Review
BibTex RIS Cite

Karbon Nanotüpler Üzerine Gama Radyasyonu Etkisi

Year 2020, Volume: 8 Issue: 2, 1503 - 1520, 30.04.2020
https://doi.org/10.29130/dubited.641872

Abstract

Bu çalışmada, karbon nanotüpler üzerindeki gama ışınımının etkisi kapsamlı bir şekilde derlenmiştir. Karbon nanotüplerin farklı dozlarda ve enerjilerde gama radyasyonu ile etkileşimi son yıllarda yoğun olarak incelenmiştir. Karbon nanotüpler, iyi termal özellikler, ultra hafif yapılar, farklı iletkenlik özellikleri, dayanıklılık ve üstün ısı direnci gibi ekstra özelliklerinden dolayı teknolojik uygulamalarda arzu edilen malzemelerdir. Bu nedenlerden dolayı, teknolojik cihaz yapımında yaygın olarak kullanılırlar. Bu cihazlar, tıp, havacılık, nükleer reaktörler, nükleer atık depoları gibi radyasyona maruz kalan ortamlarda kullanılmaktadır. Karbon nanotüp malzemelerinin radyasyona tepkisini bilmek, yapılan cihazların kararlılığı için çok önemlidir. Literatür taramasından görülebileceği gibi, malzemenin gama radyasyonu ile etkileşimi, malzemenin türüne, malzemenin saflığına ve atom örgüsüne, uygulanan radyasyonun dozuna, enerjisine ve uygulama ortamına (su, hava vb.) göre oldukça değişkendir. 

