Research Article
BibTex RIS Cite

Isolation and Characterization of Hemicellulose and Cellulose from Various Waste Biomass Wastes

Year 2020, Volume: 8 Issue: 4, 2296 - 2312, 29.10.2020
https://doi.org/10.29130/dubited.702096

Abstract

In this study, the potential of different types of biowaste to products with high added value was investigated through a sustainable bio-refinery approach. For this purpose, the pine wood sawdust, the walnut shell, the sugar beet pulp, the tea pulp and apricot kernel had been evaluated. The effect of chemical structure of biomass on the isolation yields of main components (hemicellulose, cellulose and lignin) were investigated. The main components were characterized with FTIR analysis and the obtained spectrums has been interpreted with the literature’s. It was determined that lignin content of biomass used in this study had no effect on hemicellulose extraction yield. The tea pulp's hemicellulose yield (25%) and the walnut shell's lignin isolation yield (19%) were found to be higher than the other biomass types.

References

  • [1] B. C. Saha, “Hemicellulose bioconversion,” J Ind Microbiol Biotechnol, c. 30, ss. 279-291, 2003, doi: 10.1007/s10295-003-0049-x.
  • [2] M.S. Hasyierah Noor, M.M.D. Zulkali, K.I. Syahidah Ku, “Ferulic acid from lignocellulosic biomass: Review,” Malaysian Universities Conferences on Engineering and Techonology, Malaysia 2008.
  • [3] Bahçegül, “Effect of Biomass Pretreatment Conditions on the Glucose and Biodegradable Film Productıon From Lignocellulosic Wastes,” Ph.D. dissertation, Natural and Applıed Sciences, Middle East Technical University, Ankara, Türkiye, 2013.
  • [4] M. Çopuroğlu, “Haşhaş sapı ve Pamuk Sapındaki Polisakkarit Bileşimlerinin Analizinin Yapılması,” Yüksek lisans tezi, Fen Bilimleri Enstitüsü, Süleyman Demirel Üniversitesi, Isparta, Türkiye, 2004.
  • [5] Ö. Dinçtürk, “Haşhaş Sapı ve Pamuk Sapı Hemiselülozlarının Alkali H2O2 ile Fraksiyonel Ekstraksiyonu ve Bileşim Karakterizasyonu,” Yüksek lisans tezi, Fen Bilimleri Enstitüsü, Süleyman Demirel Üniversitesi, Isparta, Türkiye, 2007.
  • [6] J. M. Fang, R.C. Sun, D. Salisbury, P. Fowler, J. Tomkinson, “Comparative Study of Hemicelluloses from Wheat Straw by Alkali and Hydrogen Peroxide Extractions,” Polymer Degradation and Stability, c. 66, s. 3, ss. 423-432, 1999a.
  • [7] J.M. Fang, R. Sun, P. Fowler, J. Tomkinson, C.A.S. Hıll, “Esterification of Wheat Straw Hemicelluloses in the N, N- Dimethylformamide/Lithium Chloride Homogeneous system,” Journal of Applied Polymer Science, c. 74, s. 9, ss. 2301-2311, 1999b.
  • [8] B. Sapcı, “Pamuk Saplarından Antioksidan ve Ksilitol Üretimi” Yüksek lisans tezi, Gıda Mühendisliği Anabilim Dalı, Gaziosmanpaşa Üniversitesi, Tokat, Türkiye, 2012.
  • [9] J.X. Sun, X.F. Sun, Y.Q. Su, “Fractional Extraction and Structural Characterization of Sugarcane Bagasse Hemicelluloses,” Carbohydrate Polymers, c. 56, s. 2, ss. 195-204, 2004a.
  • [10] J.X. Sun, F.C. Mao, X.F. Sun, R.C. Sun, “Comparative Study of Hemicelluloses Isolated with Alkaline Peroxide from Lignocellulosic Materials,” Journal of Wood Chemistry and Technology, c. 24, s. 3, ss. 239-262, 2004b.
  • [11] Toraman E. “Investigation of Alkaline Pretreatment Parameters on A Multi-Product Basis for the Co-Production of Glucose and Hemicellulose Based Films from Corn Cobs,” Graduate Thesis, Natural and Applied Sciences, Middle East Technical University, Ankara, Türkiye, 2012.
  • [12] G. Usal, “Buğday tarlası atıklarından alkali hidroliz ile fenolik bileşiklerin üretimi ve üretim koşullarının optimizasyonu,” Yüksek lisans tezi, Fen Bilimleri Enstitüsü, Gaziosmanpaşa Üniversitesi, Tokat, Türkiye, 2014.
  • [13] H. Yılmaz, “Hemicellulose Extraction from Agro-Food Industrial Wastes and Its Application in Foods” M.S. thesis, Food Engineering Department, Middle East Technical University, Ankara, Türkiye, 2012.
  • [14] F. Xu, J.X. Sun, C.F. Liu, R.C. Sun, “Comparative Study of Alkali- and Acidic Organic Solvent- Soluble Hemicellulosic Polysaccharides from Sugarcane Bagasse,” Carbohydrate Research, c. 341, s. 2, 253-261, 2006. [15] S. Li, S. Xu, L. Shuqin, Y. Chen, L. Qinghua, “Fast pyrolysis of biomass in free-fall reactor for hydrogen-rich gas,” Fuel Processing Technology, c. 85, ss. 1201-1211, 2004.
  • [16] W. Lan, C.F. Liu, R.C. Sun, “Fractionation of Bagasse into Cellulose, Hemicelluloses, and Lignin with Ionic Liquid Treatment Followed by Alkaline Extraction,” J. Agric. Food Chem., c. 59, ss. 8691–8701, 2011.
