Research Article
BibTex RIS Cite

Partikül Boyutunun ve B4C Katkı Oranının Al-B4C Kompozitlerin Mekanik ve Mikroyapı Özellikleri Üzerine Olan Etkisi

Year 2020, Volume: 8 Issue: 3, 1864 - 1876, 31.07.2020
https://doi.org/10.29130/dubited.683876

Abstract

Bu çalışmada, Al-B4C kompozitler farklı partikül boyutlarında (B4C: 3.5 ve 20 um) ve takviye oranlarında (% B4C: 1, 3, 6, 9, 12, 15, 30) toz metalürjisi yöntemiyle üretilmiştir. Kompozitlerin görünür yoğunluğu, basma dayanımı ve Vickers sertliği sırasıyla; Arşimet yoğunluk ölçüm cihazı, üniversal test makinesi ve mikro Vickers sertlik ölçüm cihazıyla belirlenmiştir. Üretilen kompozitlerin faz ve mikro-yapı analizi sırasıyla; X-ışını kırınımı cihazı ve taramalı elektron mikroskobu kullanılarak analiz edilmiştir. Test sonuçlarına göre; en yüksek mikro Vickers sertliği (68.8 HV), görünür yoğunluk (2.61 g/cm3), basma dayanımı (242 MPa) ve en düşük gözeneklilik oranı (% 1.4) %30 B4C katkı oranına ve 3.5 µm B4C partikül boyutuna sahip Al-B4C kompozit yapıda elde edilmiştir. Saf alüminyum ile karşılaştırıldığında Al-%30B4C kompozitin Vickers sertliğinin ve basma dayanımının sırasıyla; %129.3 ve %165.9 oranında arttığı tespit edilmiştir.