References

  • [1] M. Paradise and T. Goswami, “Carbon nanotubes–production and industrial applications,” Materials & design, vol. 28(5), pp. 1477-1489, 2007.
  • [2] F. Cataldo, “A Raman study on radiation-damaged graphite by γ-rays,” Carbon, vol. 38(4), pp. 634-636, 2000.
  • [3] A. Alanazi, M. Alkhorayef, K. Alzimami, I. Jurewicz, N. Abuhadi, A. Dalton and D. A. Bradley, “Carbon nanotubes buckypaper radiation studies for medical physics applications ,”Applied Radiation and Isotopes, vol. 117 pp. 106-110, 2016.
  • [4] M. I. Sajid, U. Jamshaid, T. Jamshaid, N. Zafar, H. Fessi and A. Elaissari, “Carbon nanotubes from synthesis to in vivo biomedical applications. International journal of pharmaceutics,” vol. 501(1-2) pp. 278-299, 2016.
  • [5] P. M. Korusenko, V. V. Bolotov, S. N. Nesov, S. N. Povoroznyuk and I. P. Khailov, “Changes of the electronic structure of the atoms of nitrogen in nitrogen-doped multiwalled carbon nanotubes under the influence of pulsed ion radiation,” Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol. 358 pp. 131-135, 2015.
  • [6] D. Kleut, S. Jovanović, Z. Marković, D. Kepić, D. Tošić, N. Romčević, M. M. Cincović, M. Dramićanin, I. H. Antunović, V. Pavlović, G. Dražić, M. Milosavljevic and B. T. Marković, “Comparison of structural properties of pristine and gamma irradiated single-wall carbon nanotubes: Effects of medium and irradiation dose,” Materials Characterization, vol. 72 pp. 37-45, 2012.
  • [7] M. Imtiaz, T. Hayat, A. Alsaedi and B. Ahmad, “Convective flow of carbon nanotubes between rotating stretchable disks with thermal radiation effects,” International journal of heat and mass transfer, vol. 101, pp. 948-957, 2016.
  • [8] K. P. So, D. Chen, A. Kushima, M. Li, S. Kim, Y. Yang, Z. Wang, J. G. Park, Y. H. Lee, R. Gonzalez, M. Kiwi, E. M. Bringa, L. Shao and J. Li, “Dispersion of carbon nanotubes in aluminum improves radiation resistance,” Nano Energy, vol. 22, pp. 319-327, 2016.
  • [9] D. Jana, C. L. Sun, L. C. Chen and K. H. Chen, “Effect of chemical doping of boron and nitrogen on the electronic, optical, and electrochemical properties of carbon nanotubes,” Progress in Materials Science, vol. 58(5), pp- 565-635, 2013.
  • [10] J. J. Niu and J. N. Wang, “Effect of temperature on chemical activation of carbon nanotubes. Solid State Sciences,” vol. 10(9), pp. 1189-1193, 2008.
  • [11] S. Kyatsandra, M. Pulikkathara and R. Wilkins, “X-ray radiation effects on thin film nanocomposites of functionalized and copper coated multi-walled carbon nanotube and poly (methyl methacrylate),” Surfaces and Interfaces, vol. 17, pp. 100362, 2019.
  • [12] H. Baltes, O. Brand, G. K. Fedder, C. Hierold, J. G. Korvink and O. Tabata, Advanced Micro and Nanosystems Wiley- Weinheim, 2004.
  • [13] C. Cha, S. R. Shin, N. Annabi, M. R. Dokmeci and A. Khademhosseini, “Carbon-based nanomaterials: multifunctional materials for biomedical engineering,” ACS nano, vol. 7(4), pp. 2891-2897, 2013.
  • [14] L. Rutherford, “Origin of the gamma rays,” Nature, vol. 129, pp. 457–458, 1932.
  • [15] B. Li, Y. Feng, K. Ding, G. Qian, X. Zhang and J. Zhang, “The effect of gamma ray irradiation on the structure of graphite and multi-walled carbon nanotubes,” Carbon, vol. 60, pp. 186-192, 2013.
  • [16] U. Akbaba, A. E. Kasapoğlu and E. Gür, “Gamma and neutron irradiation effects on multi-walled carbon nanotubes,” Diamond and Related Materials, vol. 87 pp. 242-247, 2018.
  • [17] E. Şakar, U. Akbaba E, Zukowski and A, Gürol, “Gamma and neutron radiation effect on Compton profile of the multi-walled carbon nanotubes,” Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol. 437 pp. 20-26, 2018.
  • [18] M. C. Evora, N. Hiremath, X. Lu, N. G. Kang, G. Bhat and J. Mays, “Effect of electron beam and gamma rays on carbon nanotube yarn structure,” Materials Research, vol. 20 pp. 386-392, 2017.
  • [19] D. Silambarasan, V. J. Surya, K. Iyakutti, K. Asokan, V. Vasu and Y. Kawazoe, “Gamma (γ)-ray irradiated multi-walled carbon nanotubes (MWCNTs) for hydrogen storage,” Applied Surface Science, vol. 418 pp. 49-55, 2017.
  • [20] S. Ishii, D. Yabe, S. Enomoto, S. Koshio, T. Konishi, T. Hamano and T Hirao, “Electrical properties of carbon-nanotube-network transistors in air after gamma irradiation,” Physica E: Low-dimensional Systems and Nanostructures, vol. 86 pp. 297-302, 2017.
  • [21] B. Safibonab, A. Reyhani, A. N. Golikand, S. Z. Mortazavi, S. Mirershadi, M. M. Ghoranneviss, “Improving the surface properties of multi-walled carbon nanotubes after irradiation with gamma rays,” Applied Surface Science, vol. 258(2), pp. 766-773, 2011.
  • [22] J. V. Rojas and C. H. Castano, “Production of palladium nanoparticles supported on multiwalled carbon nanotubes by gamma irradiation,” Radiation Physics and Chemistry, vol. 81(1) pp. 16-21, 2012.
  • [23] K. Kamarás, K. Thirunavukkuarasu, C. A. Kuntscher, M. Dressel, F. Simon, H. Kuzmany, D. A. Waltres and D. A. Moss, “Far-and mid-infrared anisotropy of magnetically aligned single-wall carbon nanotubes studied with synchrotron radiation. Infrared physics & technology,” vol. 49(1-2) pp. 35-38, 2006.
  • [24] G. Przybytniak, A. Nowicki, K. Mirkowski and L. Stobiński, “Gamma-rays initiated cationic polymerization of epoxy resins and their carbon nanotubes composites. Radiation Physics and Chemistry,” vol. 121 pp. 16-22, 2016.
  • [25] V. Skakalova, D. U. Weglikowska and S. Roth, “Gamma-irradiated and functionalized single wall nanotubes,” Diamond and related materials, vol. 13(2), pp. 296-298, 2004.
  • [26] S. A. Vitusevich, V. A. Sydoruk, M. V. Petrychuk, B. A. Danilchenko, N. Klein, A. Offenhäusser, A. Ural, and G. Bosman, “Transport properties of single-walled carbon nanotube transistors after gamma radiation treatment,” Journal of applied physics, vol. 107(6), pp. 063701, 2010.
  • [27] A. A. Casaos, J. A. Puértolas, F. J. Pascual, H. J. Ferrer, P. Castell, A. M. Benito, W. K. Maser and M. T. Martinez, “The effect of gamma-irradiation on few-layered graphene materials,” Applied Surface Science, vol. 301, pp. 264-272, 2014.
  • [28] M. Miao, S. C. Hawkins, J. Y. Cai, T. R. Gengenbach, R. Knott and C. P. Huynh, “Effect of gamma-irradiation on the mechanical properties of carbon nanotube yarns,” Carbon, vol. 49(14), pp. 4940-4947, 2011.
  • [29] M. Hulman, V. Skákalová, S. Roth and H. Kuzmany, “Raman spectroscopy of single-wall carbon nanotubes and graphite irradiated by γ rays,” Journal of applied physics, vol. 98(2), pp. 024311, 2005.
  • [30] R. A. Khan, D. Dussault, S. Salmieri, A. Safrany and M. Lacroix, “Mechanical and barrier properties of carbon nanotube reinforced PCL‐based composite films: Effect of gamma radiation,” Journal of Applied Polymer Science, vol. 127(5) pp. 3962-3969, 2013.

