Research Article
BibTex RIS Cite

Numerical Investigation of the Effect of Cooling and Heating Conditions on the Performance of Thermoelectric Module

Year 2021, Volume: 9 Issue: 1, 493 - 510, 31.01.2021
https://doi.org/10.29130/dubited.742775

Abstract

Today, the need for energy increases, and fossil fuel resources run out rapidly so energy costs also increase rapidly. The most important feature of fossil fuels is that they consist of hydrocarbon and organic substances containing high levels of carbon. This causes great harm to the world and humanity. In the face of this dangerous situation, world states look for new and clean energy sources. As a result, the trend towards renewable energy sources increases rapidly. In this context, TE (thermoelectric) module is an important source to convert heat to electrical energy. The amount of electricity generation from heat depends on the temperature difference between surfaces of the TE module. The electrical power obtained from heat increases with the increase of temperature difference. This work aims to investigate numerically the heat transfer and electricity generation performance of a 〖Bi〗_2 〖Te〗_3-based TE module embedded with cylindrical pin-fin heat sink under the different hot surface and air temperature conditions with different air velocities. The results were evaluated and discussed with parameters such as temperature distribution, power input, power output, voltage output, current output, temperature difference, total thermal resistance, conversion efficiency and Nusselt number according to Reynolds numbers. In all analyses, it was observed that performance of the heat transfer and electricity generation of the TE module increase with the increase in Reynolds number. The highest conversion efficiency was obtained generally at surface temperatures of 200℃, specifically at air temperature of 5℃ and the Reynolds number of 20000. In addition, it was observed that the temperature difference between the surfaces of the TE module is not sufficient alone to give good performance and besides, it is necessary to keep the cold surface at low temperature.

References

  • [1] R. Zevenhoven and A. Beyene, “The relative contribution of waste heat from power plants to global warming,” Energy, vol. 36, no. 6, pp. 3754-3762, 2011.
  • [2] M. von Lukowicz, E. Abbe, T. Schmiel and M. Tajmar, “Thermoelectric generators on satellites—an approach for waste heat recovery in space,” Energies, vol. 9, no. 7, p. 541, 2016.
  • [3] C. Goupil, W. Seifert, K. Zabrocki, E. Müller and G. Snyder, “Thermodynamics of thermoelectric phenomena and applications,” Entropy, vol. 13, no. 8, pp. 1481-1517, 2011.
  • [4] U. Şahin, G. Coşkun, H. Soyhan, “Traktör egzozundan atılan isı enerjisinin elektrik enerjisi olarak kazanımını sağlayan termoelektrik jeneratör,” Uluslararası Yakıtlar Yanma ve Yangın Dergisi, s. 6, ss. 10-19, 2018.
  • [5] K. Zeb et al., “A survey on waste heat recovery: Electric power generation and potential prospects within Pakistan,” Renewable and Sustainable Energy Reviews, vol. 75, pp. 1142-1155, 2017.
  • [6] Z. Soleimani, S. Zoras, Y. Cui, B. Ceranic and S. Shahzad, “Design of heat sinks for wearable thermoelectric generators to power personal heating garments: A numerical study,” IOP Conference Series: Earth and Environmental Science, vol. 410, p. 012096, 2020.
  • [7] D. Luo, R. Wang and W. Yu, “Comparison and parametric study of two theoretical modeling approaches based on an air-to-water thermoelectric generator system,” Journal of Power Sources, vol. 439, p. 227069, 2019.
  • [8] S. Lv et al., “Study of different heat exchange technologies influence on the performance of thermoelectric generators,” Energy Conversion and Management, vol. 156, pp. 167-177, 2018.
  • [9] P. Naphon, S. Wiriyasart and C. Hommalee, “Experimental and numerical study on thermoelectric liquid cooling module performance with different heat sink configurations,” Heat and Mass Transfer, vol. 55, no. 9, pp. 2445-2454, 2019.
  • [10] U. Erturun, K. Erermis and K. Mossi, “Effect of various leg geometries on thermo-mechanical and power generation performance of thermoelectric devices,” Applied Thermal Engineering, vol. 73, no. 1, pp. 128-141, 2014.
  • [11] P. Naphon and S. Wiriyasart, “Liquid cooling in the mini-rectangular fin heat sink with and without thermoelectric for CPU,” International Communications in Heat and Mass Transfer, vol. 36, no. 2, pp. 166-171, 2009.
  • [12] H. Huang, Y. Weng, Y. Chang, S. Chen and M. Ke, “Thermoelectric water-cooling device applied to electronic equipment,” International Communications in Heat and Mass Transfer, vol. 37, no. 2, pp. 140-146, 2010.
  • [13] S. Mostafavi and M. Mahmoudi, “Modeling and fabricating a prototype of a thermoelectric generator system of heat energy recovery from hot exhaust gases and evaluating the effects of important system parameters,” Applied Thermal Engineering, vol. 132, pp. 624-636, 2018.
  • [14] Y. Seo, M. Ha, S. Park, G. Lee, Y. Kim and Y. Park, “A numerical study on the performance of the thermoelectric module with different heat sink shapes,” Applied Thermal Engineering, vol. 128, pp. 1082-1094, 2018.
  • [15] Du, H. Diao, Z. Niu, G. Zhang, G. Shu and K. Jiao, “Effect of cooling design on the characteristics and performance of thermoelectric generator used for internal combustion engine,” Energy Conversion and Management, vol. 101, pp. 9-18, 2015.
  • [16] R. Kiflemariam and C. Lin, “Numerical simulation of integrated liquid cooling and thermoelectric generation for self-cooling of electronic devices,” International Journal of Thermal Sciences, vol. 94, pp. 193-203, 2015.
  • [17] A. Martínez, D. Astrain and A. Rodríguez, “Experimental and analytical study on thermoelectric self cooling of devices,” Energy, vol. 36, no. 8, pp. 5250-5260, 2011.
  • [18] V. Joshi, V. Joshi, H. Kothari, M. Mahajan, M. Chaudhari and K. Sant, “Experimental investigations on a portable fresh water generator using a thermoelectric cooler,” Energy Procedia, vol. 109, pp. 161-166, 2017.
  • [19] X. Sun et al., “Experimental research of a thermoelectric cooling system integrated with gravity assistant heat pipe for cooling electronic devices,” Energy Procedia, vol. 105, pp. 4909-4914, 2017.
  • [20] X. Liu, Y. Deng, Z. Li and C. Su, “Performance analysis of a waste heat recovery thermoelectric generation system for automotive application,” Energy Conversion and Management, vol. 90, pp. 121-127, 2015.
  • [21] Y. Hsiao, W. Chang and S. Chen, “A mathematic model of thermoelectric module with applications on waste heat recovery from automobile engine,” Energy, vol. 35, no. 3, pp. 1447-1454, 2010.
  • [22] W. Li et al., “The temperature distribution and electrical performance of fluid heat exchanger-based thermoelectric generator,” Applied Thermal Engineering, vol. 118, pp. 742-747, 2017.
  • [23] Y. Wang, S. Li, X. Xie, Y. Deng, X. Liu and C. Su, “Performance evaluation of an automotive thermoelectric generator with inserted fins or dimpled-surface hot heat exchanger,” Applied Energy, vol. 218, pp. 391-401, 2018.
  • [24] Y. Chang, C. Chang, M. Ke and S. Chen, “Thermoelectric air-cooling module for electronic devices,” Applied Thermal Engineering, vol. 29, no. 13, pp. 2731-2737, 2009.
  • [25] Fluent User’s Guide, Fluent Incorporated, Lebanon, NH, 2006.