References

  • [1] G.S. Hanumanth and G.A. Irons, “Particle incorporation by melt stirring for the production of metal-matrix composites,” Journal of Materials Science, vol. 28, pp. 2459-2465, 1993.
  • [2] Y. Sahin and S. Murphy, “The effect of fibre orientation on the dry sliding wear of borsic-reinforced 2014 Al alloy,” Journal of Materials Science, vol. 34, pp. 5399–5407, 1996.
  • [3] M. Kok, “Production and mechanical properties of Al2O3 particle-reinforced 2024 aluminium alloy composites,” Journal of Materials Processing Technology, vol. 161, pp. 381–387, 2005.
  • [4] K.K. Chawla, Composite Materials. New York: Springer, 2006.
  • [5] D.K. Koli, G. Agnihotri, and R. Purohit, “Advanced aluminium matrix composites: the critical need of automotive and aerospace engineering fields,” Materials Today: Proceedings, vol. 2, pp. 3032-3041, 2015.
  • [6] A. Macke, B.F. Schultz, P., and Rohatgi, “Metal matrix composites offer the automotive industry an opportunity to reduce vehicle weight, improve performance,” Advanced Materials&Proceedings, vol. 170, pp. 19-23, 2012.
  • [7] J.K. Chen and I.S. Huang, “Thermal properties of aluminum–graphite composites by powder metallurgy,” Composites Part B-Engineering, vol. 44, no. 1, pp. 698–703, 2013.
  • [8] T.M. Lillo, “Enhancing ductility of Al6061+10 wt.% B4C through equal-channel angular extrusion processing,” Materials Science and Engineering A-Structural Materials, vol. 410-411, pp. 443-446, 2005.
  • [9] A. Alizadeh, E. Taheri-Nassaj and H.R. Baharvandi, B. “Preparation and investigation of Al-4wt%B4C nanocomposite powders using mechanical milling,” Bulletin of Materials Science, vol. 34, no. 5, 1039-1048, 2011.
  • [10] H.M. Hu, E.J. Lavernia, W.C. Harrigan, J. Kajuch and S.R. Nutt, “Microstructural investigation on B4C/Al-7093 composite,” Materials Science and Engineering A-Structural Materials, vol. 297, no. 1-2, pp. 94-104, 2001.
  • [11] V.M. Ravindranath, G.S. Shiva Shankar, S. Basavarajappa, and N.G. Siddesh Kumar, “Dry sliding wear behavior of hybrid aluminum metal matrix composite reinforced with boron carbide and graphite particles,” Materials Today: Proceedings, vol. 4, no. 10, pp. 11163-11167, 2017.
  • [12] A. Saboori, C. Novara, M. Pavese, C. Padini, F. Giorgis, P. Fino, “An investigation on the sinterability and the compaction behavior of aluminum/graphene nanoplatelets (GNPs) prepared by powder metallurgy,” Journal of Materials Engineering and Performance, vol. 26, no. 3, pp. 993-999, 2017.
  • [13] G. O’Donnel and L. Looney, “Production of aluminium matrix composite components using conventional PM technology,” Materials Science and Engineering A-Structural Materials, vol. 303, issue. 1-2, pp. 292–301, 2001.
  • [14] O.G. Neikow, S.S. Naboychenko, and G. Dawson, Handbook of non-ferrous metal powders-technologies and applications. Amsterdam: Elsevier, 2009.
  • [15] R.S. Rana, R. Purohit, V.K. Soni, S. Das, “Characterization of mechanical properties and microstructure of aluminium alloy-SiC composites,” Materials Today: Proceedings, vol. 2, no. 4-5, pp. 1149-1156, 2015.
  • [16] M. Zamani, H. Dini, A. Svoboda, L. Lindgren, S. Seifeddine, N. Andersson, A.E.W. Jarfors, “A dislocation density based constitutive model for as-cast Al-Si alloys: effect of temperature and microstructure,” International Journal of Mechanical Sciences, vol. 121, pp. 164–170, 2017.
  • [17] N. Srivastava and G.P. Chaudhari, “Microstructural evolution and mechanical behavior of ultrasonically synthesized Al6061-nano alumina composites,” Materials Science and Engineering A-Structural Materials, vol. 724, pp. 199-207, 2018.
  • [18] M. Khademian, A. Alizadeh A. Abdollahi, “Fabrication and characterization of hot rolled and hot extruded boron carbide (B4C) reinforced A356 aluminum alloy matrix composites produced by stir casting method,” Transactions of the Indian Institute of Metals, vol. 70, no. 6, pp. 1635-1646, 2017.
  • [19] X. Pang, Y. Xian, W. Wang, P. Zhang, “Tensile properties and strengthening effects of 6061 Al/12wt%B4C composite reinforced with nano-Al2O3 particles,” Journal of Alloys and Compounds, vol. 768, pp. 476-484, 2018.
  • [20] M. Ipekoglu, A. Nekouyan, O. Albayrak, S. Altintas, “Mechanical characterization of B4C reinforced aluminum matrix composites produced by squeeze casting,” Journal of Materials Research, vol. 32, pp. 599-605, 2017.
  • [21] S. Dhandapani, T. Rajmohan, K. Palanikumar, M. Charan, “Synthesis and characterization of dual particle (MWCNT+B4C) reinforced sintered hybrid aluminum matrix composites,” Particulate Science and Technology, vol. 34, pp. 255-262, 2016.
  • [22] S. Das, M. Chandrasekaran, S. Samanta, “Comparison of mechanical properties of AA6061 reinforced with (SiC/B4C) micro/nano ceramic particle reinforcements,” Materials Today: Proceedings, vol. 5, no.9, pp. 18110-18119, 2018.
  • [23] B. Ravi, B.B. Naik, J.U. Prakash, “Characterization of aluminum matrix composites (AA6061/B4C) fabricated by stir casting technique,” Materials Today: Proceedings, vol. 2, no.4-5, pp. 2984-2990, 2018.
  • [24] G.S. Saini and S. Goyal, “Fabrication and microstructure study of aluminum matrix composites reinforced with SiC and B4C particulates,” Nano Hybrid and Composites, vol. 16, pp. 26-29, 2017.
  • [25] M.C. Şenel, M. Gürbüz, E. Koç, “The fabrication and characterization of synergistic Al-SiC-GNPs hybrid composites,” Composites Part B-Engineering, vol. 154, pp. 1-9, 2018.
  • [26] M. Gürbüz, M.C. Şenel, E. Koç, “The effect of sintering temperature, time and graphene addition on the mechanical properties and microstructure of aluminum composites,” Journal of Composite Materials, vol. 52, no. 4, pp. 553-563, 2018.
  • [27] T. Varol and A. Canakci, “Microstructure, electrical conductivity and hardness of multilayer graphene/copper nanocomposites synthesized by flake powder metallurgy,” Metals and Materials International, vol. 21, no. 4, pp. 704-712, 2015.
  • [28] M. Rahimian, N. Ehsani, N. Parvin, H.R. Baharvandi, “The effect of particle size, sintering temperature and sintering time on the properties of Al–Al2O3 composites,” made by powder metallurgy, Journal of Materials Processing Technology, vol. 209, no. 14, pp. 5387-5393, 2009.
  • [29] G.E. Dieter, Mechanical Metallurgy. New York: McGraw-Hill, 1986.