Gamma Radiation Effect on Carbon Nanotubes

Year 2020, Volume: 8 Issue: 2, 1503 - 1520, 30.04.2020
https://doi.org/10.29130/dubited.641872

Abstract

An extensive review of the gamma radiation effect on carbon nanotubes is given in this study. The interaction of carbon nanotubes with different doses and energies gamma radiation has been studied in recent years. Carbon nanotubes are desirable materials in technological applications because of their extra features such as good thermal properties, ultra-light structures, different conductivity properties, durability, and superior heat resistance. For these reasons, they are used extensively in device construction. These devices are used extensively in environments exposed to radiation such as medicine, aviation, nuclear reactors, nuclear waste storage. Knowing the response of carbon nanotube materials to radiation is very important for the stability of the devices made. As can be seen from the literature review, the interaction of the material with gamma radiation is quite variable according to the type of material, the purity, and the atomic lattice of material, dose and energy of the applied radiation and the environment (water, air, etc.) subjected to. 

References

  • [1] M. Paradise and T. Goswami, “Carbon nanotubes–production and industrial applications,” Materials & design, vol. 28(5), pp. 1477-1489, 2007.
  • [2] F. Cataldo, “A Raman study on radiation-damaged graphite by γ-rays,” Carbon, vol. 38(4), pp. 634-636, 2000.
  • [3] A. Alanazi, M. Alkhorayef, K. Alzimami, I. Jurewicz, N. Abuhadi, A. Dalton and D. A. Bradley, “Carbon nanotubes buckypaper radiation studies for medical physics applications ,”Applied Radiation and Isotopes, vol. 117 pp. 106-110, 2016.
  • [4] M. I. Sajid, U. Jamshaid, T. Jamshaid, N. Zafar, H. Fessi and A. Elaissari, “Carbon nanotubes from synthesis to in vivo biomedical applications. International journal of pharmaceutics,” vol. 501(1-2) pp. 278-299, 2016.
  • [5] P. M. Korusenko, V. V. Bolotov, S. N. Nesov, S. N. Povoroznyuk and I. P. Khailov, “Changes of the electronic structure of the atoms of nitrogen in nitrogen-doped multiwalled carbon nanotubes under the influence of pulsed ion radiation,” Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol. 358 pp. 131-135, 2015.
  • [6] D. Kleut, S. Jovanović, Z. Marković, D. Kepić, D. Tošić, N. Romčević, M. M. Cincović, M. Dramićanin, I. H. Antunović, V. Pavlović, G. Dražić, M. Milosavljevic and B. T. Marković, “Comparison of structural properties of pristine and gamma irradiated single-wall carbon nanotubes: Effects of medium and irradiation dose,” Materials Characterization, vol. 72 pp. 37-45, 2012.
  • [7] M. Imtiaz, T. Hayat, A. Alsaedi and B. Ahmad, “Convective flow of carbon nanotubes between rotating stretchable disks with thermal radiation effects,” International journal of heat and mass transfer, vol. 101, pp. 948-957, 2016.
  • [8] K. P. So, D. Chen, A. Kushima, M. Li, S. Kim, Y. Yang, Z. Wang, J. G. Park, Y. H. Lee, R. Gonzalez, M. Kiwi, E. M. Bringa, L. Shao and J. Li, “Dispersion of carbon nanotubes in aluminum improves radiation resistance,” Nano Energy, vol. 22, pp. 319-327, 2016.
  • [9] D. Jana, C. L. Sun, L. C. Chen and K. H. Chen, “Effect of chemical doping of boron and nitrogen on the electronic, optical, and electrochemical properties of carbon nanotubes,” Progress in Materials Science, vol. 58(5), pp- 565-635, 2013.
  • [10] J. J. Niu and J. N. Wang, “Effect of temperature on chemical activation of carbon nanotubes. Solid State Sciences,” vol. 10(9), pp. 1189-1193, 2008.
  • [11] S. Kyatsandra, M. Pulikkathara and R. Wilkins, “X-ray radiation effects on thin film nanocomposites of functionalized and copper coated multi-walled carbon nanotube and poly (methyl methacrylate),” Surfaces and Interfaces, vol. 17, pp. 100362, 2019.
  • [12] H. Baltes, O. Brand, G. K. Fedder, C. Hierold, J. G. Korvink and O. Tabata, Advanced Micro and Nanosystems Wiley- Weinheim, 2004.
