Research Article
BibTex RIS Cite

Cevherleşme sahasında gelişmiş topraklardaki ağır metal kirliliği

Year 2020, Volume: 8 Issue: 2, 1533 - 1547, 30.04.2020
https://doi.org/10.29130/dubited.643775

Abstract

Cevherleşme sahalarında gelişmiş
topraklardaki ağır metal kirliğinin araştırılması amacıyla gerçekleştirilen bu
çalışmada Gümüşhane, Torul ilçesi sınırları içinde bulunan Gümüştuğ köyünün
hemen yakınında bulunan antimonit cevherleşmesi sahasında gelişmiş toprakların
ağır metal içeriklerinin araştırılması amacıyla toprak örnekleri alınmış ve
belli başlı ağır metallerin topraktaki konsantrasyonlarını tespit etmek
amacıyla analiz edilmiştir. Topraktaki kirlilik derecesi yaygın olarak
kullanılan jeobirikim indeksi (Igeo) ve kirlilik indeksi (PI) parametreleri hesap
edilerek incelenmiştir. Elde edilen sonuçlar dikkate alındığında, cevherleşme sahasında
gelişmiş topraklarda özellikle antimon ve bakır açısından yüksek jeobirikim ve
kirlilik indeksi değerleri tespit edilmiştir. Dolayısıyla çalışma sahasında üst
kabuk ortalama değerlerine göre antimon ve bakır açısından kirliliğin/zenginleşmenin
olduğu belirlenmiştir. Sahadaki antimon ve bakır kirliliği/zenginleşmesinin
bölgede gelişmiş alterasyon ve cevherleşmeyle ilişkili olduğu düşünülmektedir.
Yapılan bu çalışma göstermiştir ki cevherleşme alanları, sahada herhangi bir
madencilik faaliyeti yapılmamış olsa bile ağır metal kirliği riski taşıyan
sahalardır. Dolayısıyla cevherleşme sahalarında ve/veya cevherleşme için
potansiyel olan alterasyon sahalarında ağır metal kirliliği/çevresel amaçlı
jeokimya çalışmaların yapılmasının önemli olduğu görülmektedir.

Supporting Institution

Gümüşhane Üniversitesi Bilimsel Araştırma Projeleri Koordinatörlüğü tarafından desteklenmiştir.

Project Number

19.F5114.01.02

Thanks

Yazarlar Gümüşhane Üniversitesi Bilimsel Araştırma Projeleri Koordinatörlüğü'ne finansal destekleri nedeniyle teşekkür ederler