Soğutma ve Isıtma Şartlarının Termoelektrik Modülün Performansına Etkisinin Nümerik İncelenmesi

Year 2021, Volume: 9 Issue: 1, 493 - 510, 31.01.2021
https://doi.org/10.29130/dubited.742775

Abstract

Günümüzde enerjiye olan talep artmaktadır ve fosil yakıt kaynakları hızla tükenmektedir, bunun sonucunda enerji maliyetleri de hızla artmaktadır. Fosil yakıtların en önemli özelliği, yüksek karbon seviyeleri içeren hidrokarbon ve organik maddelerden oluşmasıdır. Bu dünya ve insanlık için büyük zarara sebep olmaktadır. Bu tehlikeli durumun karşısında, dünya devletleri yeni ve temiz enerji kaynakları aramaktadırlar. Sonuç olarak, yenilenebilir enerji kaynaklarına yönelim hızla artmaktadır. Bu bağlamda termoelektrik (TE) modül, ısının elektrik enerjisine dönüşümünde önemli bir kaynaktır. Isıdan elektrik üretimi miktarı TE modülün yüzeyleri arasındaki sıcaklık farkına bağlıdır. Sıcaklık farkı arttıkça, ısıdan elde edilen elektriksel güç de artmaktadır. Bu çalışma farklı hava hızları, yüzey sıcaklıkları ve hava sıcaklıkları koşullarında, silindirik iğne kanatlı ısı alıcı gömülü bir Bi_2 Te_3 TE modülünün ısı transferi ve elektrik üretimi performansı nümerik olarak incelemeyi amaçlamaktadır. Sonuçlar Reynolds sayısına göre, sıcaklık dağılımı, güç girdisi, güç çıktısı, gerilim çıktısı, akım çıktısı, sıcaklık farkı, toplam termal direnci, dönüşüm verimliliği ve Nusselt sayısı gibi parametrelerle değerlendirilmiş ve tartışılmıştır. Tüm analizlerde Reynolds sayısındaki artışla birlikte TE modülün ısı transferi ve elektrik üretimi performansının arttığı gözlemlenmiştir. En yüksek dönüşüm verimliliği genel olarak 200℃ yüzey sıcaklıklarında, spesifik olarak 20000 Reynolds sayısı ve 5℃ hava sıcaklığında elde edilmiştir. Ek olarak, TE modülün yüzeyleri arasındaki sıcaklık farkının iyi performans vermek için tek başına yeterli olmadığı bunun yanında soğuk yüzeyinin düşük sıcaklıkta tutulması gerektiği gözlemlenmiştir.

