 4-6 October, Seydişehir, 2019.
  • [26] L. Gemi, Y.O. Özkılıç, E. Madenci. “Investigation of Flexural Behavior of FRP Wrapped and Concrete Filled GFRP Box Profile Beams,” VI. International Earthquake Symposium. ss. 605-610, 25-27 September, Kocaeli, 2019.
  • [27] L. Gemi, E. Madenci, Y.O. Özkılıç. “An Investigation on Effect of Steel/Glass Fiber Bars in Concrete Beams,” VI. International Earthquake Symposium, ss. 651-656, 25-27 September, Kocaeli, 2019.
  • [28] Y.O. Özkılıç, E. Madenci, L. Gemi. “Tensile and compressive behaviors of the pultruded GFRP lamina,” Turkish Journal of Engineering (TUJE), c. 4, s. 4, ss. 169-175, 2020.
  • [29] E. Madenci, Y.O. Özkılıç, L. Gemi. “Experimental and theoretical investigation on flexure performance of pultruded GFRP composite beams with damage analyses,” Composite Structures, c. 242, ss. 112162, 2020.
  • [30] F. Aydın, A. Sarıbıyık, M. Sarıbıyık, M. Ipek, “Experimental Study of Flexural Performance of Reinforced Concrete Beams and Hybrid Beams,” Acta Physica Polonica A, c. 134, ss. 244-247, 2018.
  • [31] L. Gemi, C. Aksoylu, Ş. Yazman, Y.O. Özkılıç, M.H. Arslan. “Experimental investigation of shear capacity and damage analysis of thinned end prefabricated concrete purlins strengthened by CFRP composite,” Composite Structures, c. 229, ss. 111399, 2019.
  • [32] C. Aksoylu, Ş. Yazman, Y.O. Özkılıç, L. Gemi, M.H. Arslan. “Experimental analysis of reinforced concrete shear deficient beams with circular web openings strengthened by CFRP composite,” Composite Structures, c. 249, ss. 112561, 2020.
There are 33 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Lokman Gemi This is me 0000-0002-9895-6574

Emrah Madenci 0000-0001-8279-9466

Yasin Onuralp Özkılıç 0000-0001-9354-4784

Publication Date April 30, 2020
Published in Issue Year 2020 Volume: 8 Issue: 2

Cite

APA Gemi, L., Madenci, E., & Özkılıç, Y. O. (2020). Çelik, Cam FRP ve Hibrit Donatılı Betonarme Kirişlerin Eğilme Performansının İncelenmesi. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi, 8(2), 1470-1483. https://doi.org/10.29130/dubited.629354
AMA Gemi L, Madenci E, Özkılıç YO. Çelik, Cam FRP ve Hibrit Donatılı Betonarme Kirişlerin Eğilme Performansının İncelenmesi. DUBİTED. April 2020;8(2):1470-1483. doi:10.29130/dubited.629354
Chicago Gemi, Lokman, Emrah Madenci, and Yasin Onuralp Özkılıç. “Çelik, Cam FRP Ve Hibrit Donatılı Betonarme Kirişlerin Eğilme Performansının İncelenmesi”. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi 8, no. 2 (April 2020): 1470-83. https://doi.org/10.29130/dubited.629354.
EndNote Gemi L, Madenci E, Özkılıç YO (April 1, 2020) Çelik, Cam FRP ve Hibrit Donatılı Betonarme Kirişlerin Eğilme Performansının İncelenmesi. Düzce Üniversitesi Bilim ve Teknoloji Dergisi 8 2 1470–1483.
IEEE L. Gemi, E. Madenci, and Y. O. Özkılıç, “Çelik, Cam FRP ve Hibrit Donatılı Betonarme Kirişlerin Eğilme Performansının İncelenmesi”, DUBİTED, vol. 8, no. 2, pp. 1470–1483, 2020, doi: 10.29130/dubited.629354.
ISNAD Gemi, Lokman et al. “Çelik, Cam FRP Ve Hibrit Donatılı Betonarme Kirişlerin Eğilme Performansının İncelenmesi”. Düzce Üniversitesi Bilim ve Teknoloji Dergisi 8/2 (April 2020), 1470-1483. https://doi.org/10.29130/dubited.629354.
JAMA Gemi L, Madenci E, Özkılıç YO. Çelik, Cam FRP ve Hibrit Donatılı Betonarme Kirişlerin Eğilme Performansının İncelenmesi. DUBİTED. 2020;8:1470–1483.
MLA Gemi, Lokman et al. “Çelik, Cam FRP Ve Hibrit Donatılı Betonarme Kirişlerin Eğilme Performansının İncelenmesi”. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi, vol. 8, no. 2, 2020, pp. 1470-83, doi:10.29130/dubited.629354.
Vancouver Gemi L, Madenci E, Özkılıç YO. Çelik, Cam FRP ve Hibrit Donatılı Betonarme Kirişlerin Eğilme Performansının İncelenmesi. DUBİTED. 2020;8(2):1470-83.