References

  • [1] F. Bretzel, S. Benvenuti, L. Pistelli, “Metal contamination in urban street sediment in Pisa (Italy) can affect the production of antioxidant metabolites in Taraxacum officinale Weber,” Environ. Sci. Pollut. Res., vol. 21, no. 3, pp. 2325–2333, 2014.
  • [2] M. J. Batista, M. M. Abreu, M. S. Pinto, “Biogeochemistry in Neves Corvo mining region, Iberian Pyrite Belt, Portugal,” J. Geochemical Explor., vol. 92, no. 2–3, pp. 159–176, 2007.
  • [3] H. M. Zakir, N. Shikazono, “Environmental mobility and geochemical partitioning of Fe , Mn , Co , Ni and Mo in sediments of an urban river,” Environ. Chem., vol. 3, no. May, pp. 116–126, 2011.
  • [4] P. K. S. M. D. Hossain, “Assessment of Heavy Metal Contamination and Sediment Quality in the Buriganga River , Bangladesh,” d Int. Conf. Environ. Sci. Technol., vol. 6, pp. 384–388, 2011.
  • [5] P. Antwi-Agyei, J. Hogarh, G. Foli, “Trace elements contamination of soils around gold mine tailings dams at Obuasi, Ghana,” African J. Environ. Sci. Technol., vol. 3, no. 11, pp. 353–359, 2009.
  • [6] A. Vural, “Contamination Assessment of Heavy Metals Associated with an Alteration Area : Demirören Gumushane , NE Turkey,” J. Geol. Soc. India, vol. 86, no. August, pp. 215–222, 2015.
  • [7] A. Vural, “Assessment of metal pollution associated with an alteration area: Old Gümüşhane, NE Black Sea,” Environ. Sci. Pollut. Res., vol. 22, no. 5, 2015.
  • [8] Ü. Gemici, G. Tarcan, “Assessment of the pollutants in farming soils and waters around untreated abandoned Türkönü mercury mine (Turkey),” Bull. Environ. Contam. Toxicol., vol. 79, no. 1, pp. 20–24, 2007.
  • [9] W. Zglobicki, L. Lata, A. Plak, M. Reszka, W. Zgłobicki, “Geochemical and statistical approach to evaluate background concentrations of Cd, Cu, Pb and Zn (case study: Eastern Poland),” Environ. Earth Sci., vol. 62, no. 2, pp. 347–355, 2011.
  • [10] M. C. Navarro, C. Pérez-Sirvent, M. J. Martínez-Sánchez, J. Vidal, P. J. Tovar, J. Bech, “Abandoned mine sites as a source of contamination by heavy metals: A case study in a semi-arid zone,” J. Geochemical Explor., vol. 96, no. 2–3, pp. 183–193, 2008.
  • [11] M. Soylak, U. Divrikli, S. Saracoglu, and L. Elci, “Monitoring Trace Metal Levels in Yozgat-Turkey: Copper, Iron, Nickel, Cobalt, Lead, Cadmium, Manganese and Chromium Levels in Stream Sediments,” Polish J. Environ. Stud., vol. 11, no. 1, pp. 47–51, 2002.
  • [12] B. Tavakoly Sany, A. Salleh, A. H. Sulaiman, A. Mehdinia, G. H. Monazami, “Geochemical assessment of heavy metals concentration in surface sediment of West Port, Malaysia,” World Acad. Sci. Eng. Technol., vol. 80, pp. 83–87, 2011. [13] A. Vural, A. Gundogdu, I. Akpinar, C. Baltaci, “Environmental impact of Gümüşhane City, Turkey, waste area in terms of heavy metal pollution,” Nat. Hazards, vol. 88, no. 2, 2017.
  • [14] P. N. Ranasinghe, G. W. A. R. Fernando, C. B. Dissanayake, M. S. Rupasinghe, “Stream sediment geochemistry of the Upper Mahaweli River Basin of Sri Lanka-Geological and environmental significance,” J. Geochemical Explor., vol. 99, no. 1–3, pp. 1–28, 2008.
  • [15] C. Waterlot, F. Douay, C. Pruvot, H. Ciesielski, “Assessment of the mobility and the phytoavailability of heavy metals in kitchen garden soils: Effect of a phosphatic amendment,” Difpolmine Conf. , no. december, p. 7pp, 2006.
  • [16] N. Sciences, G. Delcev, G. Delcev, “Assessment of the heavy metal contamination in the surficial sediments of Lake Kalimanci ( Macedonia ): a preliminary study Ocena onesnaženosti recentnega sedimenta iz Kameniškega jezera ( Makedonija ) s težkimi kovinami – preliminarni rezultati,” vol. 56, no. 4, pp. 437–447, 2009.
  • [17] S. M. Sakan, D. S. Dordević, S. S. Trifunović, “Geochemical and statistical methods in the evaluation of trace elements contamination: An application on canal sediments,” Polish J. Environ. Stud., vol. 20, no. 1, pp. 187–199, 2011.
  • [18] B. Dasaram, M. Satyanarayanan, V. Sudarshan, A.K. Krishna, “Assessment of Soil Contamination in Patancheru Industrial Area, Hyderabad, Andhra Pradesh, India,” Res. J. Environ. Earth Sci., vol. 3, no. 3, pp. 214–220, 2011.
  • [19] H. Sun, J. Li, X. Mao, “Heavy Metals’ Spatial Distribution Characteristics in a Copper Mining Area of Zhejiang Province,” J. Geogr. Inf. Syst., vol. 04, no. 01, pp. 46–54, 2012.
  • [20] F. I. Almasoud, A. R. Usman, A. S. Al-Farraj, “Heavy metals in the soils of the Arabian Gulf coast affected by industrial activities: analysis and assessment using enrichment factor and multivariate analysis,” Arab. J. Geosci., pp. 1–13, 2014.
  • [21] A. Sungur, M. Soylak, H. Ozcan, “Investigation of heavy metal mobility and availability by the BCR sequential extraction procedure: Relationship between soil properties and heavy metals availability,” Chem. Speciat. Bioavailab., vol. 26, no. 4, pp. 219–230, 2014.
  • [22] A. Vural, “Relationship between the geological environment and element accumulation capacity of Helichrysum arenarium,” Arab. J. Geosci., vol. 11, p. 258, 2018.
  • [23] A. Vural, “Assessment of Heavy Metal Accumulation in the Roadside Soil and Plants of Robinia pseudoacacia, in Gumushane, Northeastern Turkey,” Ekoloji, vol. 10, pp. 1–10, 2013. [24] A. Sungur, A. Vural, A. Gundogdu, M. Soylak, “Effect of antimonite mineralization area on heavy metal contents and geochemical fractions of agricultural soils in Gümüşhane Province, Turkey,” Catena, vol. 184, no. January 2019, p. 104255, 2020.
  • [25] A. Sungur, A. Vural, A. Gündoğdu, M. Soylak, “Gümüştuğ Köyü (Torul - Gümüşhane)Tarım Topraklarında Manganın Jeokimyasal Karakterizasyonu,” in International Trace Analysis Congress (ITAC 2018/ES-AN 2018), 2018, vol. June 20-23, p. 231.
