Research Article
BibTex RIS Cite

Crystallinity Improvement of Co3O4 by Adding Thiourea

Year 2020, Volume: 8 Issue: 2, 1626 - 1633, 30.04.2020
https://doi.org/10.29130/dubited.654169

Abstract

Tricobalt tetraoxide (Co3O4) samples having different thiourea/Co molar ratio of 0, 5 and 10 were prepared by wet chemical synthesis. The effects of thiourea content on the crystal structure-related parameters of Co3O4 were determined. The increase in the amount of thiourea caused a gradual decrease in the lattice parameters and specific surface area and an increase in the crystallinity and crystallite size. The experimental analysis results showed that thiourea content can be used to control the crystal structure-related parameters of Co3O4.

References

  • [1] T. Zhou, T. Zhang, J. Deng, R. Zhang, Z. Lou and L. Wang, “P-type Co3O4 nanomaterials-based gas sensor: Preparation and acetone sensing performance,” Sensors and Actuators B: Chemical, vol. 242, pp. 369-377, 2017.
  • [2] N. Sheibani, M. Kazemipour, S. Jahani and M. Foroughi, “A novel highly sensitive thebaine sensor based on MWCNT and dandelion-like Co3O4 nanoflowers fabricated via solvothermal synthesis,” Microchemical Journal, vol. 149, pp. 103980, 2019.
  • [3] F. Qu, T. Thomas, B. Zhang, X. Zhou, S. Zhang, S. Ruan M. Yang, “Self-sacrificing templated formation of Co3O4/ZnCo2O4 composite hollow nanostructures for highly sensitive detecting acetone vapor,” Sensors and Actuators B: Chemical, vol. 273, pp. 1202-1210, 2018.
  • [4] L. Wang, Y.F. Yuan, Y.Q. Zheng, X.T. Zhang, S.M. Yin and S.Y. Guo, “Capsule-like Co3O4 nanocage@ Co3O4 nanoframework/TiO2 nodes as anode material for lithium-ion batteries,” Materials Letters, vol. 253, pp. 5-8, 2019.
  • [5] S.A. Pawar, D.S. Patil and J.C. Shin, “Transition of hexagonal to square sheets of Co3O4 in a triple heterostructure of Co3O4/MnO2/GO for high performance supercapacitor electrode,” Current Applied Physics, vol. 19, no. 7, pp. 794-803, 2019.
  • [6] J. Koza, Z. He, A. Miller and J. Switzer, “Electrodeposition of crystalline Co3O4—A catalyst for the oxygen evolution reaction,” Chemistry of Materials, vol. 24, no. 18, pp. 3567-3573, 2012.
  • [7] J. Jang and L. Li, “Synthesis of sphere-like Co3O4 nanocrystals via a simple polyol route,” Materials Letters, vol. 61, no. 27, pp. 4894-4896, 2007.
  • [8] B. Zhang, X. Zhou, C. Jiang, F. Qu and M. Yang, “Facile synthesis of mesoporous Co3O4 nanofans as gas sensing materials for selective detection of xylene vapor,” Materials Letters, vol. 218, pp. 127-130, 2018.
  • [9] X. Luo, W. Cao and M. Xing, “Preparation of nano Y2O2S:Eu phosphor by ethanol assisted combustion synthesis method,” Journal of Rare Earths, vol. 24, no. 1, pp. 20-24, 2006.
  • [10] O. Kaygili, C. Tatar, S. Keser and N. Bulut, “Preparation and characterization of monetites co-doped with Ni/Al, Ni/Mn and Al/Mn,” Materials Letters, vol. 201, pp. 39-42, 2017.
  • [11] A.B. Vennela, D. Mangalaraj, N. Muthukumarasamy, S. Agilan and K.V. Hemalatha, “Structural and optical properties of Co3O4 nanoparticles prepared by sol-gel technique for photocatalytic application,” International Journal of Electrochemical Science, pp. 3535-3552, 2019.
  • [12] B.D. Cullity, Elements of X–ray Diffraction. 2nd Edition, Massachusetts, USA: Addison–Wesley Publishing Company, 1978, p. 102.
  • [13] J. Pal and P. Chauhan, “Study of physical properties of cobalt oxide (Co3O4) nanocrystals,” Materials Characterization, vol. 61, no. 5, pp. 575-579, 2010.
  • [14] M.C. Gardey Merino, M. Palermo, R. Belda, M.E. Fernández de Rapp, G.E. Lascalea and P.G. Vázquez, “Combustion synthesis of Co3O4 nanoparticles: Fuel ratio effect on the physical properties of the resulting powders,” Procedia Materials Science, vol. 1, pp. 588-593, 2012.
  • [15] M. Th. Makhlouf, B. M. Abu-Zied and T. H. Mansoure, “Direct fabrication of cobalt oxide nano-particles employing glycine as a combustion fuel,” Physical Chemistry, vol. 2, no. 6, pp. 86-93, 2013.
  • [16] M. Makhlouf, B. Abu-Zied and T. Mansoure, “Direct fabrication of cobalt oxide nanoparticles employing sucrose as a combustion fuel,” Journal of Nanoparticles, vol. 2013, pp. 1-7, 2013.
  • [17] K. Venkateswara Rao and C.S. Sunandana, “Co3O4 nanoparticles by chemical combustion: Effect of fuel to oxidizer ratio on structure, microstructure and EPR,” Solid State Communications, vol. 148, no. 1-2, 32-37, 2008.
  • [18] L. Carvalho, V. Melo, E. Vitor Sobrinho, D. Ruiz and D. Melo, “Effect of urea excess on the properties of the MgAl2O4 obtained by microwave-assisted combustion,” Materials Research, vol. 21, no. 1, 2017.
  • [19] A. Khorsand Zak, W. Abd Majid, M.E. Abrishami and R. Yousefi, “X-ray analysis of ZnO nanoparticles by Williamson–Hall and size–strain plot methods,” Solid State Sciences, vol. 13, no. 1, 251-256, 2011.
  • [20] G. Anandha Babu, G. Ravi, Y. Hayakawa and M. Kumaresavanji, “Synthesis and calcinations effects on size analysis of Co3O4 nanospheres and their superparamagnetic behaviors,” Journal of Magnetism and Magnetic Materials, vol. 375, 184-193, 2015.
  • [21] M. Galini, M. Salehi and M. Behzad, “Structural, magnetic and dielectric properties of Dy-doped Co3O4 nanostructures for the electrochemical evolution of oxygen in alkaline media,” Journal of Nanostructures, Vol. 8, no. 4, pp. 391-403, 2018.
  • [22] S. Bhagade, S. Chaurasia and B. Bhanage, “Reductive-hydroformylation of 1-octene to nonanol using fibrous Co3O4 catalyst,” Catalysis Today, vol. 309, pp. 147-152, 2018.
  • [23] H. Bazrafshan, R.S. Touba, Z.A. Tesieh, S. Dabirnia and B. Nasernejad, “Hydrothermal synthesis of Co3O4 nanosheets and its application in photoelectrochemical water splitting,” Chemical Engineering Communications, vol. 204, no. 10, 1105-1112, 2017.