References

  • [1] R. Zevenhoven and A. Beyene, “The relative contribution of waste heat from power plants to global warming,” Energy, vol. 36, no. 6, pp. 3754-3762, 2011.
  • [2] M. von Lukowicz, E. Abbe, T. Schmiel and M. Tajmar, “Thermoelectric generators on satellites—an approach for waste heat recovery in space,” Energies, vol. 9, no. 7, p. 541, 2016.
  • [3] C. Goupil, W. Seifert, K. Zabrocki, E. Müller and G. Snyder, “Thermodynamics of thermoelectric phenomena and applications,” Entropy, vol. 13, no. 8, pp. 1481-1517, 2011.
  • [4] U. Şahin, G. Coşkun, H. Soyhan, “Traktör egzozundan atılan isı enerjisinin elektrik enerjisi olarak kazanımını sağlayan termoelektrik jeneratör,” Uluslararası Yakıtlar Yanma ve Yangın Dergisi, s. 6, ss. 10-19, 2018.
  • [5] K. Zeb et al., “A survey on waste heat recovery: Electric power generation and potential prospects within Pakistan,” Renewable and Sustainable Energy Reviews, vol. 75, pp. 1142-1155, 2017.
  • [6] Z. Soleimani, S. Zoras, Y. Cui, B. Ceranic and S. Shahzad, “Design of heat sinks for wearable thermoelectric generators to power personal heating garments: A numerical study,” IOP Conference Series: Earth and Environmental Science, vol. 410, p. 012096, 2020.
  • [7] D. Luo, R. Wang and W. Yu, “Comparison and parametric study of two theoretical modeling approaches based on an air-to-water thermoelectric generator system,” Journal of Power Sources, vol. 439, p. 227069, 2019.
  • [8] S. Lv et al., “Study of different heat exchange technologies influence on the performance of thermoelectric generators,” Energy Conversion and Management, vol. 156, pp. 167-177, 2018.
  • [9] P. Naphon, S. Wiriyasart and C. Hommalee, “Experimental and numerical study on thermoelectric liquid cooling module performance with different heat sink configurations,” Heat and Mass Transfer, vol. 55, no. 9, pp. 2445-2454, 2019.
  • [10] U. Erturun, K. Erermis and K. Mossi, “Effect of various leg geometries on thermo-mechanical and power generation performance of thermoelectric devices,” Applied Thermal Engineering, vol. 73, no. 1, pp. 128-141, 2014.
  • [11] P. Naphon and S. Wiriyasart, “Liquid cooling in the mini-rectangular fin heat sink with and without thermoelectric for CPU,” International Communications in Heat and Mass Transfer, vol. 36, no. 2, pp. 166-171, 2009.
  • [12] H. Huang, Y. Weng, Y. Chang, S. Chen and M. Ke, “Thermoelectric water-cooling device applied to electronic equipment,” International Communications in Heat and Mass Transfer, vol. 37, no. 2, pp. 140-146, 2010.
  • [13] S. Mostafavi and M. Mahmoudi, “Modeling and fabricating a prototype of a thermoelectric generator system of heat energy recovery from hot exhaust gases and evaluating the effects of important system parameters,” Applied Thermal Engineering, vol. 132, pp. 624-636, 2018.
  • [14] Y. Seo, M. Ha, S. Park, G. Lee, Y. Kim and Y. Park, “A numerical study on the performance of the thermoelectric module with different heat sink shapes,” Applied Thermal Engineering, vol. 128, pp. 1082-1094, 2018.
  • [15] Du, H. Diao, Z. Niu, G. Zhang, G. Shu and K. Jiao, “Effect of cooling design on the characteristics and performance of thermoelectric generator used for internal combustion engine,” Energy Conversion and Management, vol. 101, pp. 9-18, 2015.
  • [16] R. Kiflemariam and C. Lin, “Numerical simulation of integrated liquid cooling and thermoelectric generation for self-cooling of electronic devices,” International Journal of Thermal Sciences, vol. 94, pp. 193-203, 2015.
  • [17] A. Martínez, D. Astrain and A. Rodríguez, “Experimental and analytical study on thermoelectric self cooling of devices,” Energy, vol. 36, no. 8, pp. 5250-5260, 2011.
  • [18] V. Joshi, V. Joshi, H. Kothari, M. Mahajan, M. Chaudhari and K. Sant, “Experimental investigations on a portable fresh water generator using a thermoelectric cooler,” Energy Procedia, vol. 109, pp. 161-166, 2017.
  • [19] X. Sun et al., “Experimental research of a thermoelectric cooling system integrated with gravity assistant heat pipe for cooling electronic devices,” Energy Procedia, vol. 105, pp. 4909-4914, 2017.
  • [20] X. Liu, Y. Deng, Z. Li and C. Su, “Performance analysis of a waste heat recovery thermoelectric generation system for automotive application,” Energy Conversion and Management, vol. 90, pp. 121-127, 2015.
  • [21] Y. Hsiao, W. Chang and S. Chen, “A mathematic model of thermoelectric module with applications on waste heat recovery from automobile engine,” Energy, vol. 35, no. 3, pp. 1447-1454, 2010.
  • [22] W. Li et al., “The temperature distribution and electrical performance of fluid heat exchanger-based thermoelectric generator,” Applied Thermal Engineering, vol. 118, pp. 742-747, 2017.
  • [23] Y. Wang, S. Li, X. Xie, Y. Deng, X. Liu and C. Su, “Performance evaluation of an automotive thermoelectric generator with inserted fins or dimpled-surface hot heat exchanger,” Applied Energy, vol. 218, pp. 391-401, 2018.
  • [24] Y. Chang, C. Chang, M. Ke and S. Chen, “Thermoelectric air-cooling module for electronic devices,” Applied Thermal Engineering, vol. 29, no. 13, pp. 2731-2737, 2009.
  • [25] Fluent User’s Guide, Fluent Incorporated, Lebanon, NH, 2006.
There are 25 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Seyda Özbektaş 0000-0001-7399-733X

