Research Article
BibTex RIS Cite

Çok Merkezli Girdap Arama Algoritması

Year 2020, Volume: 8 Issue: 2, 1279 - 1294, 30.04.2020
https://doi.org/10.29130/dubited.644881

Abstract

Girdap Arama Algoritması (GAA) karıştırılan sıvılarda oluşan girdap deseninden esinlenerek yakın zamanda geliştirilmiş tek-çözüm temelli meta-sezgisel bir optimizasyon algoritmasıdır. GAA algoritmasında, bir merkez etrafında iteratif olarak adaptif adım-boyutu ayarlaması ile daraltılan bir yarıçap içinde üretilen komşu çözümler aracılığıyla arama işlemi gerçekleştirilir. Bu strateji, algoritmaya bir kolaylık ve hız kazandırmasına rağmen ekstremum noktası fazla olan problemlerde yerel optimumlara takılma riski oluşturmaktadır. Bu çalışmada, bu dezavantajı gidermek ve GAA algoritmasının arama hassasiyetini iyileştirmek amacıyla bir modifikasyon önerilmektedir. Öncelikle arama uzayı birbiriyle örtüşmeyen 4 farklı alt-bölgeye ayrılır. Daha sonra, standart merkez noktası ile birlikte her bir alt-bölgede birer tane olmak üzere toplam 5 merkez noktası tanımlanır. Her merkezin yarıçap uzunluğu bulunduğu bölgenin aralığına göre ayrı ayrı hesaplanır. Böylece birbirinden bağımsız 5 girdap oluşturularak aday çözüm çeşitliliği arttırılmış olur. Düşük yerellikten faydalanılan ilk iterasyonlar boyunca bu 5 girdap paralel şekilde çalıştırılır. Toplam iterasyon sayısının yarısından sonra, merkez sayısı 2’ye indirilerek yüksek yerellikten daha etkin faydalanılması sağlanır. Önerilen Çok-Merkezli Girdap Arama Algoritması (ÇM-GAA) 50 test fonksiyonu üzerinde 50’şer defa bağımsız şekilde çalıştırılmış ve istatistiksel değerler hesaplanmıştır. Elde edilen sonuçlar standart GAA ile karşılaştırıldığında; önerilen ÇM-GAA algoritması hemen hemen tüm fonksiyonlarda kayda değer bir iyileştirme sağlayarak ciddi bir başarı göstermiştir.

