Research Article
BibTex RIS Cite

Konsol İstinat Duvarlarında Yükseklik Maliyet İlişkisinin Parçacık Sürü Algoritması İle İncelenmesi

Year 2020, Volume: 8 Issue: 4, 2544 - 2554, 29.10.2020

Abstract

Mühendislik yapılarının boyutlandırılması ile ilgili problemlerde, optimizasyon algoritmalarının kullanımına olan ilgi, son yıllarda hızlı bir artış göstermektedir. İstinat duvarlarının ekonomik tasarımı bu problem içerisinde önemli bir yer teşkil etmektedir. Bu çalışmada konsol tipi bir istinat duvarı için farklı yükseklikler ve duvar arkası dolgu zemin özellikleri dikkate alınarak optimum boyutların belirlenmesi amaçlanmıştır. Bu amaçla, 102 farklı senaryo, Parçacık Sürü Optimizasyon algoritması kullanılarak optimize edilmiş ve sonuçlar grafik halinde sunulmuştur. Çalışmada yükseklik artışının maliyeti arttırdığı, ancak bunun doğrusal olmadığı tespit edilmiştir. Ayrıca topuk kısmının uzunluğunun istinat duvarının yükseklik artışı ile doğrusala yakın bir artış gösterdiği gözlemlenmiştir. İstinat duvarında yaklaşık 7 metre yüksekliğe kadar burun kısmındaki boyut değişimi sabit kalmaktadır. Daha yüksek istinat duvarları için bu boyut hızla artmaktadır.

References

  • [1] C. R. I. Clayton, R. I. Woods, A. J. Bond ve J. Milititsky, “Earth Pressure and Earth-Retaining Structures,” 3rd Edition, CRC Press, 2014.
  • [2] T. M. Adams, “Retaining Structure Selection with Unequal Fuzzy Project-Level Objectives,” Journal of Intelligent and Fuzzy Systems, c. 2, s. 3, ss. 251-265, 1994.
  • [3] A. Sarıbaş ve F. Erbatur, “Optimization and sensitivity of retaining structures,” J. Geotech. Eng., c. 12, s. 8, ss. 649–656, 1996.
  • [4] P. Jelušič ve B. Žlender, “Soil-nail wall stability analysis using ANFIS,” Acta Geotech. Slov. c. 10, ss. 61–73, 2013.
  • .[5] M. Khajehzadeh, M. R. Taha, A. El-Shafie ve M. Eslami, “Modified particle swarm optimization for optimum design of spread footing and retaining wall,” Applied Physics & Engineering, c. 12 s. 6, ss. 415-427, 2011.
  • [6] Y. Y. Pei Y.Y ve Y. Y. Xia, “Design of Reinforced Cantilever Retaining Walls using Heuristic Optimization Algorithms,” Procedia Earth and Planetary Science ,c. 5, ss. 32-36, 2012.
  • [7] A. H. Gandomi ve A. R. Kashani, “Automating pseudo-static analysis of concrete cantilever retaining wall using evolutionary algorithms,” Measurement, c. 115, ss. 104-124, 2018.
  • .[8] R. Temur ve G. Bekdas, “Optimum design of reinforced concrete cantilever retaining walls,” Pamukkale University Journal of Engineering Sciences, c. 24 s. 6, ss. 1043-1050, 2018.
  • [9] Y. Yalçın, M. Orhon ve O. Pekcan, “An automated approach for the design of Mechanically Stabilized Earth Walls incorporating metaheuristic optimization algorithms,” Applied Soft Computing, c. 74, ss. 547-566, 2019.
  • [10] M. Kalateh-Ahani ve A. Sarani, “Performance-based Optimal Design of Cantilever Retaining Walls,” Periodica Polytechnica Civil Engineering, c. 63, s.2, ss. 660–673, 2019.
  • [11] B. Gordan, M. Koopialipoor, A. Clementking, H. Tootoonchi ve E. T. Mohamad, “Estimating and optimizing safety factors of retaining wall through neural network and bee colony techniques,” Engineering with Computers, c. 35, s. 3, ss. 945-954, 2019.
  • [12] A. Kaveh ve S. M. A. Abadi, “Harmony search based algorithms for the optimum cost design of reinforced concrete cantilever retaining walls” International Journal of Civil Engineering, c. 9, s. 1, ss. 1–8, 2011.
  • [13] I. Aydogdu, “Cost optimization of reinforced concrete cantilever retaining walls under seismic loading using a biogeography-based optimization algorithm with Levy flights.” Engineering Optimization, c. 49, s. 3, ss. 381-400, 2017.
  • [14] A. Kaveh ve A. F. Behnam, “Charged system search algorithm for the optimum cost design of reinforced concrete cantilever retaining walls,” Arabian Journal for Science and Engineering, c. 38, s. 3, ss. 563-570, 2013.
  • [15] A. H. Kayhan ve A. Demir A, “Betonarme konsol istinat duvarlarının parçacık sürü optimizasyonu ile optimum tasarımı,” Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 22, s. 3, ss. 129-135, 2016.
  • [16] V. Yepes, J. Alcala, C. Perea ve V. Gonzalez, “A parametric study of optimum earth-retaining walls by simulated annealing,” Engineering Structures, c. 30, s. 3, ss. 821-830, 2008.
  • [17] M. Khajehzadeh, T. M. Raihan ve E. Mahdiyeh, “Efficient gravitational search algorithm for optimum design of retaining walls,” Structural Engineering and Mechanics, c. 45 s. 1, ss. 111-127, 2013.
  • [18] M. Ghazavi ve B. S. Bazzazian, “Optimization of reinforced concrete retaining walls using ant colony method,” Proc., 3rd Int. Symposium on Geotechnical Safety and Risk (ISGSR), Germany.
  • [19] H. G. H. Yazd, S. J. Arabshahi, M. Tavousi ve A. Alvani, “Optimal Designing of Concrete Gravity Dam using Particle Swarm Optimization Algorithm (PSO),” Indian Journal of Science and Technology, c. 8, s. 12, ss. 1-10, 2015.