  • [26] A. Vural, E. Şahin, “Gümüşhane Şehir Merkezinden Geçen Karayolunda Ağır Metal Kirliliğine Ait İlk Bulgular (in Turkish),” Gümüşhane Üniversitesi Fen Bilim. Enstitüsü Derg., vol. 2, no. 1, pp. 21–35, 2012.
  • [27] A. Vural, “Trace/heavy metal accumulation in soil and in the shoots of acacia tree, Gümüşhane-Turkey,” Bull. Miner. Res. Explor., vol. 148, pp. 85–106, 2014.
  • [28] A. Vural, “Biogeochemical characteristics of Rosa canina grown in hydrothermally contaminated soils of the Gümüşhane Province, Northeast Turkey,” Environ. Monit. Assess., vol. 187, no. 8, 2015.
  • [29] A. Sungur, M. Soylak, H. Ozcan, “Fractionation, Source Identification and Risk Assessments for Heavy Metals in Soils near a Small-Scale Industrial Area (Çanakkale-Turkey),” Soil Sediment Contam., vol. 28, no. 2, pp. 213–227, 2019.
  • [30] T. N. Nganje, C. I. Adamu, A. N. Ugbaja, E. Ebieme, G. U. Sikakwe, “Environmental contamination of trace elements in the vicinity of okpara coal mine, enugu, southeastern Nigeria,” Arab. J. Geosci., vol. 4, no. 1–2, pp. 199–205, 2011.
  • [31] S. M. Ghaderian, A. A. Ghotbi Ravandi, “Accumulation of copper and other heavy metals by plants growing on Sarcheshmeh copper mining area, Iran,” J. Geochemical Explor., vol. 123, pp. 25–32, 2012.
  • [32] J. Bech vd., “Arsenic and heavy metal contamination of soil and vegetation around a copper mine in Northern Peru,” Sci. Total Environ., vol. 203, no. 1, pp. 83–91, 1997.
  • [33] M. M. Abreu, M. J. Matias, M. C. F. Magalhges, and M. J. Basto, “Impacts on water, soil and plants from the abandoned Miguel Vacas copper mine, Portugal,” J. Geochemical Explor., vol. 96, no. 2–3, pp. 161–170, 2008.
  • [34] A. Vural, “Avliyana (Torul-Gümüşhane) Antimonit Cevherleşmesinin Jeolojisi-Mineralojisi ve Kökeninin Araştırılması,” Gümüşhane, 2016.
  • [35] G. Topuz, R. Altherr, W. H. Schwarz, A. Dokuz, H. P. Meyer, “Variscan amphibolite-facies rocks from the Kurtoǧlu metamorphic complex (Gümüşhane area, Eastern Pontides, Turkey),” Int. J. Earth Sci., vol. 96, no. 5, pp. 861–873, 2007.
  • [36] Y. Yılmaz, “Petrology and structure of the Gümüşhane granite and surrounding rocks, NE Anatolia,” 1972.
  • [37] A. Dokuz, “A slab detachment and delamination model for the generation of Carboniferous high-potassium I-type magmatism in the Eastern Pontides, NE Turkey: The Köse composite pluton,” Gondwana Res., vol. 19, no. 4, pp. 926–944, Jun. 2011.
  • [38] A. Vural and A. Kaygusuz, “Petrology of the Paleozoic Plutons in Eastern Pontides: Artabel Pluton (Gümüşhane, NE Turkey),” YeriJournal Eng. Res. Appl. Sci., vol. 8, no. 2, 2019.
  • [39] A. Kaygusuz, M. Arslan, F. Sipahin, İ. Temizel, “U-Pb zircon chronology and petrogenesis of Carboniferous plutons in the northern part of the Eastern Pontides, NE Turkey: Constraints for Paleozoic magmatism and geodynamic evolution,” Gondwana Res., vol. 39, pp. 327–346, 2016.
  • [40] R. Kandemir, “Gümüşhane ve Yakın Yörelerindeki Erken-Orta Jura Yaşlı Şenköy Formasyonu’nun Çökel Özellikleri ve Birikim Koşulları,” Trabzon, 2004.
  • [41] M. Eren, “Gümüşhane-Kale Arasının Jeolojisi ve Mikrofasiyes incelemesi,” Trabzon, 1983.
  • [42] S. Pelin, Alucra (Giresun) Güneydoğu yöresinin petrol olanaklan bakımından jeolojik incelemesi. Trabzon: Karadeniz Teknik Üniversitesi Yayını, Yayın No. 87, 1977.
  • [43] S. Tokel, “Stratigraphical and volcanic history of Gümüşhane region,” 1972.
  • [44] A. Kaygusuz, W. Siebel, C. Şen, and M. Satir, “Petrochemistry and petrology of I-type granitoids in an arc setting: The composite Torul pluton, Eastern Pontides, NE Turkey,” Int. J. Earth Sci., vol. 97, no. 4, pp. 739–764, 2008.
  • [45] M. Arslan, I. Aliyazicioglu, “Geochemical and petrological characteristics of the Kale (Gümüşhane) volcanic rocks: Implications for the Eocene evolution of eastern Pontide arc volcanism, northeast Turkey,” Int. Geol. Rev., vol. 43, no. 7, pp. 595–610, 2001.
  • [46] A. Vural, “Avliyana (Torul-Gümüşhane) Antimonit Cevherleşmesinin Jeolojisi-Mineralojisi ve Kökeninin Araştırılması,” Gümüşhane, 2016.
  • [47] A. Vural, “K-Ar dating for determining the age of mineralization as alteration product: A case study of antimony mineralization vein type in granitic rocks of Gümüşhane area, Turkey,” Acta Phys. Pol. A, vol. 132, no. 3, pp. 792–795, 2017.
  • [48] A. Vural, A. Kaygusuz, H. Dönmez, “Geological, Geochemical and Geochronological Investigation of Avliyana Antimonite Mineralization,” in 8th Geochemistry Symposium, 2018, pp. 123–124.
  • [49] A. Vural, A. Kaygusuz, H. Dönmez, C. Yücel, “Geochemistry and Geochronology of the Avliyana Granitoid (Gümüşhane/Ne Turkey),” in 71. TJK Abstract Book, 2018, pp. 391–392.
  • [50] A. W. Rose, H. Hawkes, and J. Webs, Geochemistry in Mineral Exploration, 2nd ed. Londan, England: Academic Press, 1991.
  • [51] G. Muller, “Index of geoaccumulation in sediments of the Rhine River.,” Geol. J., vol. 2, pp. 108–118, 1969.
  • [52] A. Vural, M. Erdoğan, “Eski Gümüşhane Kırkpavli Alterasyon Sahasında Toprak Jeokimyası,” Gümüşhane Üniversitesi Fen Bilim. Enstitüsü Derg., vol. 4, no. 1, pp. 1–15, 2014.
  • [53] R. Rudnick, S. Gao, “Composition of the Continental Crust,” in Readings of Treatise on Geochemistry, 2nd ed., H. Holland and K. Turekian, Eds. Londan, England: Elsevier, 2010.
  • [54] T. B. Chen, Y. M. Zheng, H. Chen, G. D. Zheng, “Background concentrations of soil heavy metals in Beijing,” Chinese J. Environ. Sci. (in Chinese), vol. 25, pp. 117–122, 2004.