  • [17] J. Xu, J.J. Cheng, R.R. Sharma-Shivappa, J.C. Burns, “Sodium Hydroxide Pretreatment of Switchgrass for Ethanol Production,” Energy Fuels, c. 24, ss. 2113–2119, 2010.
  • [18] K. Kucharska, P. Rybarczyk, I. Hołowacz, R. Łukajtis, M. Glinka, M. Kamiński, “Pretreatment of Lignocellulosic Materials as Substrates for Fermentation Processes,” Molecules, c. 23, s. 11, ss. 29-37, 2018.
  • [19] A. Tutuş, Y. Kazaskeroğlu, M. Çiçekler, “Evaluation of Tea Wastes in Usage Pulp and Paper Production,” BioResources, c. 10, s. 3, ss. 5407-5416, 2015.
  • [20] K.Wang, B. Wang, R. Hu, X. Zhao, H. Li, G. Zhou, L. Song, A. Wu, “Characterization of hemicelluloses in Phyllostachys edulis (moso bamboo) culm during xylogenesis,” Carbohydr. Polym., c. 221, ss. 127-136, 2019.
  • [21] Q. Cai, Z. Fan, J. Chen, W. Guo, F. Ma, S. Sun, Q. Zhou, “Dissolving process of bamboo powder analyzed by FT-IR spectroscopy,” Journal of Molecular Structure, c. 1171, ss. 639-643, 2018.
  • [22] A.K. Samanta, S. Senani, A.P. Kolte, M. Sridhar, K.T. Sampath, N. Jayapal, A. Devi, “Production and in vitro evaluation of xylooligosaccharides generated from corn cobs,” Food and Bioproducts Processing, c. 90, ss. 466–474, 2012.
  • [23] S. Nizamuddin, H.A. Baloch, G.J. Griffin, N.M. Mubarak, A.W. Butto, R. Abro, S.A. Mazari, B.S. Ali, “An overview of effect of process parameters on hydrothermal carbonization of biomass,” Renewable and Sustainable Energy Reviews, c. 73, ss. 1289–1299, 2017.
  • [24] A.E. Pirbazarı, N.R. Pargami, N. Ashja, M.S. Emami, “Surfactant-coated Tea Waste: Preparation, Characterization and its Application for Methylene Blue Adsorption from Aqueous Solution,” J. Environ. Anal. Toxicol., c. 5, s. 5, ss. 1-11, 2015.
  • [25] J. Shi, J. Li, “Metabolites and Chemical Group Changes in the Wood Forming Tissue of Pinus Koraiensis under Inclined Condition,” BioResources, c. 7, s. 3, ss. 3463-3475, 2012.
  • [26] D. She, F. Xu, Z.C.Geng, R.C. Sun, G.L. Jones, M.S. Baird, “Physicochemical characterization of extracted lignin from sweet sorghum stem,” Crop. Prod., c. 32, s. 1, ss. 21-28, 2009.
  • [27] B. Büyükdere, “Doğal atık materyal lignininden yüzey aktif madde eldesi,” Yüksek lisans tezi, Fen bilimleri Enstitüsü, İstanbul Teknik Üniversitesi, İstanbul, Türkiye, 2011.
  • [28] X.F. Sun, Z. Jing, P. Fowler, Y. Wu, M. Rajaratnam, “Structural characterization and isolation of lignin and hemicelluloses from barley straw,” Industrial Crops and Products, c. 33, ss. 588–598, 2011.
  • [29] I. Egüés, A. Eceiza, J. Labidi, “Effect of different hemicelluloses characteristics on film forming properties,” Industrial Crops and Products, c. 47, ss. 331-338, 2013.
  • [30] J.X. Sun, X.F. Sun, H.Zhao, R.C. Sun, “Isolation and characterization of cellulose from sugarcane bagasse,” Polymer Degradation and Stability, c. 84, ss. 331-339, 2004.
  • [31] M. Brienzo, A.F. Siqueira, A.M.F. Milagres, “Search for optimum conditions of sugarcane bagasse hemicellulose extraction,” Biochemical Engineering Journal, c. 46, ss. 199–204, 2009.
  • [32] R.C. Sun, J. Tomkinson, “Characterization of hemicelluloses obtained by classical and ultrasonically assisted extractions from wheat straw,” Carbohydr. Polym., c. 50, ss. 263–271, 2002.
  • [33] A.U. Buranov, G. Mazza, “Lignin in straw of herbaceous crops,” Industrial Crops and Products, c. 28, ss. 237-259, 2008.
  • [34] R. Sun, J.M. Lawther, W.B. Banks, “Fractional and structural characterization of wheat straw hemicelluloses,” Carbohydrrate Polymers, c. 49, ss. 415-423, 1999.
  • [35] D.Y. Corredor, “Pretreatment and enzymatic hydrolysis of lignocellulosic biomass, ” Ph.D. dissertation, Biological and Agricultural Engineering, Kansas State University, Kansas, ABD, 2008.
  • [36] R. Sun, S. Hughes, “Fractional extraction and physico-chemical characterization of hemicelluloses and cellulose from sugar beet pulp,” Carbohydrate Polymers, c. 36, ss. 293–299, 1998.
  • [37] A. Mandal, D. Chakrabarty, “Isolation of nanocellulose from waste sugarcane bagasse (SCB) and its characterization,” Carbohydr. Polym., c. 86, ss. 1291-1299, 2011.
  • [38] M.W. Frey, L. Li, M. Xiao, T. Gould, “Dissolution of cellulose in ethylene diamine/salt solvent systems,” Cellulose, c. 13, ss. 147 –155, 2006.
  • [39] S.S. Dhage, S.K. Kulkarni, “Adsorption of Carbon Dioxide on Adsorbents Synthesized by Microwave Technique,” J. Chem. Eng. Process Technol., c. 6, ss. 1-5, 2015.