Tiyoüre İlavesiyle Co3O4’ün Kristalleşmesinin Geliştirilmesi

Year 2020, Volume: 8 Issue: 2, 1626 - 1633, 30.04.2020
https://doi.org/10.29130/dubited.654169

Abstract

Tiyoüre/Co molar oranı 0, 5 ve 10 olan trikobalt tetraoksit (Co3O4) numuneleri yaş kimyasal sentez ile hazırlandı. Tiyoüre içeriğinin Co3O4’ün kristal yapısıyla ilgili parametreleri üzerine etkileri belirlendi. Tiyoüre miktarındaki artış, örgü parametreleri ve spesifik yüzey alanında kademeli bir düşüşe, kristalleşme ve kristal büyüklüğünde bir düşüşe neden oldu. Deneysel analiz sonuçları, tiyoüre içeriğinin Co3O4’ün kristal yapısıyla ilgili parametrelerinin kontrol edilmesinde kullanılabileceğini gösterdi.

References

  • [1] T. Zhou, T. Zhang, J. Deng, R. Zhang, Z. Lou and L. Wang, “P-type Co3O4 nanomaterials-based gas sensor: Preparation and acetone sensing performance,” Sensors and Actuators B: Chemical, vol. 242, pp. 369-377, 2017.
  • [2] N. Sheibani, M. Kazemipour, S. Jahani and M. Foroughi, “A novel highly sensitive thebaine sensor based on MWCNT and dandelion-like Co3O4 nanoflowers fabricated via solvothermal synthesis,” Microchemical Journal, vol. 149, pp. 103980, 2019.
  • [3] F. Qu, T. Thomas, B. Zhang, X. Zhou, S. Zhang, S. Ruan M. Yang, “Self-sacrificing templated formation of Co3O4/ZnCo2O4 composite hollow nanostructures for highly sensitive detecting acetone vapor,” Sensors and Actuators B: Chemical, vol. 273, pp. 1202-1210, 2018.
  • [4] L. Wang, Y.F. Yuan, Y.Q. Zheng, X.T. Zhang, S.M. Yin and S.Y. Guo, “Capsule-like Co3O4 nanocage@ Co3O4 nanoframework/TiO2 nodes as anode material for lithium-ion batteries,” Materials Letters, vol. 253, pp. 5-8, 2019.
  • [5] S.A. Pawar, D.S. Patil and J.C. Shin, “Transition of hexagonal to square sheets of Co3O4 in a triple heterostructure of Co3O4/MnO2/GO for high performance supercapacitor electrode,” Current Applied Physics, vol. 19, no. 7, pp. 794-803, 2019.
  • [6] J. Koza, Z. He, A. Miller and J. Switzer, “Electrodeposition of crystalline Co3O4—A catalyst for the oxygen evolution reaction,” Chemistry of Materials, vol. 24, no. 18, pp. 3567-3573, 2012.
  • [7] J. Jang and L. Li, “Synthesis of sphere-like Co3O4 nanocrystals via a simple polyol route,” Materials Letters, vol. 61, no. 27, pp. 4894-4896, 2007.
  • [8] B. Zhang, X. Zhou, C. Jiang, F. Qu and M. Yang, “Facile synthesis of mesoporous Co3O4 nanofans as gas sensing materials for selective detection of xylene vapor,” Materials Letters, vol. 218, pp. 127-130, 2018.
  • [9] X. Luo, W. Cao and M. Xing, “Preparation of nano Y2O2S:Eu phosphor by ethanol assisted combustion synthesis method,” Journal of Rare Earths, vol. 24, no. 1, pp. 20-24, 2006.
  • [10] O. Kaygili, C. Tatar, S. Keser and N. Bulut, “Preparation and characterization of monetites co-doped with Ni/Al, Ni/Mn and Al/Mn,” Materials Letters, vol. 201, pp. 39-42, 2017.