Investigating the Height-Cost Relationship of Cantilever Retaining Walls with Particle Swarm Algorithm

Year 2020, Volume: 8 Issue: 4, 2544 - 2554, 29.10.2020

Abstract

The interest of using optimization algorithms in problem of the dimensioning of engineering structures is gradually increasing in recent years. The economic design of the retaining walls is an important part of this problem. In this study, it is tried to obtain optimum design for backfill characteristics and various heights of a cantilever retaining wall. For this purpose, 102 different scenarios have been optimized by using Particle Swarm Optimization algorithm and the results are presented graphically. The cost increases with the increase of height but the relationship is not linear. Furthermore, it is observed that the length of the heel increases with the increase of height of the retaining wall and this relationship is found to be linear. The dimension at the toe remains constant for retaining walls up to 7 meters. For higher retaining walls, this size increases rapidly.

References

  • [1] C. R. I. Clayton, R. I. Woods, A. J. Bond ve J. Milititsky, “Earth Pressure and Earth-Retaining Structures,” 3rd Edition, CRC Press, 2014.
  • [2] T. M. Adams, “Retaining Structure Selection with Unequal Fuzzy Project-Level Objectives,” Journal of Intelligent and Fuzzy Systems, c. 2, s. 3, ss. 251-265, 1994.
  • [3] A. Sarıbaş ve F. Erbatur, “Optimization and sensitivity of retaining structures,” J. Geotech. Eng., c. 12, s. 8, ss. 649–656, 1996.
  • [4] P. Jelušič ve B. Žlender, “Soil-nail wall stability analysis using ANFIS,” Acta Geotech. Slov. c. 10, ss. 61–73, 2013.
  • .[5] M. Khajehzadeh, M. R. Taha, A. El-Shafie ve M. Eslami, “Modified particle swarm optimization for optimum design of spread footing and retaining wall,” Applied Physics & Engineering, c. 12 s. 6, ss. 415-427, 2011.
  • [6] Y. Y. Pei Y.Y ve Y. Y. Xia, “Design of Reinforced Cantilever Retaining Walls using Heuristic Optimization Algorithms,” Procedia Earth and Planetary Science ,c. 5, ss. 32-36, 2012.
  • [7] A. H. Gandomi ve A. R. Kashani, “Automating pseudo-static analysis of concrete cantilever retaining wall using evolutionary algorithms,” Measurement, c. 115, ss. 104-124, 2018.
  • .[8] R. Temur ve G. Bekdas, “Optimum design of reinforced concrete cantilever retaining walls,” Pamukkale University Journal of Engineering Sciences, c. 24 s. 6, ss. 1043-1050, 2018.
  • [9] Y. Yalçın, M. Orhon ve O. Pekcan, “An automated approach for the design of Mechanically Stabilized Earth Walls incorporating metaheuristic optimization algorithms,” Applied Soft Computing, c. 74, ss. 547-566, 2019.
  • [10] M. Kalateh-Ahani ve A. Sarani, “Performance-based Optimal Design of Cantilever Retaining Walls,” Periodica Polytechnica Civil Engineering, c. 63, s.2, ss. 660–673, 2019.
  • [11] B. Gordan, M. Koopialipoor, A. Clementking, H. Tootoonchi ve E. T. Mohamad, “Estimating and optimizing safety factors of retaining wall through neural network and bee colony techniques,” Engineering with Computers, c. 35, s. 3, ss. 945-954, 2019.
  • [12] A. Kaveh ve S. M. A. Abadi, “Harmony search based algorithms for the optimum cost design of reinforced concrete cantilever retaining walls” International Journal of Civil Engineering, c. 9, s. 1, ss. 1–8, 2011.
  • [13] I. Aydogdu, “Cost optimization of reinforced concrete cantilever retaining walls under seismic loading using a biogeography-based optimization algorithm with Levy flights.” Engineering Optimization, c. 49, s. 3, ss. 381-400, 2017.
  • [14] A. Kaveh ve A. F. Behnam, “Charged system search algorithm for the optimum cost design of reinforced concrete cantilever retaining walls,” Arabian Journal for Science and Engineering, c. 38, s. 3, ss. 563-570, 2013.
  • [15] A. H. Kayhan ve A. Demir A, “Betonarme konsol istinat duvarlarının parçacık sürü optimizasyonu ile optimum tasarımı,” Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 22, s. 3, ss. 129-135, 2016.
  • [16] V. Yepes, J. Alcala, C. Perea ve V. Gonzalez, “A parametric study of optimum earth-retaining walls by simulated annealing,” Engineering Structures, c. 30, s. 3, ss. 821-830, 2008.
  • [17] M. Khajehzadeh, T. M. Raihan ve E. Mahdiyeh, “Efficient gravitational search algorithm for optimum design of retaining walls,” Structural Engineering and Mechanics, c. 45 s. 1, ss. 111-127, 2013.
  • [18] M. Ghazavi ve B. S. Bazzazian, “Optimization of reinforced concrete retaining walls using ant colony method,” Proc., 3rd Int. Symposium on Geotechnical Safety and Risk (ISGSR), Germany.
  • [19] H. G. H. Yazd, S. J. Arabshahi, M. Tavousi ve A. Alvani, “Optimal Designing of Concrete Gravity Dam using Particle Swarm Optimization Algorithm (PSO),” Indian Journal of Science and Technology, c. 8, s. 12, ss. 1-10, 2015.
There are 19 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Soner Uzundurukan 0000-0003-4080-6642