References

  • [1] K. Deb, Optimization for Engineering Design: Algorithms and Examples, 2nd ed., New Delhi, India: PHI Learning Private Limited., 2012, ch. 1, pp. 1-42.
  • [2] P. Liu and J. Liu, "Multi-leader PSO (MLPSO): a new PSO variant for solving global optimization problems," Applied Soft Computing, vol. 61, no. 1, pp. 256-263, 2017, doi: 10.1016/j.asoc.2017.08.022.
  • [3] D. H. Wolpert and W. G. Macready, "No free lunch theorems for optimization," IEEE Transactions on Evolutionary Computation, vol. 1, no. 1, pp. 67-82, 1997, doi: 10.1109/4235.585893.
  • [4] D. E. Goldberg and J. H. Holland, "Genetic algorithms and machine learning," Machine Learning, vol. 3, no. 2, pp. 95-99, 1988, doi: 10.1023/a:1022602019183.
  • [5] R. Storn and K. Price, "Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces," Journal of Global Optimization, vol. 11, no. 4, pp. 341-359, 1997, doi: 10.1023/a:1008202821328.
  • [6] J. Kennedy and R. Eberhart, "Particle swarm optimization," in International Conference on Neural Networks, Perth, WA, Australia, 1995, pp. 1942-1948, doi: 10.1109/ICNN.1995.488968.
  • [7] D. Karaboga. (2019, 25 Ekim). An idea based on honey bee swarm for numerical optimization [Online]. Erişim: http://abc.erciyes.edu.tr/publ.htm.
  • [8] M. Dorigo and L. M. Gambardella, "Ant colony system: A cooperative learning approach to the traveling salesman problem," IEEE Transactions on Evolutionary Computation, vol. 1, no. 1, pp. 53-66, 1997, doi: 10.1109/4235.585892.
  • [9] X. Yang and D. Suash, "Cuckoo search via lévy flights," in World Congress on Nature & Biologically Inspired Computing, 2009, pp. 210-214, doi: 10.1109/NABIC.2009.5393690.
  • [10] S. Kirkpatrick, C. D. Gelatt and M. P. Vecchi, "Optimization by simulated annealing," Science, vol. 220, no: 4598, pp. 671-680, 1983, doi: 10.1126/science.220.4598.671.
  • [11] E. Rashedi, H. Nezamabadi-pour and S. Saryazdi, "GSA: a gravitational search algorithm," Information Sciences, vol. 179, no. 13, pp. 2232-2248, 2009, doi: 10.1016/j.ins.2009.03.004.
  • [12] A. Kaveh and T. Bakhshpoori, "Water evaporation optimization: a novel physically inspired optimization algorithm," Computers & Structures, vol. 167, no. 1, pp. 69-85, 2016, doi: 10.1016/j.compstruc.2016.01.008.
  • [13] A. Kaveh and A. Dadras, "A novel meta-heuristic optimization algorithm: thermal exchange optimization," Advances in Engineering Software, vol. 110, pp. 69-84, 2017, doi: 10.1016/j.advengsoft.2017.03.014.
  • [14] B. Dogan and T. Olmez, "A new metaheuristic for numerical function optimization: Vortex search algorithm," Information Sciences, vol. 293, pp. 125-145, 2015, doi: 10.1016/j.ins.2014.08.053.
  • [15] R. Hooke and T. A. Jeeves, "Direct search solution of numerical and statistical problems," Journal of the ACM, vol. 8, no. 2, pp. 212-229, 1961, doi: 10.1145/321062.321069.
  • [16] B. Doğan and T. Ölmez, "Vortex search algorithm for the analog active filter component selection problem," AEU - International Journal of Electronics and Communications, vol. 69, no. 9, pp. 1243-1253, 2015, doi: 10.1016/j.aeue.2015.05.005.
  • [17] B. Doğan, "A modified vortex search algorithm for numerical function optimization," International Journal of Artificial Intelligence and Applications, vol. 7, no. 3, pp. 37-54, 2016, doi: 10.5121/ijaia.2016.7304.
  • [18] A. Özkış and A. Babalık, "A novel metaheuristic for multi-objective optimization problems: The multi-objective vortex search algorithm," Information Sciences, vol. 402, pp. 124-148, 2017, doi: 10.1016/j.ins.2017.03.026.
  • [19] I. É. Koch et al., "Least trimmed squares estimator with redundancy constraint for outlier detection in gnss networks," Expert Systems with Applications, vol. 88, pp. 230-237, 2017, doi: 10.1016/j.eswa.2017.07.009.
  • [20] O. Aydin, S. S. Tezcan, I. Eke and M. C. Taplamacioglu, "Solving the optimal power flow quadratic cost functions using vortex search algorithm," IFAC-PapersOnLine, vol. 50, no. 1, pp. 239-244, 2017, doi: 10.1016/j.ifacol.2017.08.040.
  • [21] X. Li, P. Niu and J. Liu, "Combustion optimization of a boiler based on the chaos and lévy flight vortex search algorithm," Applied Mathematical Modelling, vol. 58, pp. 3-18, 2018, doi: 10.1016/j.apm.2018.01.043.
  • [22] W. Ali, M. A. Qyyum, K. Qadeer and M. Lee, "Energy Optimization for single mixed refrigerant natural gas liquefaction process using the metaheuristic vortex search algorithm," Applied Thermal Engineering, vol. 129, pp. 782-791, 2018, doi: 10.1016/j.applthermaleng.2017.10.078.
  • [23] E. García, I. Amaya and R. Correa, "Estimation of thermal properties of a solid sample during a microwave heating process," Applied Thermal Engineering, vol. 129, pp. 587-595, 2018, doi: 10.1016/j.applthermaleng.2017.10.037.
  • [24] Y. D. Chaniago, M. A. Qyyum, R. Andika, W. Ali, K. Qadeer and M. Lee, "Self-Recuperative high temperature co-electrolysis-based methanol production with vortex search-based exergy efficiency enhancement," Journal of Cleaner Production, vol. 239, pp. 118029, 2019, doi: 10.1016/j.jclepro.2019.118029.
  • [25] A. Fathy, M. A. Elaziz and A. G. Alharbi, "A novel approach based on hybrid vortex search algorithm and differential evolution for identifying the optimal parameters of pem fuel cell," Renewable Energy, vol. 146, pp. 1833-1845, 2020, doi: 10.1016/j.renene.2019.08.046.
  • [26] E.-G. Talbi, Metaheuristics: From Design to Implementation, 1st. ed., New Jersey, USA: John Wiley & Sons, 2009, ch. 2, pp. 87-190.