Bilal Sungur 0000-0002-7320-1490

Bahattin Topaloğlu 0000-0002-7095-4913

Publication Date January 31, 2021
Published in Issue Year 2021 Volume: 9 Issue: 1

Cite

APA Özbektaş, S., Sungur, B., & Topaloğlu, B. (2021). Numerical Investigation of the Effect of Cooling and Heating Conditions on the Performance of Thermoelectric Module. Duzce University Journal of Science and Technology, 9(1), 493-510. https://doi.org/10.29130/dubited.742775
AMA Özbektaş S, Sungur B, Topaloğlu B. Numerical Investigation of the Effect of Cooling and Heating Conditions on the Performance of Thermoelectric Module. DUBİTED. January 2021;9(1):493-510. doi:10.29130/dubited.742775
Chicago Özbektaş, Seyda, Bilal Sungur, and Bahattin Topaloğlu. “Numerical Investigation of the Effect of Cooling and Heating Conditions on the Performance of Thermoelectric Module”. Duzce University Journal of Science and Technology 9, no. 1 (January 2021): 493-510. https://doi.org/10.29130/dubited.742775.
EndNote Özbektaş S, Sungur B, Topaloğlu B (January 1, 2021) Numerical Investigation of the Effect of Cooling and Heating Conditions on the Performance of Thermoelectric Module. Duzce University Journal of Science and Technology 9 1 493–510.
IEEE S. Özbektaş, B. Sungur, and B. Topaloğlu, “Numerical Investigation of the Effect of Cooling and Heating Conditions on the Performance of Thermoelectric Module”, DUBİTED, vol. 9, no. 1, pp. 493–510, 2021, doi: 10.29130/dubited.742775.
ISNAD Özbektaş, Seyda et al. “Numerical Investigation of the Effect of Cooling and Heating Conditions on the Performance of Thermoelectric Module”. Duzce University Journal of Science and Technology 9/1 (January 2021), 493-510. https://doi.org/10.29130/dubited.742775.
JAMA Özbektaş S, Sungur B, Topaloğlu B. Numerical Investigation of the Effect of Cooling and Heating Conditions on the Performance of Thermoelectric Module. DUBİTED. 2021;9:493–510.
MLA Özbektaş, Seyda et al. “Numerical Investigation of the Effect of Cooling and Heating Conditions on the Performance of Thermoelectric Module”. Duzce University Journal of Science and Technology, vol. 9, no. 1, 2021, pp. 493-10, doi:10.29130/dubited.742775.
Vancouver Özbektaş S, Sungur B, Topaloğlu B. Numerical Investigation of the Effect of Cooling and Heating Conditions on the Performance of Thermoelectric Module. DUBİTED. 2021;9(1):493-510.