Heavy Metal Contamination in Soils on Mineralization Area

Year 2020, Volume: 8 Issue: 2, 1533 - 1547, 30.04.2020
https://doi.org/10.29130/dubited.643775

Abstract

In this study carried out in order to investigate the heavy metal contamination in developed soils in the mineralization fields, soil samples were collected in order to investigate the heavy metal contents of the soils developed on the antimonite mineralization area located in the vicinity of Gümüştuğ village in the Torul district of Gümüşhane and the samples analyzed to determine the concentrations of major heavy metals in the soil. The degree of pollution in the soil was investigated by calculating the commonly used geo-accumulation index (Igeo) and pollution index (PI) parameters. When the obtained results are taken into consideration, in the soils developed on the mineralization area, high geoaccumulation and pollution index values have been determined especially in terms of antimony and copper. Therefore, it was determined that there was pollution/enrichment in antimony and copper according to the average values of the upper crust in the study area. Antimony and copper pollution / enrichment in the area is thought to be related to alteration and mineralization developed in the region. This study has shown that mineralization areas are areas that are at risk of heavy metal pollution even if no mining activities are carried out on the site. Therefore, it is seen that it is important to carry out heavy metal pollution / environmental geochemical studies in the mineralization fields and / or alteration sites which are potential for mineralization. 