Multi-Centered Vortex Search Algorithm

Year 2020, Volume: 8 Issue: 2, 1279 - 1294, 30.04.2020
https://doi.org/10.29130/dubited.644881

Abstract

Vortex Search (VS) is a recently developed single-solution meta-heuristic optimization algorithm inspired by the vortex pattern in the mixed fluids. In the VS algorithm, the search is performed by neighbor-solutions generated within a radius decreased by iteratively adaptive step-length adjustment around a center. Although this strategy provides simplicity and speed to the algorithm, it poses a risk of falling into local optimums for problems having many extrema. In this study, a modification is proposed to overcome this disadvantage and improve the search capability of the GAA algorithm. First, the search space is divided into 4 different sub-regions that do not overlap each other. Next, five center points are identified, one per each sub-region, along with the standard center point. The radius length of each center is calculated separately according to the range of the region where it is located. Thus, 5 independent vortices are created to increase the variety of candidate solutions. These 5 vortices are run in parallel during the initial iterations, which benefit from low locality. After half of the total number of iterations, the number of centers is reduced to 2, enabling higher localization to be utilized more effectively. The proposed Multi-Centered Vortex Search Algorithm (MC-VS) was run 50 times independently on 50 test functions and statistical values were calculated. When the results were compared with the standard GAA; the proposed MC-VS algorithm has shown a significant success by providing a significant improvement in almost all functions.

References

  • [1] K. Deb, Optimization for Engineering Design: Algorithms and Examples, 2nd ed., New Delhi, India: PHI Learning Private Limited., 2012, ch. 1, pp. 1-42.
  • [2] P. Liu and J. Liu, "Multi-leader PSO (MLPSO): a new PSO variant for solving global optimization problems," Applied Soft Computing, vol. 61, no. 1, pp. 256-263, 2017, doi: 10.1016/j.asoc.2017.08.022.
  • [3] D. H. Wolpert and W. G. Macready, "No free lunch theorems for optimization," IEEE Transactions on Evolutionary Computation, vol. 1, no. 1, pp. 67-82, 1997, doi: 10.1109/4235.585893.
  • [4] D. E. Goldberg and J. H. Holland, "Genetic algorithms and machine learning," Machine Learning, vol. 3, no. 2, pp. 95-99, 1988, doi: 10.1023/a:1022602019183.
  • [5] R. Storn and K. Price, "Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces," Journal of Global Optimization, vol. 11, no. 4, pp. 341-359, 1997, doi: 10.1023/a:1008202821328.
  • [6] J. Kennedy and R. Eberhart, "Particle swarm optimization," in International Conference on Neural Networks, Perth, WA, Australia, 1995, pp. 1942-1948, doi: 10.1109/ICNN.1995.488968.
  • [7] D. Karaboga. (2019, 25 Ekim). An idea based on honey bee swarm for numerical optimization [Online]. Erişim: http://abc.erciyes.edu.tr/publ.htm.
  • [8] M. Dorigo and L. M. Gambardella, "Ant colony system: A cooperative learning approach to the traveling salesman problem," IEEE Transactions on Evolutionary Computation, vol. 1, no. 1, pp. 53-66, 1997, doi: 10.1109/4235.585892.
  • [9] X. Yang and D. Suash, "Cuckoo search via lévy flights," in World Congress on Nature & Biologically Inspired Computing, 2009, pp. 210-214, doi: 10.1109/NABIC.2009.5393690.
  • [10] S. Kirkpatrick, C. D. Gelatt and M. P. Vecchi, "Optimization by simulated annealing," Science, vol. 220, no: 4598, pp. 671-680, 1983, doi: 10.1126/science.220.4598.671.
  • [11] E. Rashedi, H. Nezamabadi-pour and S. Saryazdi, "GSA: a gravitational search algorithm," Information Sciences, vol. 179, no. 13, pp. 2232-2248, 2009, doi: 10.1016/j.ins.2009.03.004.
  • [12] A. Kaveh and T. Bakhshpoori, "Water evaporation optimization: a novel physically inspired optimization algorithm," Computers & Structures, vol. 167, no. 1, pp. 69-85, 2016, doi: 10.1016/j.compstruc.2016.01.008.
  • [13] A. Kaveh and A. Dadras, "A novel meta-heuristic optimization algorithm: thermal exchange optimization," Advances in Engineering Software, vol. 110, pp. 69-84, 2017, doi: 10.1016/j.advengsoft.2017.03.014.
  • [14] B. Dogan and T. Olmez, "A new metaheuristic for numerical function optimization: Vortex search algorithm," Information Sciences, vol. 293, pp. 125-145, 2015, doi: 10.1016/j.ins.2014.08.053.
  • [15] R. Hooke and T. A. Jeeves, "Direct search solution of numerical and statistical problems," Journal of the ACM, vol. 8, no. 2, pp. 212-229, 1961, doi: 10.1145/321062.321069.
  • [16] B. Doğan and T. Ölmez, "Vortex search algorithm for the analog active filter component selection problem," AEU - International Journal of Electronics and Communications, vol. 69, no. 9, pp. 1243-1253, 2015, doi: 10.1016/j.aeue.2015.05.005.
  • [17] B. Doğan, "A modified vortex search algorithm for numerical function optimization," International Journal of Artificial Intelligence and Applications, vol. 7, no. 3, pp. 37-54, 2016, doi: 10.5121/ijaia.2016.7304.
  • [18] A. Özkış and A. Babalık, "A novel metaheuristic for multi-objective optimization problems: The multi-objective vortex search algorithm," Information Sciences, vol. 402, pp. 124-148, 2017, doi: 10.1016/j.ins.2017.03.026.
  • [19] I. É. Koch et al., "Least trimmed squares estimator with redundancy constraint for outlier detection in gnss networks," Expert Systems with Applications, vol. 88, pp. 230-237, 2017, doi: 10.1016/j.eswa.2017.07.009.
  • [20] O. Aydin, S. S. Tezcan, I. Eke and M. C. Taplamacioglu, "Solving the optimal power flow quadratic cost functions using vortex search algorithm," IFAC-PapersOnLine, vol. 50, no. 1, pp. 239-244, 2017, doi: 10.1016/j.ifacol.2017.08.040.
  • [21] X. Li, P. Niu and J. Liu, "Combustion optimization of a boiler based on the chaos and lévy flight vortex search algorithm," Applied Mathematical Modelling, vol. 58, pp. 3-18, 2018, doi: 10.1016/j.apm.2018.01.043.
  • [22] W. Ali, M. A. Qyyum, K. Qadeer and M. Lee, "Energy Optimization for single mixed refrigerant natural gas liquefaction process using the metaheuristic vortex search algorithm," Applied Thermal Engineering, vol. 129, pp. 782-791, 2018, doi: 10.1016/j.applthermaleng.2017.10.078.
  • [23] E. García, I. Amaya and R. Correa, "Estimation of thermal properties of a solid sample during a microwave heating process," Applied Thermal Engineering, vol. 129, pp. 587-595, 2018, doi: 10.1016/j.applthermaleng.2017.10.037.
  • [24] Y. D. Chaniago, M. A. Qyyum, R. Andika, W. Ali, K. Qadeer and M. Lee, "Self-Recuperative high temperature co-electrolysis-based methanol production with vortex search-based exergy efficiency enhancement," Journal of Cleaner Production, vol. 239, pp. 118029, 2019, doi: 10.1016/j.jclepro.2019.118029.
  • [25] A. Fathy, M. A. Elaziz and A. G. Alharbi, "A novel approach based on hybrid vortex search algorithm and differential evolution for identifying the optimal parameters of pem fuel cell," Renewable Energy, vol. 146, pp. 1833-1845, 2020, doi: 10.1016/j.renene.2019.08.046.
  • [26] E.-G. Talbi, Metaheuristics: From Design to Implementation, 1st. ed., New Jersey, USA: John Wiley & Sons, 2009, ch. 2, pp. 87-190.
There are 26 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Tahir Sağ 0000-0001-8266-7148