Farklı Biyokütle Atıklarının Alkali Ön İşlem Etkinliklerinin İncelenmesi

Year 2020, Volume: 8 Issue: 4, 2296 - 2312, 29.10.2020
https://doi.org/10.29130/dubited.702096

Abstract

Bu çalışmada farklı atık türlerinin sürdürülebilir biyo-rafineri yaklaşımıyla katma değeri yüksek ürünlere dönüşüm potansiyelleri karşılaştırmalı olarak incelenmeye çalışılmıştır. Bu amaçla kayısı çekirdeği kabuğu, ceviz kabuğu, şeker pancarı küspesi, çay posası ve çam odununun talaşı değerlendirilmiştir. Biyokütlenin kimyasal yapısının temel bileşenlerin (hemiselüloz, selüloz, ligninin) izolasyon verimleri üzerine etkisi araştırılmıştır. Edilen temel bileşenler (hemiselüloz ve selüloz) FTIR analizi ile karakterize edilmiş ve elde edilen spektrum literatür çerçevesinde yorumlanmıştır. Biyokütlenin lignin içeriğinin hemiselüloz ekstraksiyon verimi üzerine etkisinin olmadığı belirlenmiştir. Çay posasının hemiselüloz izolasyon veriminin (%25), ceviz kabuğunun ise lignin izolasyon veriminin (%19) diğer biyokütle türlerinden daha yüksek olduğu ortaya konulmuştur.