  • [13] C. Cha, S. R. Shin, N. Annabi, M. R. Dokmeci and A. Khademhosseini, “Carbon-based nanomaterials: multifunctional materials for biomedical engineering,” ACS nano, vol. 7(4), pp. 2891-2897, 2013.
  • [14] L. Rutherford, “Origin of the gamma rays,” Nature, vol. 129, pp. 457–458, 1932.
  • [15] B. Li, Y. Feng, K. Ding, G. Qian, X. Zhang and J. Zhang, “The effect of gamma ray irradiation on the structure of graphite and multi-walled carbon nanotubes,” Carbon, vol. 60, pp. 186-192, 2013.
  • [16] U. Akbaba, A. E. Kasapoğlu and E. Gür, “Gamma and neutron irradiation effects on multi-walled carbon nanotubes,” Diamond and Related Materials, vol. 87 pp. 242-247, 2018.
  • [17] E. Şakar, U. Akbaba E, Zukowski and A, Gürol, “Gamma and neutron radiation effect on Compton profile of the multi-walled carbon nanotubes,” Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol. 437 pp. 20-26, 2018.
  • [18] M. C. Evora, N. Hiremath, X. Lu, N. G. Kang, G. Bhat and J. Mays, “Effect of electron beam and gamma rays on carbon nanotube yarn structure,” Materials Research, vol. 20 pp. 386-392, 2017.
  • [19] D. Silambarasan, V. J. Surya, K. Iyakutti, K. Asokan, V. Vasu and Y. Kawazoe, “Gamma (γ)-ray irradiated multi-walled carbon nanotubes (MWCNTs) for hydrogen storage,” Applied Surface Science, vol. 418 pp. 49-55, 2017.
  • [20] S. Ishii, D. Yabe, S. Enomoto, S. Koshio, T. Konishi, T. Hamano and T Hirao, “Electrical properties of carbon-nanotube-network transistors in air after gamma irradiation,” Physica E: Low-dimensional Systems and Nanostructures, vol. 86 pp. 297-302, 2017.
  • [21] B. Safibonab, A. Reyhani, A. N. Golikand, S. Z. Mortazavi, S. Mirershadi, M. M. Ghoranneviss, “Improving the surface properties of multi-walled carbon nanotubes after irradiation with gamma rays,” Applied Surface Science, vol. 258(2), pp. 766-773, 2011.
  • [22] J. V. Rojas and C. H. Castano, “Production of palladium nanoparticles supported on multiwalled carbon nanotubes by gamma irradiation,” Radiation Physics and Chemistry, vol. 81(1) pp. 16-21, 2012.
  • [23] K. Kamarás, K. Thirunavukkuarasu, C. A. Kuntscher, M. Dressel, F. Simon, H. Kuzmany, D. A. Waltres and D. A. Moss, “Far-and mid-infrared anisotropy of magnetically aligned single-wall carbon nanotubes studied with synchrotron radiation. Infrared physics & technology,” vol. 49(1-2) pp. 35-38, 2006.
  • [24] G. Przybytniak, A. Nowicki, K. Mirkowski and L. Stobiński, “Gamma-rays initiated cationic polymerization of epoxy resins and their carbon nanotubes composites. Radiation Physics and Chemistry,” vol. 121 pp. 16-22, 2016.
  • [25] V. Skakalova, D. U. Weglikowska and S. Roth, “Gamma-irradiated and functionalized single wall nanotubes,” Diamond and related materials, vol. 13(2), pp. 296-298, 2004.
  • [26] S. A. Vitusevich, V. A. Sydoruk, M. V. Petrychuk, B. A. Danilchenko, N. Klein, A. Offenhäusser, A. Ural, and G. Bosman, “Transport properties of single-walled carbon nanotube transistors after gamma radiation treatment,” Journal of applied physics, vol. 107(6), pp. 063701, 2010.
  • [27] A. A. Casaos, J. A. Puértolas, F. J. Pascual, H. J. Ferrer, P. Castell, A. M. Benito, W. K. Maser and M. T. Martinez, “The effect of gamma-irradiation on few-layered graphene materials,” Applied Surface Science, vol. 301, pp. 264-272, 2014.
  • [28] M. Miao, S. C. Hawkins, J. Y. Cai, T. R. Gengenbach, R. Knott and C. P. Huynh, “Effect of gamma-irradiation on the mechanical properties of carbon nanotube yarns,” Carbon, vol. 49(14), pp. 4940-4947, 2011.
  • [29] M. Hulman, V. Skákalová, S. Roth and H. Kuzmany, “Raman spectroscopy of single-wall carbon nanotubes and graphite irradiated by γ rays,” Journal of applied physics, vol. 98(2), pp. 024311, 2005.
  • [30] R. A. Khan, D. Dussault, S. Salmieri, A. Safrany and M. Lacroix, “Mechanical and barrier properties of carbon nanotube reinforced PCL‐based composite films: Effect of gamma radiation,” Journal of Applied Polymer Science, vol. 127(5) pp. 3962-3969, 2013.
There are 30 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Uğur Akbaba 0000-0002-7043-0749