Publication Date April 30, 2020
Published in Issue Year 2020 Volume: 8 Issue: 2

Cite

APA Sağ, T. (2020). Çok Merkezli Girdap Arama Algoritması. Duzce University Journal of Science and Technology, 8(2), 1279-1294. https://doi.org/10.29130/dubited.644881
AMA Sağ T. Çok Merkezli Girdap Arama Algoritması. DUBİTED. April 2020;8(2):1279-1294. doi:10.29130/dubited.644881
Chicago Sağ, Tahir. “Çok Merkezli Girdap Arama Algoritması”. Duzce University Journal of Science and Technology 8, no. 2 (April 2020): 1279-94. https://doi.org/10.29130/dubited.644881.
EndNote Sağ T (April 1, 2020) Çok Merkezli Girdap Arama Algoritması. Duzce University Journal of Science and Technology 8 2 1279–1294.
IEEE T. Sağ, “Çok Merkezli Girdap Arama Algoritması”, DUBİTED, vol. 8, no. 2, pp. 1279–1294, 2020, doi: 10.29130/dubited.644881.
ISNAD Sağ, Tahir. “Çok Merkezli Girdap Arama Algoritması”. Duzce University Journal of Science and Technology 8/2 (April 2020), 1279-1294. https://doi.org/10.29130/dubited.644881.
JAMA Sağ T. Çok Merkezli Girdap Arama Algoritması. DUBİTED. 2020;8:1279–1294.
MLA Sağ, Tahir. “Çok Merkezli Girdap Arama Algoritması”. Duzce University Journal of Science and Technology, vol. 8, no. 2, 2020, pp. 1279-94, doi:10.29130/dubited.644881.
Vancouver Sağ T. Çok Merkezli Girdap Arama Algoritması. DUBİTED. 2020;8(2):1279-94.