Project Number

19.F5114.01.02

References

  • [1] F. Bretzel, S. Benvenuti, L. Pistelli, “Metal contamination in urban street sediment in Pisa (Italy) can affect the production of antioxidant metabolites in Taraxacum officinale Weber,” Environ. Sci. Pollut. Res., vol. 21, no. 3, pp. 2325–2333, 2014.
  • [2] M. J. Batista, M. M. Abreu, M. S. Pinto, “Biogeochemistry in Neves Corvo mining region, Iberian Pyrite Belt, Portugal,” J. Geochemical Explor., vol. 92, no. 2–3, pp. 159–176, 2007.
  • [3] H. M. Zakir, N. Shikazono, “Environmental mobility and geochemical partitioning of Fe , Mn , Co , Ni and Mo in sediments of an urban river,” Environ. Chem., vol. 3, no. May, pp. 116–126, 2011.
  • [4] P. K. S. M. D. Hossain, “Assessment of Heavy Metal Contamination and Sediment Quality in the Buriganga River , Bangladesh,” d Int. Conf. Environ. Sci. Technol., vol. 6, pp. 384–388, 2011.
  • [5] P. Antwi-Agyei, J. Hogarh, G. Foli, “Trace elements contamination of soils around gold mine tailings dams at Obuasi, Ghana,” African J. Environ. Sci. Technol., vol. 3, no. 11, pp. 353–359, 2009.
  • [6] A. Vural, “Contamination Assessment of Heavy Metals Associated with an Alteration Area : Demirören Gumushane , NE Turkey,” J. Geol. Soc. India, vol. 86, no. August, pp. 215–222, 2015.
  • [7] A. Vural, “Assessment of metal pollution associated with an alteration area: Old Gümüşhane, NE Black Sea,” Environ. Sci. Pollut. Res., vol. 22, no. 5, 2015.
  • [8] Ü. Gemici, G. Tarcan, “Assessment of the pollutants in farming soils and waters around untreated abandoned Türkönü mercury mine (Turkey),” Bull. Environ. Contam. Toxicol., vol. 79, no. 1, pp. 20–24, 2007.
  • [9] W. Zglobicki, L. Lata, A. Plak, M. Reszka, W. Zgłobicki, “Geochemical and statistical approach to evaluate background concentrations of Cd, Cu, Pb and Zn (case study: Eastern Poland),” Environ. Earth Sci., vol. 62, no. 2, pp. 347–355, 2011.
  • [10] M. C. Navarro, C. Pérez-Sirvent, M. J. Martínez-Sánchez, J. Vidal, P. J. Tovar, J. Bech, “Abandoned mine sites as a source of contamination by heavy metals: A case study in a semi-arid zone,” J. Geochemical Explor., vol. 96, no. 2–3, pp. 183–193, 2008.
  • [11] M. Soylak, U. Divrikli, S. Saracoglu, and L. Elci, “Monitoring Trace Metal Levels in Yozgat-Turkey: Copper, Iron, Nickel, Cobalt, Lead, Cadmium, Manganese and Chromium Levels in Stream Sediments,” Polish J. Environ. Stud., vol. 11, no. 1, pp. 47–51, 2002.
  • [12] B. Tavakoly Sany, A. Salleh, A. H. Sulaiman, A. Mehdinia, G. H. Monazami, “Geochemical assessment of heavy metals concentration in surface sediment of West Port, Malaysia,” World Acad. Sci. Eng. Technol., vol. 80, pp. 83–87, 2011. [13] A. Vural, A. Gundogdu, I. Akpinar, C. Baltaci, “Environmental impact of Gümüşhane City, Turkey, waste area in terms of heavy metal pollution,” Nat. Hazards, vol. 88, no. 2, 2017.
  • [14] P. N. Ranasinghe, G. W. A. R. Fernando, C. B. Dissanayake, M. S. Rupasinghe, “Stream sediment geochemistry of the Upper Mahaweli River Basin of Sri Lanka-Geological and environmental significance,” J. Geochemical Explor., vol. 99, no. 1–3, pp. 1–28, 2008.
  • [15] C. Waterlot, F. Douay, C. Pruvot, H. Ciesielski, “Assessment of the mobility and the phytoavailability of heavy metals in kitchen garden soils: Effect of a phosphatic amendment,” Difpolmine Conf. , no. december, p. 7pp, 2006.
  • [16] N. Sciences, G. Delcev, G. Delcev, “Assessment of the heavy metal contamination in the surficial sediments of Lake Kalimanci ( Macedonia ): a preliminary study Ocena onesnaženosti recentnega sedimenta iz Kameniškega jezera ( Makedonija ) s težkimi kovinami – preliminarni rezultati,” vol. 56, no. 4, pp. 437–447, 2009.