Kemal Saplıoğlu 0000-0003-0016-8690

Publication Date October 29, 2020
Published in Issue Year 2020 Volume: 8 Issue: 4

Cite

APA Uzundurukan, S., & Saplıoğlu, K. (2020). Konsol İstinat Duvarlarında Yükseklik Maliyet İlişkisinin Parçacık Sürü Algoritması İle İncelenmesi. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi, 8(4), 2544-2554.
AMA Uzundurukan S, Saplıoğlu K. Konsol İstinat Duvarlarında Yükseklik Maliyet İlişkisinin Parçacık Sürü Algoritması İle İncelenmesi. DUBİTED. October 2020;8(4):2544-2554.
Chicago Uzundurukan, Soner, and Kemal Saplıoğlu. “Konsol İstinat Duvarlarında Yükseklik Maliyet İlişkisinin Parçacık Sürü Algoritması İle İncelenmesi”. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi 8, no. 4 (October 2020): 2544-54.
EndNote Uzundurukan S, Saplıoğlu K (October 1, 2020) Konsol İstinat Duvarlarında Yükseklik Maliyet İlişkisinin Parçacık Sürü Algoritması İle İncelenmesi. Düzce Üniversitesi Bilim ve Teknoloji Dergisi 8 4 2544–2554.
IEEE S. Uzundurukan and K. Saplıoğlu, “Konsol İstinat Duvarlarında Yükseklik Maliyet İlişkisinin Parçacık Sürü Algoritması İle İncelenmesi”, DUBİTED, vol. 8, no. 4, pp. 2544–2554, 2020.
ISNAD Uzundurukan, Soner - Saplıoğlu, Kemal. “Konsol İstinat Duvarlarında Yükseklik Maliyet İlişkisinin Parçacık Sürü Algoritması İle İncelenmesi”. Düzce Üniversitesi Bilim ve Teknoloji Dergisi 8/4 (October 2020), 2544-2554.
JAMA Uzundurukan S, Saplıoğlu K. Konsol İstinat Duvarlarında Yükseklik Maliyet İlişkisinin Parçacık Sürü Algoritması İle İncelenmesi. DUBİTED. 2020;8:2544–2554.
MLA Uzundurukan, Soner and Kemal Saplıoğlu. “Konsol İstinat Duvarlarında Yükseklik Maliyet İlişkisinin Parçacık Sürü Algoritması İle İncelenmesi”. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi, vol. 8, no. 4, 2020, pp. 2544-5.
Vancouver Uzundurukan S, Saplıoğlu K. Konsol İstinat Duvarlarında Yükseklik Maliyet İlişkisinin Parçacık Sürü Algoritması İle İncelenmesi. DUBİTED. 2020;8(4):2544-5.