References

  • [1] B. C. Saha, “Hemicellulose bioconversion,” J Ind Microbiol Biotechnol, c. 30, ss. 279-291, 2003, doi: 10.1007/s10295-003-0049-x.
  • [2] M.S. Hasyierah Noor, M.M.D. Zulkali, K.I. Syahidah Ku, “Ferulic acid from lignocellulosic biomass: Review,” Malaysian Universities Conferences on Engineering and Techonology, Malaysia 2008.
  • [3] Bahçegül, “Effect of Biomass Pretreatment Conditions on the Glucose and Biodegradable Film Productıon From Lignocellulosic Wastes,” Ph.D. dissertation, Natural and Applıed Sciences, Middle East Technical University, Ankara, Türkiye, 2013.
  • [4] M. Çopuroğlu, “Haşhaş sapı ve Pamuk Sapındaki Polisakkarit Bileşimlerinin Analizinin Yapılması,” Yüksek lisans tezi, Fen Bilimleri Enstitüsü, Süleyman Demirel Üniversitesi, Isparta, Türkiye, 2004.
  • [5] Ö. Dinçtürk, “Haşhaş Sapı ve Pamuk Sapı Hemiselülozlarının Alkali H2O2 ile Fraksiyonel Ekstraksiyonu ve Bileşim Karakterizasyonu,” Yüksek lisans tezi, Fen Bilimleri Enstitüsü, Süleyman Demirel Üniversitesi, Isparta, Türkiye, 2007.
  • [6] J. M. Fang, R.C. Sun, D. Salisbury, P. Fowler, J. Tomkinson, “Comparative Study of Hemicelluloses from Wheat Straw by Alkali and Hydrogen Peroxide Extractions,” Polymer Degradation and Stability, c. 66, s. 3, ss. 423-432, 1999a.
  • [7] J.M. Fang, R. Sun, P. Fowler, J. Tomkinson, C.A.S. Hıll, “Esterification of Wheat Straw Hemicelluloses in the N, N- Dimethylformamide/Lithium Chloride Homogeneous system,” Journal of Applied Polymer Science, c. 74, s. 9, ss. 2301-2311, 1999b.
  • [8] B. Sapcı, “Pamuk Saplarından Antioksidan ve Ksilitol Üretimi” Yüksek lisans tezi, Gıda Mühendisliği Anabilim Dalı, Gaziosmanpaşa Üniversitesi, Tokat, Türkiye, 2012.
  • [9] J.X. Sun, X.F. Sun, Y.Q. Su, “Fractional Extraction and Structural Characterization of Sugarcane Bagasse Hemicelluloses,” Carbohydrate Polymers, c. 56, s. 2, ss. 195-204, 2004a.
  • [10] J.X. Sun, F.C. Mao, X.F. Sun, R.C. Sun, “Comparative Study of Hemicelluloses Isolated with Alkaline Peroxide from Lignocellulosic Materials,” Journal of Wood Chemistry and Technology, c. 24, s. 3, ss. 239-262, 2004b.
  • [11] Toraman E. “Investigation of Alkaline Pretreatment Parameters on A Multi-Product Basis for the Co-Production of Glucose and Hemicellulose Based Films from Corn Cobs,” Graduate Thesis, Natural and Applied Sciences, Middle East Technical University, Ankara, Türkiye, 2012.
  • [12] G. Usal, “Buğday tarlası atıklarından alkali hidroliz ile fenolik bileşiklerin üretimi ve üretim koşullarının optimizasyonu,” Yüksek lisans tezi, Fen Bilimleri Enstitüsü, Gaziosmanpaşa Üniversitesi, Tokat, Türkiye, 2014.
  • [13] H. Yılmaz, “Hemicellulose Extraction from Agro-Food Industrial Wastes and Its Application in Foods” M.S. thesis, Food Engineering Department, Middle East Technical University, Ankara, Türkiye, 2012.
  • [14] F. Xu, J.X. Sun, C.F. Liu, R.C. Sun, “Comparative Study of Alkali- and Acidic Organic Solvent- Soluble Hemicellulosic Polysaccharides from Sugarcane Bagasse,” Carbohydrate Research, c. 341, s. 2, 253-261, 2006. [15] S. Li, S. Xu, L. Shuqin, Y. Chen, L. Qinghua, “Fast pyrolysis of biomass in free-fall reactor for hydrogen-rich gas,” Fuel Processing Technology, c. 85, ss. 1201-1211, 2004.
  • [16] W. Lan, C.F. Liu, R.C. Sun, “Fractionation of Bagasse into Cellulose, Hemicelluloses, and Lignin with Ionic Liquid Treatment Followed by Alkaline Extraction,” J. Agric. Food Chem., c. 59, ss. 8691–8701, 2011.
  • [17] J. Xu, J.J. Cheng, R.R. Sharma-Shivappa, J.C. Burns, “Sodium Hydroxide Pretreatment of Switchgrass for Ethanol Production,” Energy Fuels, c. 24, ss. 2113–2119, 2010.
  • [18] K. Kucharska, P. Rybarczyk, I. Hołowacz, R. Łukajtis, M. Glinka, M. Kamiński, “Pretreatment of Lignocellulosic Materials as Substrates for Fermentation Processes,” Molecules, c. 23, s. 11, ss. 29-37, 2018.
  • [19] A. Tutuş, Y. Kazaskeroğlu, M. Çiçekler, “Evaluation of Tea Wastes in Usage Pulp and Paper Production,” BioResources, c. 10, s. 3, ss. 5407-5416, 2015.