  • [17] S. M. Sakan, D. S. Dordević, S. S. Trifunović, “Geochemical and statistical methods in the evaluation of trace elements contamination: An application on canal sediments,” Polish J. Environ. Stud., vol. 20, no. 1, pp. 187–199, 2011.
  • [18] B. Dasaram, M. Satyanarayanan, V. Sudarshan, A.K. Krishna, “Assessment of Soil Contamination in Patancheru Industrial Area, Hyderabad, Andhra Pradesh, India,” Res. J. Environ. Earth Sci., vol. 3, no. 3, pp. 214–220, 2011.
  • [19] H. Sun, J. Li, X. Mao, “Heavy Metals’ Spatial Distribution Characteristics in a Copper Mining Area of Zhejiang Province,” J. Geogr. Inf. Syst., vol. 04, no. 01, pp. 46–54, 2012.
  • [20] F. I. Almasoud, A. R. Usman, A. S. Al-Farraj, “Heavy metals in the soils of the Arabian Gulf coast affected by industrial activities: analysis and assessment using enrichment factor and multivariate analysis,” Arab. J. Geosci., pp. 1–13, 2014.
  • [21] A. Sungur, M. Soylak, H. Ozcan, “Investigation of heavy metal mobility and availability by the BCR sequential extraction procedure: Relationship between soil properties and heavy metals availability,” Chem. Speciat. Bioavailab., vol. 26, no. 4, pp. 219–230, 2014.
  • [22] A. Vural, “Relationship between the geological environment and element accumulation capacity of Helichrysum arenarium,” Arab. J. Geosci., vol. 11, p. 258, 2018.
  • [23] A. Vural, “Assessment of Heavy Metal Accumulation in the Roadside Soil and Plants of Robinia pseudoacacia, in Gumushane, Northeastern Turkey,” Ekoloji, vol. 10, pp. 1–10, 2013. [24] A. Sungur, A. Vural, A. Gundogdu, M. Soylak, “Effect of antimonite mineralization area on heavy metal contents and geochemical fractions of agricultural soils in Gümüşhane Province, Turkey,” Catena, vol. 184, no. January 2019, p. 104255, 2020.
  • [25] A. Sungur, A. Vural, A. Gündoğdu, M. Soylak, “Gümüştuğ Köyü (Torul - Gümüşhane)Tarım Topraklarında Manganın Jeokimyasal Karakterizasyonu,” in International Trace Analysis Congress (ITAC 2018/ES-AN 2018), 2018, vol. June 20-23, p. 231.
  • [26] A. Vural, E. Şahin, “Gümüşhane Şehir Merkezinden Geçen Karayolunda Ağır Metal Kirliliğine Ait İlk Bulgular (in Turkish),” Gümüşhane Üniversitesi Fen Bilim. Enstitüsü Derg., vol. 2, no. 1, pp. 21–35, 2012.
  • [27] A. Vural, “Trace/heavy metal accumulation in soil and in the shoots of acacia tree, Gümüşhane-Turkey,” Bull. Miner. Res. Explor., vol. 148, pp. 85–106, 2014.
  • [28] A. Vural, “Biogeochemical characteristics of Rosa canina grown in hydrothermally contaminated soils of the Gümüşhane Province, Northeast Turkey,” Environ. Monit. Assess., vol. 187, no. 8, 2015.
  • [29] A. Sungur, M. Soylak, H. Ozcan, “Fractionation, Source Identification and Risk Assessments for Heavy Metals in Soils near a Small-Scale Industrial Area (Çanakkale-Turkey),” Soil Sediment Contam., vol. 28, no. 2, pp. 213–227, 2019.
  • [30] T. N. Nganje, C. I. Adamu, A. N. Ugbaja, E. Ebieme, G. U. Sikakwe, “Environmental contamination of trace elements in the vicinity of okpara coal mine, enugu, southeastern Nigeria,” Arab. J. Geosci., vol. 4, no. 1–2, pp. 199–205, 2011.
  • [31] S. M. Ghaderian, A. A. Ghotbi Ravandi, “Accumulation of copper and other heavy metals by plants growing on Sarcheshmeh copper mining area, Iran,” J. Geochemical Explor., vol. 123, pp. 25–32, 2012.
  • [32] J. Bech vd., “Arsenic and heavy metal contamination of soil and vegetation around a copper mine in Northern Peru,” Sci. Total Environ., vol. 203, no. 1, pp. 83–91, 1997.
  • [33] M. M. Abreu, M. J. Matias, M. C. F. Magalhges, and M. J. Basto, “Impacts on water, soil and plants from the abandoned Miguel Vacas copper mine, Portugal,” J. Geochemical Explor., vol. 96, no. 2–3, pp. 161–170, 2008.
  • [34] A. Vural, “Avliyana (Torul-Gümüşhane) Antimonit Cevherleşmesinin Jeolojisi-Mineralojisi ve Kökeninin Araştırılması,” Gümüşhane, 2016.