The Influence of Particle Size and Reinforcement Rate of B4C on Mechanical and Microstructure Properties of Al-B4C Composites

Year 2020, Volume: 8 Issue: 3, 1864 - 1876, 31.07.2020
https://doi.org/10.29130/dubited.683876

Abstract

In this study, Al-B4C composites were produced with various particle sizes (B4C: 3.5 and 20 µm) and reinforcement rates (B4C%: 1, 3, 6, 9, 12, 15, 30%) by the powder metallurgy method. The apparent density, compressive strength, and Vickers hardness of the composites were determined by Archimedes’ density meter, universal test machine, and micro Vickers hardness measurement device, respectively. The phase and microstructural analysis of the fabricated composites were analyzed using an X-ray diffraction device and scanning electron microscope, respectively. From the test results, the highest micro Vickers hardness (68.8 HV), apparent density (2.61 g/cm3), compressive strength (242 MPa), and minimum porosity (1.4%) were determined at 3.5 µm particle size and 30% reinforcement rate of B4C. The enhancement in Vickers hardness and compressive strength of Al-30%B4C composite was detected as +129.3% and +165.9% compared with pure aluminum.

References

  • [1] G.S. Hanumanth and G.A. Irons, “Particle incorporation by melt stirring for the production of metal-matrix composites,” Journal of Materials Science, vol. 28, pp. 2459-2465, 1993.
  • [2] Y. Sahin and S. Murphy, “The effect of fibre orientation on the dry sliding wear of borsic-reinforced 2014 Al alloy,” Journal of Materials Science, vol. 34, pp. 5399–5407, 1996.
  • [3] M. Kok, “Production and mechanical properties of Al2O3 particle-reinforced 2024 aluminium alloy composites,” Journal of Materials Processing Technology, vol. 161, pp. 381–387, 2005.
  • [4] K.K. Chawla, Composite Materials. New York: Springer, 2006.
  • [5] D.K. Koli, G. Agnihotri, and R. Purohit, “Advanced aluminium matrix composites: the critical need of automotive and aerospace engineering fields,” Materials Today: Proceedings, vol. 2, pp. 3032-3041, 2015.
  • [6] A. Macke, B.F. Schultz, P., and Rohatgi, “Metal matrix composites offer the automotive industry an opportunity to reduce vehicle weight, improve performance,” Advanced Materials&Proceedings, vol. 170, pp. 19-23, 2012.
  • [7] J.K. Chen and I.S. Huang, “Thermal properties of aluminum–graphite composites by powder metallurgy,” Composites Part B-Engineering, vol. 44, no. 1, pp. 698–703, 2013.
  • [8] T.M. Lillo, “Enhancing ductility of Al6061+10 wt.% B4C through equal-channel angular extrusion processing,” Materials Science and Engineering A-Structural Materials, vol. 410-411, pp. 443-446, 2005.
  • [9] A. Alizadeh, E. Taheri-Nassaj and H.R. Baharvandi, B. “Preparation and investigation of Al-4wt%B4C nanocomposite powders using mechanical milling,” Bulletin of Materials Science, vol. 34, no. 5, 1039-1048, 2011.
  • [10] H.M. Hu, E.J. Lavernia, W.C. Harrigan, J. Kajuch and S.R. Nutt, “Microstructural investigation on B4C/Al-7093 composite,” Materials Science and Engineering A-Structural Materials, vol. 297, no. 1-2, pp. 94-104, 2001.
  • [11] V.M. Ravindranath, G.S. Shiva Shankar, S. Basavarajappa, and N.G. Siddesh Kumar, “Dry sliding wear behavior of hybrid aluminum metal matrix composite reinforced with boron carbide and graphite particles,” Materials Today: Proceedings, vol. 4, no. 10, pp. 11163-11167, 2017.
  • [12] A. Saboori, C. Novara, M. Pavese, C. Padini, F. Giorgis, P. Fino, “An investigation on the sinterability and the compaction behavior of aluminum/graphene nanoplatelets (GNPs) prepared by powder metallurgy,” Journal of Materials Engineering and Performance, vol. 26, no. 3, pp. 993-999, 2017.