  • [20] K.Wang, B. Wang, R. Hu, X. Zhao, H. Li, G. Zhou, L. Song, A. Wu, “Characterization of hemicelluloses in Phyllostachys edulis (moso bamboo) culm during xylogenesis,” Carbohydr. Polym., c. 221, ss. 127-136, 2019.
  • [21] Q. Cai, Z. Fan, J. Chen, W. Guo, F. Ma, S. Sun, Q. Zhou, “Dissolving process of bamboo powder analyzed by FT-IR spectroscopy,” Journal of Molecular Structure, c. 1171, ss. 639-643, 2018.
  • [22] A.K. Samanta, S. Senani, A.P. Kolte, M. Sridhar, K.T. Sampath, N. Jayapal, A. Devi, “Production and in vitro evaluation of xylooligosaccharides generated from corn cobs,” Food and Bioproducts Processing, c. 90, ss. 466–474, 2012.
  • [23] S. Nizamuddin, H.A. Baloch, G.J. Griffin, N.M. Mubarak, A.W. Butto, R. Abro, S.A. Mazari, B.S. Ali, “An overview of effect of process parameters on hydrothermal carbonization of biomass,” Renewable and Sustainable Energy Reviews, c. 73, ss. 1289–1299, 2017.
  • [24] A.E. Pirbazarı, N.R. Pargami, N. Ashja, M.S. Emami, “Surfactant-coated Tea Waste: Preparation, Characterization and its Application for Methylene Blue Adsorption from Aqueous Solution,” J. Environ. Anal. Toxicol., c. 5, s. 5, ss. 1-11, 2015.
  • [25] J. Shi, J. Li, “Metabolites and Chemical Group Changes in the Wood Forming Tissue of Pinus Koraiensis under Inclined Condition,” BioResources, c. 7, s. 3, ss. 3463-3475, 2012.
  • [26] D. She, F. Xu, Z.C.Geng, R.C. Sun, G.L. Jones, M.S. Baird, “Physicochemical characterization of extracted lignin from sweet sorghum stem,” Crop. Prod., c. 32, s. 1, ss. 21-28, 2009.
  • [27] B. Büyükdere, “Doğal atık materyal lignininden yüzey aktif madde eldesi,” Yüksek lisans tezi, Fen bilimleri Enstitüsü, İstanbul Teknik Üniversitesi, İstanbul, Türkiye, 2011.
  • [28] X.F. Sun, Z. Jing, P. Fowler, Y. Wu, M. Rajaratnam, “Structural characterization and isolation of lignin and hemicelluloses from barley straw,” Industrial Crops and Products, c. 33, ss. 588–598, 2011.
  • [29] I. Egüés, A. Eceiza, J. Labidi, “Effect of different hemicelluloses characteristics on film forming properties,” Industrial Crops and Products, c. 47, ss. 331-338, 2013.
  • [30] J.X. Sun, X.F. Sun, H.Zhao, R.C. Sun, “Isolation and characterization of cellulose from sugarcane bagasse,” Polymer Degradation and Stability, c. 84, ss. 331-339, 2004.
  • [31] M. Brienzo, A.F. Siqueira, A.M.F. Milagres, “Search for optimum conditions of sugarcane bagasse hemicellulose extraction,” Biochemical Engineering Journal, c. 46, ss. 199–204, 2009.
  • [32] R.C. Sun, J. Tomkinson, “Characterization of hemicelluloses obtained by classical and ultrasonically assisted extractions from wheat straw,” Carbohydr. Polym., c. 50, ss. 263–271, 2002.
  • [33] A.U. Buranov, G. Mazza, “Lignin in straw of herbaceous crops,” Industrial Crops and Products, c. 28, ss. 237-259, 2008.
  • [34] R. Sun, J.M. Lawther, W.B. Banks, “Fractional and structural characterization of wheat straw hemicelluloses,” Carbohydrrate Polymers, c. 49, ss. 415-423, 1999.
  • [35] D.Y. Corredor, “Pretreatment and enzymatic hydrolysis of lignocellulosic biomass, ” Ph.D. dissertation, Biological and Agricultural Engineering, Kansas State University, Kansas, ABD, 2008.
  • [36] R. Sun, S. Hughes, “Fractional extraction and physico-chemical characterization of hemicelluloses and cellulose from sugar beet pulp,” Carbohydrate Polymers, c. 36, ss. 293–299, 1998.
  • [37] A. Mandal, D. Chakrabarty, “Isolation of nanocellulose from waste sugarcane bagasse (SCB) and its characterization,” Carbohydr. Polym., c. 86, ss. 1291-1299, 2011.
  • [38] M.W. Frey, L. Li, M. Xiao, T. Gould, “Dissolution of cellulose in ethylene diamine/salt solvent systems,” Cellulose, c. 13, ss. 147 –155, 2006.
  • [39] S.S. Dhage, S.K. Kulkarni, “Adsorption of Carbon Dioxide on Adsorbents Synthesized by Microwave Technique,” J. Chem. Eng. Process Technol., c. 6, ss. 1-5, 2015.
There are 38 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Zeynep Ceylan This is me 0000-0002-3006-9768