  • [11] A.B. Vennela, D. Mangalaraj, N. Muthukumarasamy, S. Agilan and K.V. Hemalatha, “Structural and optical properties of Co3O4 nanoparticles prepared by sol-gel technique for photocatalytic application,” International Journal of Electrochemical Science, pp. 3535-3552, 2019.
  • [12] B.D. Cullity, Elements of X–ray Diffraction. 2nd Edition, Massachusetts, USA: Addison–Wesley Publishing Company, 1978, p. 102.
  • [13] J. Pal and P. Chauhan, “Study of physical properties of cobalt oxide (Co3O4) nanocrystals,” Materials Characterization, vol. 61, no. 5, pp. 575-579, 2010.
  • [14] M.C. Gardey Merino, M. Palermo, R. Belda, M.E. Fernández de Rapp, G.E. Lascalea and P.G. Vázquez, “Combustion synthesis of Co3O4 nanoparticles: Fuel ratio effect on the physical properties of the resulting powders,” Procedia Materials Science, vol. 1, pp. 588-593, 2012.
  • [15] M. Th. Makhlouf, B. M. Abu-Zied and T. H. Mansoure, “Direct fabrication of cobalt oxide nano-particles employing glycine as a combustion fuel,” Physical Chemistry, vol. 2, no. 6, pp. 86-93, 2013.
  • [16] M. Makhlouf, B. Abu-Zied and T. Mansoure, “Direct fabrication of cobalt oxide nanoparticles employing sucrose as a combustion fuel,” Journal of Nanoparticles, vol. 2013, pp. 1-7, 2013.
  • [17] K. Venkateswara Rao and C.S. Sunandana, “Co3O4 nanoparticles by chemical combustion: Effect of fuel to oxidizer ratio on structure, microstructure and EPR,” Solid State Communications, vol. 148, no. 1-2, 32-37, 2008.
  • [18] L. Carvalho, V. Melo, E. Vitor Sobrinho, D. Ruiz and D. Melo, “Effect of urea excess on the properties of the MgAl2O4 obtained by microwave-assisted combustion,” Materials Research, vol. 21, no. 1, 2017.
  • [19] A. Khorsand Zak, W. Abd Majid, M.E. Abrishami and R. Yousefi, “X-ray analysis of ZnO nanoparticles by Williamson–Hall and size–strain plot methods,” Solid State Sciences, vol. 13, no. 1, 251-256, 2011.
  • [20] G. Anandha Babu, G. Ravi, Y. Hayakawa and M. Kumaresavanji, “Synthesis and calcinations effects on size analysis of Co3O4 nanospheres and their superparamagnetic behaviors,” Journal of Magnetism and Magnetic Materials, vol. 375, 184-193, 2015.
  • [21] M. Galini, M. Salehi and M. Behzad, “Structural, magnetic and dielectric properties of Dy-doped Co3O4 nanostructures for the electrochemical evolution of oxygen in alkaline media,” Journal of Nanostructures, Vol. 8, no. 4, pp. 391-403, 2018.
  • [22] S. Bhagade, S. Chaurasia and B. Bhanage, “Reductive-hydroformylation of 1-octene to nonanol using fibrous Co3O4 catalyst,” Catalysis Today, vol. 309, pp. 147-152, 2018.
  • [23] H. Bazrafshan, R.S. Touba, Z.A. Tesieh, S. Dabirnia and B. Nasernejad, “Hydrothermal synthesis of Co3O4 nanosheets and its application in photoelectrochemical water splitting,” Chemical Engineering Communications, vol. 204, no. 10, 1105-1112, 2017.
There are 23 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Omer Kaygili 0000-0002-2321-1455