  • [13] G. O’Donnel and L. Looney, “Production of aluminium matrix composite components using conventional PM technology,” Materials Science and Engineering A-Structural Materials, vol. 303, issue. 1-2, pp. 292–301, 2001.
  • [14] O.G. Neikow, S.S. Naboychenko, and G. Dawson, Handbook of non-ferrous metal powders-technologies and applications. Amsterdam: Elsevier, 2009.
  • [15] R.S. Rana, R. Purohit, V.K. Soni, S. Das, “Characterization of mechanical properties and microstructure of aluminium alloy-SiC composites,” Materials Today: Proceedings, vol. 2, no. 4-5, pp. 1149-1156, 2015.
  • [16] M. Zamani, H. Dini, A. Svoboda, L. Lindgren, S. Seifeddine, N. Andersson, A.E.W. Jarfors, “A dislocation density based constitutive model for as-cast Al-Si alloys: effect of temperature and microstructure,” International Journal of Mechanical Sciences, vol. 121, pp. 164–170, 2017.
  • [17] N. Srivastava and G.P. Chaudhari, “Microstructural evolution and mechanical behavior of ultrasonically synthesized Al6061-nano alumina composites,” Materials Science and Engineering A-Structural Materials, vol. 724, pp. 199-207, 2018.
  • [18] M. Khademian, A. Alizadeh A. Abdollahi, “Fabrication and characterization of hot rolled and hot extruded boron carbide (B4C) reinforced A356 aluminum alloy matrix composites produced by stir casting method,” Transactions of the Indian Institute of Metals, vol. 70, no. 6, pp. 1635-1646, 2017.
  • [19] X. Pang, Y. Xian, W. Wang, P. Zhang, “Tensile properties and strengthening effects of 6061 Al/12wt%B4C composite reinforced with nano-Al2O3 particles,” Journal of Alloys and Compounds, vol. 768, pp. 476-484, 2018.
  • [20] M. Ipekoglu, A. Nekouyan, O. Albayrak, S. Altintas, “Mechanical characterization of B4C reinforced aluminum matrix composites produced by squeeze casting,” Journal of Materials Research, vol. 32, pp. 599-605, 2017.
  • [21] S. Dhandapani, T. Rajmohan, K. Palanikumar, M. Charan, “Synthesis and characterization of dual particle (MWCNT+B4C) reinforced sintered hybrid aluminum matrix composites,” Particulate Science and Technology, vol. 34, pp. 255-262, 2016.
  • [22] S. Das, M. Chandrasekaran, S. Samanta, “Comparison of mechanical properties of AA6061 reinforced with (SiC/B4C) micro/nano ceramic particle reinforcements,” Materials Today: Proceedings, vol. 5, no.9, pp. 18110-18119, 2018.
  • [23] B. Ravi, B.B. Naik, J.U. Prakash, “Characterization of aluminum matrix composites (AA6061/B4C) fabricated by stir casting technique,” Materials Today: Proceedings, vol. 2, no.4-5, pp. 2984-2990, 2018.
  • [24] G.S. Saini and S. Goyal, “Fabrication and microstructure study of aluminum matrix composites reinforced with SiC and B4C particulates,” Nano Hybrid and Composites, vol. 16, pp. 26-29, 2017.
  • [25] M.C. Şenel, M. Gürbüz, E. Koç, “The fabrication and characterization of synergistic Al-SiC-GNPs hybrid composites,” Composites Part B-Engineering, vol. 154, pp. 1-9, 2018.
  • [26] M. Gürbüz, M.C. Şenel, E. Koç, “The effect of sintering temperature, time and graphene addition on the mechanical properties and microstructure of aluminum composites,” Journal of Composite Materials, vol. 52, no. 4, pp. 553-563, 2018.
  • [27] T. Varol and A. Canakci, “Microstructure, electrical conductivity and hardness of multilayer graphene/copper nanocomposites synthesized by flake powder metallurgy,” Metals and Materials International, vol. 21, no. 4, pp. 704-712, 2015.
  • [28] M. Rahimian, N. Ehsani, N. Parvin, H.R. Baharvandi, “The effect of particle size, sintering temperature and sintering time on the properties of Al–Al2O3 composites,” made by powder metallurgy, Journal of Materials Processing Technology, vol. 209, no. 14, pp. 5387-5393, 2009.
  • [29] G.E. Dieter, Mechanical Metallurgy. New York: McGraw-Hill, 1986.
There are 29 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Mahmut Can Şenel 0000-0001-7897-1366