Publication Date April 30, 2020
Published in Issue Year 2020 Volume: 8 Issue: 2

Cite

APA Akbaba, U. (2020). Gamma Radiation Effect on Carbon Nanotubes. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi, 8(2), 1503-1520. https://doi.org/10.29130/dubited.641872
AMA Akbaba U. Gamma Radiation Effect on Carbon Nanotubes. DUBİTED. April 2020;8(2):1503-1520. doi:10.29130/dubited.641872
Chicago Akbaba, Uğur. “Gamma Radiation Effect on Carbon Nanotubes”. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi 8, no. 2 (April 2020): 1503-20. https://doi.org/10.29130/dubited.641872.
EndNote Akbaba U (April 1, 2020) Gamma Radiation Effect on Carbon Nanotubes. Düzce Üniversitesi Bilim ve Teknoloji Dergisi 8 2 1503–1520.
IEEE U. Akbaba, “Gamma Radiation Effect on Carbon Nanotubes”, DUBİTED, vol. 8, no. 2, pp. 1503–1520, 2020, doi: 10.29130/dubited.641872.
ISNAD Akbaba, Uğur. “Gamma Radiation Effect on Carbon Nanotubes”. Düzce Üniversitesi Bilim ve Teknoloji Dergisi 8/2 (April 2020), 1503-1520. https://doi.org/10.29130/dubited.641872.
JAMA Akbaba U. Gamma Radiation Effect on Carbon Nanotubes. DUBİTED. 2020;8:1503–1520.
MLA Akbaba, Uğur. “Gamma Radiation Effect on Carbon Nanotubes”. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi, vol. 8, no. 2, 2020, pp. 1503-20, doi:10.29130/dubited.641872.
Vancouver Akbaba U. Gamma Radiation Effect on Carbon Nanotubes. DUBİTED. 2020;8(2):1503-20.