  • [35] G. Topuz, R. Altherr, W. H. Schwarz, A. Dokuz, H. P. Meyer, “Variscan amphibolite-facies rocks from the Kurtoǧlu metamorphic complex (Gümüşhane area, Eastern Pontides, Turkey),” Int. J. Earth Sci., vol. 96, no. 5, pp. 861–873, 2007.
  • [36] Y. Yılmaz, “Petrology and structure of the Gümüşhane granite and surrounding rocks, NE Anatolia,” 1972.
  • [37] A. Dokuz, “A slab detachment and delamination model for the generation of Carboniferous high-potassium I-type magmatism in the Eastern Pontides, NE Turkey: The Köse composite pluton,” Gondwana Res., vol. 19, no. 4, pp. 926–944, Jun. 2011.
  • [38] A. Vural and A. Kaygusuz, “Petrology of the Paleozoic Plutons in Eastern Pontides: Artabel Pluton (Gümüşhane, NE Turkey),” YeriJournal Eng. Res. Appl. Sci., vol. 8, no. 2, 2019.
  • [39] A. Kaygusuz, M. Arslan, F. Sipahin, İ. Temizel, “U-Pb zircon chronology and petrogenesis of Carboniferous plutons in the northern part of the Eastern Pontides, NE Turkey: Constraints for Paleozoic magmatism and geodynamic evolution,” Gondwana Res., vol. 39, pp. 327–346, 2016.
  • [40] R. Kandemir, “Gümüşhane ve Yakın Yörelerindeki Erken-Orta Jura Yaşlı Şenköy Formasyonu’nun Çökel Özellikleri ve Birikim Koşulları,” Trabzon, 2004.
  • [41] M. Eren, “Gümüşhane-Kale Arasının Jeolojisi ve Mikrofasiyes incelemesi,” Trabzon, 1983.
  • [42] S. Pelin, Alucra (Giresun) Güneydoğu yöresinin petrol olanaklan bakımından jeolojik incelemesi. Trabzon: Karadeniz Teknik Üniversitesi Yayını, Yayın No. 87, 1977.
  • [43] S. Tokel, “Stratigraphical and volcanic history of Gümüşhane region,” 1972.
  • [44] A. Kaygusuz, W. Siebel, C. Şen, and M. Satir, “Petrochemistry and petrology of I-type granitoids in an arc setting: The composite Torul pluton, Eastern Pontides, NE Turkey,” Int. J. Earth Sci., vol. 97, no. 4, pp. 739–764, 2008.
  • [45] M. Arslan, I. Aliyazicioglu, “Geochemical and petrological characteristics of the Kale (Gümüşhane) volcanic rocks: Implications for the Eocene evolution of eastern Pontide arc volcanism, northeast Turkey,” Int. Geol. Rev., vol. 43, no. 7, pp. 595–610, 2001.
  • [46] A. Vural, “Avliyana (Torul-Gümüşhane) Antimonit Cevherleşmesinin Jeolojisi-Mineralojisi ve Kökeninin Araştırılması,” Gümüşhane, 2016.
  • [47] A. Vural, “K-Ar dating for determining the age of mineralization as alteration product: A case study of antimony mineralization vein type in granitic rocks of Gümüşhane area, Turkey,” Acta Phys. Pol. A, vol. 132, no. 3, pp. 792–795, 2017.
  • [48] A. Vural, A. Kaygusuz, H. Dönmez, “Geological, Geochemical and Geochronological Investigation of Avliyana Antimonite Mineralization,” in 8th Geochemistry Symposium, 2018, pp. 123–124.
  • [49] A. Vural, A. Kaygusuz, H. Dönmez, C. Yücel, “Geochemistry and Geochronology of the Avliyana Granitoid (Gümüşhane/Ne Turkey),” in 71. TJK Abstract Book, 2018, pp. 391–392.
  • [50] A. W. Rose, H. Hawkes, and J. Webs, Geochemistry in Mineral Exploration, 2nd ed. Londan, England: Academic Press, 1991.
  • [51] G. Muller, “Index of geoaccumulation in sediments of the Rhine River.,” Geol. J., vol. 2, pp. 108–118, 1969.
  • [52] A. Vural, M. Erdoğan, “Eski Gümüşhane Kırkpavli Alterasyon Sahasında Toprak Jeokimyası,” Gümüşhane Üniversitesi Fen Bilim. Enstitüsü Derg., vol. 4, no. 1, pp. 1–15, 2014.
  • [53] R. Rudnick, S. Gao, “Composition of the Continental Crust,” in Readings of Treatise on Geochemistry, 2nd ed., H. Holland and K. Turekian, Eds. Londan, England: Elsevier, 2010.
  • [54] T. B. Chen, Y. M. Zheng, H. Chen, G. D. Zheng, “Background concentrations of soil heavy metals in Beijing,” Chinese J. Environ. Sci. (in Chinese), vol. 25, pp. 117–122, 2004.
There are 52 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Alaaddin Vural 0000-0002-0446-828X