Mevlüt Gürbüz 0000-0003-2365-5918

Publication Date July 31, 2020
Published in Issue Year 2020 Volume: 8 Issue: 3

Cite

APA Şenel, M. C., & Gürbüz, M. (2020). The Influence of Particle Size and Reinforcement Rate of B4C on Mechanical and Microstructure Properties of Al-B4C Composites. Duzce University Journal of Science and Technology, 8(3), 1864-1876. https://doi.org/10.29130/dubited.683876
AMA Şenel MC, Gürbüz M. The Influence of Particle Size and Reinforcement Rate of B4C on Mechanical and Microstructure Properties of Al-B4C Composites. DUBİTED. July 2020;8(3):1864-1876. doi:10.29130/dubited.683876
Chicago Şenel, Mahmut Can, and Mevlüt Gürbüz. “The Influence of Particle Size and Reinforcement Rate of B4C on Mechanical and Microstructure Properties of Al-B4C Composites”. Duzce University Journal of Science and Technology 8, no. 3 (July 2020): 1864-76. https://doi.org/10.29130/dubited.683876.
EndNote Şenel MC, Gürbüz M (July 1, 2020) The Influence of Particle Size and Reinforcement Rate of B4C on Mechanical and Microstructure Properties of Al-B4C Composites. Duzce University Journal of Science and Technology 8 3 1864–1876.
IEEE M. C. Şenel and M. Gürbüz, “The Influence of Particle Size and Reinforcement Rate of B4C on Mechanical and Microstructure Properties of Al-B4C Composites”, DUBİTED, vol. 8, no. 3, pp. 1864–1876, 2020, doi: 10.29130/dubited.683876.
ISNAD Şenel, Mahmut Can - Gürbüz, Mevlüt. “The Influence of Particle Size and Reinforcement Rate of B4C on Mechanical and Microstructure Properties of Al-B4C Composites”. Duzce University Journal of Science and Technology 8/3 (July 2020), 1864-1876. https://doi.org/10.29130/dubited.683876.
JAMA Şenel MC, Gürbüz M. The Influence of Particle Size and Reinforcement Rate of B4C on Mechanical and Microstructure Properties of Al-B4C Composites. DUBİTED. 2020;8:1864–1876.
MLA Şenel, Mahmut Can and Mevlüt Gürbüz. “The Influence of Particle Size and Reinforcement Rate of B4C on Mechanical and Microstructure Properties of Al-B4C Composites”. Duzce University Journal of Science and Technology, vol. 8, no. 3, 2020, pp. 1864-76, doi:10.29130/dubited.683876.
Vancouver Şenel MC, Gürbüz M. The Influence of Particle Size and Reinforcement Rate of B4C on Mechanical and Microstructure Properties of Al-B4C Composites. DUBİTED. 2020;8(3):1864-76.