Niyazi Bulut 0000-0003-2863-7700

İ.s. Yahıa 0000-0002-9855-5033

İsmail Ercan 0000-0001-6490-3792

Filiz Ercan 0000-0002-6478-8920

Tankut Ates 0000-0002-4519-2953

Hanifi Kebiroglu 0000-0002-6764-3364

Riyadh Saeed Agid 0000-0003-2865-1297

Bahroz Kareem Mahmood 0000-0003-3579-3955

Publication Date April 30, 2020
Published in Issue Year 2020 Volume: 8 Issue: 2

Cite

APA Kaygili, O., Bulut, N., Yahıa, İ., Ercan, İ., et al. (2020). Crystallinity Improvement of Co3O4 by Adding Thiourea. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi, 8(2), 1626-1633. https://doi.org/10.29130/dubited.654169
AMA Kaygili O, Bulut N, Yahıa İ, Ercan İ, Ercan F, Ates T, Kebiroglu H, Agid RS, Mahmood BK. Crystallinity Improvement of Co3O4 by Adding Thiourea. DUBİTED. April 2020;8(2):1626-1633. doi:10.29130/dubited.654169
Chicago Kaygili, Omer, Niyazi Bulut, İ.s. Yahıa, İsmail Ercan, Filiz Ercan, Tankut Ates, Hanifi Kebiroglu, Riyadh Saeed Agid, and Bahroz Kareem Mahmood. “Crystallinity Improvement of Co3O4 by Adding Thiourea”. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi 8, no. 2 (April 2020): 1626-33. https://doi.org/10.29130/dubited.654169.
EndNote Kaygili O, Bulut N, Yahıa İ, Ercan İ, Ercan F, Ates T, Kebiroglu H, Agid RS, Mahmood BK (April 1, 2020) Crystallinity Improvement of Co3O4 by Adding Thiourea. Düzce Üniversitesi Bilim ve Teknoloji Dergisi 8 2 1626–1633.
IEEE O. Kaygili, “Crystallinity Improvement of Co3O4 by Adding Thiourea”, DUBİTED, vol. 8, no. 2, pp. 1626–1633, 2020, doi: 10.29130/dubited.654169.
ISNAD Kaygili, Omer et al. “Crystallinity Improvement of Co3O4 by Adding Thiourea”. Düzce Üniversitesi Bilim ve Teknoloji Dergisi 8/2 (April 2020), 1626-1633. https://doi.org/10.29130/dubited.654169.
JAMA Kaygili O, Bulut N, Yahıa İ, Ercan İ, Ercan F, Ates T, Kebiroglu H, Agid RS, Mahmood BK. Crystallinity Improvement of Co3O4 by Adding Thiourea. DUBİTED. 2020;8:1626–1633.
MLA Kaygili, Omer et al. “Crystallinity Improvement of Co3O4 by Adding Thiourea”. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi, vol. 8, no. 2, 2020, pp. 1626-33, doi:10.29130/dubited.654169.
Vancouver Kaygili O, Bulut N, Yahıa İ, Ercan İ, Ercan F, Ates T, Kebiroglu H, Agid RS, Mahmood BK. Crystallinity Improvement of Co3O4 by Adding Thiourea. DUBİTED. 2020;8(2):1626-33.