Bilal Çiçek 0000-0001-7121-8953

Project Number 19.F5114.01.02
Publication Date April 30, 2020
Published in Issue Year 2020 Volume: 8 Issue: 2

Cite

APA Vural, A., & Çiçek, B. (2020). Cevherleşme sahasında gelişmiş topraklardaki ağır metal kirliliği. Duzce University Journal of Science and Technology, 8(2), 1533-1547. https://doi.org/10.29130/dubited.643775
AMA Vural A, Çiçek B. Cevherleşme sahasında gelişmiş topraklardaki ağır metal kirliliği. DUBİTED. April 2020;8(2):1533-1547. doi:10.29130/dubited.643775
Chicago Vural, Alaaddin, and Bilal Çiçek. “Cevherleşme sahasında gelişmiş Topraklardaki ağır Metal kirliliği”. Duzce University Journal of Science and Technology 8, no. 2 (April 2020): 1533-47. https://doi.org/10.29130/dubited.643775.
EndNote Vural A, Çiçek B (April 1, 2020) Cevherleşme sahasında gelişmiş topraklardaki ağır metal kirliliği. Duzce University Journal of Science and Technology 8 2 1533–1547.
IEEE A. Vural and B. Çiçek, “Cevherleşme sahasında gelişmiş topraklardaki ağır metal kirliliği”, DUBİTED, vol. 8, no. 2, pp. 1533–1547, 2020, doi: 10.29130/dubited.643775.
ISNAD Vural, Alaaddin - Çiçek, Bilal. “Cevherleşme sahasında gelişmiş Topraklardaki ağır Metal kirliliği”. Duzce University Journal of Science and Technology 8/2 (April 2020), 1533-1547. https://doi.org/10.29130/dubited.643775.
JAMA Vural A, Çiçek B. Cevherleşme sahasında gelişmiş topraklardaki ağır metal kirliliği. DUBİTED. 2020;8:1533–1547.
MLA Vural, Alaaddin and Bilal Çiçek. “Cevherleşme sahasında gelişmiş Topraklardaki ağır Metal kirliliği”. Duzce University Journal of Science and Technology, vol. 8, no. 2, 2020, pp. 1533-47, doi:10.29130/dubited.643775.
Vancouver Vural A, Çiçek B. Cevherleşme sahasında gelişmiş topraklardaki ağır metal kirliliği. DUBİTED. 2020;8(2):1533-47.