Şeyda Taşar 0000-0003-3184-1542

Fatih Kaya 0000-0002-4063-8362

Ahmet Özer 0000-0002-8075-3672

Publication Date October 29, 2020
Published in Issue Year 2020 Volume: 8 Issue: 4

Cite

APA Ceylan, Z., Taşar, Ş., Kaya, F., Özer, A. (2020). Farklı Biyokütle Atıklarının Alkali Ön İşlem Etkinliklerinin İncelenmesi. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi, 8(4), 2296-2312. https://doi.org/10.29130/dubited.702096
AMA Ceylan Z, Taşar Ş, Kaya F, Özer A. Farklı Biyokütle Atıklarının Alkali Ön İşlem Etkinliklerinin İncelenmesi. DUBİTED. October 2020;8(4):2296-2312. doi:10.29130/dubited.702096
Chicago Ceylan, Zeynep, Şeyda Taşar, Fatih Kaya, and Ahmet Özer. “Farklı Biyokütle Atıklarının Alkali Ön İşlem Etkinliklerinin İncelenmesi”. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi 8, no. 4 (October 2020): 2296-2312. https://doi.org/10.29130/dubited.702096.
EndNote Ceylan Z, Taşar Ş, Kaya F, Özer A (October 1, 2020) Farklı Biyokütle Atıklarının Alkali Ön İşlem Etkinliklerinin İncelenmesi. Düzce Üniversitesi Bilim ve Teknoloji Dergisi 8 4 2296–2312.
IEEE Z. Ceylan, Ş. Taşar, F. Kaya, and A. Özer, “Farklı Biyokütle Atıklarının Alkali Ön İşlem Etkinliklerinin İncelenmesi”, DUBİTED, vol. 8, no. 4, pp. 2296–2312, 2020, doi: 10.29130/dubited.702096.
ISNAD Ceylan, Zeynep et al. “Farklı Biyokütle Atıklarının Alkali Ön İşlem Etkinliklerinin İncelenmesi”. Düzce Üniversitesi Bilim ve Teknoloji Dergisi 8/4 (October 2020), 2296-2312. https://doi.org/10.29130/dubited.702096.
JAMA Ceylan Z, Taşar Ş, Kaya F, Özer A. Farklı Biyokütle Atıklarının Alkali Ön İşlem Etkinliklerinin İncelenmesi. DUBİTED. 2020;8:2296–2312.
MLA Ceylan, Zeynep et al. “Farklı Biyokütle Atıklarının Alkali Ön İşlem Etkinliklerinin İncelenmesi”. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi, vol. 8, no. 4, 2020, pp. 2296-12, doi:10.29130/dubited.702096.
Vancouver Ceylan Z, Taşar Ş, Kaya F, Özer A. Farklı Biyokütle Atıklarının Alkali Ön İşlem Etkinliklerinin İncelenmesi. DUBİTED. 2020;8(4):2296-312.